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Abstract: The purpose of this article is to establish the solvability of the 2-Dimensional dissipative
cubic nonlinear Klein-Gordon equation (2DDCNLKGE) through periodic boundary value conditions
(PBVCs). The analysis of this study is founded on the Galerkin’s method (GLK) and the
Leray-Schauder’s fixed point theorem (LS). First, the GLK method is used to construct some
uniform priori estimates of approximate solution to the corresponding equation of 2DDCNLKGE.
Finally, the LS fixed point theorem is applied to obtain the efficient and straightforward existence and
uniqueness criteria of time periodic solution to the 2DDCNLKGE.

Keywords: 2-Dimensional dissipative cubic nonlinear Klein-Gordon equation; periodic solution;
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1. Introduction

The nonlinear Klein-Gordon equation (NLKGE for short) has been obtained by a modification of

nonlinear Schrödinger equation i∂tψ = − 1
2∂x

2ψ+ k
∣∣∣ψ∣∣∣2ψ, whereψ(x, t) is a complex field. This equation

has extensively been used for modeling of various nonlinear physical and environmental phenomena;
see for instance [1–6] and their cited references.

As vital nonlinear partial differential equations (NLPDEs), the NLKG types equations have
received great consideration for developing solutions by applying various types of techniques; see for
instance [3,4,7,8] and their cited references.

Certain nonlinear physical systems expressed with NLPDEs may be transformed into nonlinear
ordinary differential equations by using traveling wave transformations, and the travelling wave
solutions of these NLPDEs is analogous to the exact solutions of corresponding nonlinear ordinary
differential equations. The 2-Dimension dissipative NLKGE is a practical instance of the above
mentioned nonlinear physical system.

Throughout this paper, R+ denotes a set of positive real numbers.
The general form of a 2-Dimension dissipative NLKGE is:

utt − ∆u + αut + βu + γ|u|ku = f (x, t), x ∈ Ω, t ∈ R+ (1)
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where u is a real valued, Ω = [0, L] × [0, L], α, β, γ are real physical constants, ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2

and k is

a positive integer, which is used to measure the nonlinearity of 2D dissipative NLKGE. Here, it is also
mentioned that α and β may be considered as continuous functions.

For k = 2, Equation (1) reduces to the following 2D dissipative quadratic NLKGE:

utt − ∆u + αut + βu + γ|u|2u = f (x, t), x ∈ Ω, t ∈ R+ (2)

For k = 3 Equation (1), reduces to the following 2DDCNLKGE:

utt − ∆u + αut + βu + γ|u|3u = f (x, t), x ∈ Ω, t ∈ R+ (3)

Equation (3) is used to explain relativistic quantum mechanics; see for instance [9].
In 2004, Gao and Guo [10] established solvability of the time-periodic solution of a 2D dissipative

quadratic NLKG equation given by (2) with time periodic boundary value conditions using the GLK
method [11,12] and the LS fixed point theorem [13]. There exists a wide range of solvability for
Equations (2) and (3), in case of α = 0 and f = 0; see for instance [1,14–16] and their cited references.
After Gao and Guo [10], in 2006, Fu and Guo [17] established the time-periodic solution of the following
one-dimensional viscous Camassa-Holm equation:

ut − uxxt − µ(uxx − uxxxx) + 3uux = 2uxuxx + uuxxx + f (x, t), x ∈ Ω, t ∈ R+,µ > 0 (4)

applying the GLK method and the LS fixed point theorem. Sequentially, in 2014, Gao et al. [16]
proved the uniqueness of the time-periodic solution to 1D quadratic viscous modified Camassa-Holm
equation:

ut − uxxt − µ(uxx − uxxxx) + 3u2ux − 2uxuxx − uuxxx = f (x, t), x ∈ Ω, t ∈ R+,µ > 0 (5)

by means of the GLK method and the LS fixed point theorem.
In the last few decades, many researchers have devoted themselves to establishing the time-periodic

solution for various nonlinear evolution equations; see for instance [10,11,17–20] and their cited
references. Recently, Obinwanne and Collins [21] applied the LS fixed point theorem to obtain a
solution of Duffing’s equation. Moreover, there is a certain focus on the uniqueness of the time-periodic
solution of 2DDCNLKGE given by Equation (5), applying the GLK method and the LS fixed point
theorem. Inspired by the above-mentioned works in this paper, we establish a solvability for the
following 2DDCNLKGE with PBVCs applying the GLK method and the LS fixed point theorem:

utt − ∆u + αut + βu + γ|u|3u = f (x, t), x ∈ Ω,
u(x + L, t) = u(x, t), x ∈ Ω,
f (x, t +ω) = f (x, t),

(6)

where t ∈ R+, u = u(x, t) is a real value, Ω = [0, L] × [0, L], α, β, γ are real physical constants and
∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
.

The outline of this article is as follows: The present section provides an introduction to this
article. In Section 2, we provide some notations, the GLK method, and the LS fixed point theorem.
Section 3 is used to formulate uniform priori estimates of the approximate solution of 2DDCNLKGE
given in Equation (6), which will be applied in the next section. Section 4 is devoted to establishing a
unique time-periodic solution criterion for 2DDCNLKGE given in Equation (6). Finally, we provide
a conclusion.
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2. Preliminary Notes

Here, we provide some introductory truths that are needed to describe the main results of
this article.

Let B be a Banach space. For 1 ≤ p ≤ ∞, the space Lp(B; ω) is defined as the set of ω-periodic
B-measurable functions on< (set of real numbers), such that:

‖u‖Lp(B; ω) =


(∫ ω

0 ‖u‖
p
Bds

)1/p
< ∞, 1 ≤ p < ∞

sup
0≤t≤ω

‖u‖B < ∞, p = ∞.

The space Wk, p(B; ω) denote the set of functions that belong to Lp(B; ω) together with their
derivatives up to order k; if B is a Hilbert space, we write Wk, 2(B; ω) = Hk(B; ω).

During this study, we use these notations:

L2
per =

{
u ∈ L2(Ω) : u(x + L, t) = u(x, t)

}
,

Hk
per =

{
u ∈ Hk : u(x + L, t) = u(x, t)

}
, k = 1, 2,

where L2(Ω) is obtained from Lp(B; ω) by putting p = 2 and Hk = Hk(B; ω).
And

Ck(ω, X) =
{

f : [0, ∞)→ X : f (i) is continuous, i = 0, 1, · · · , k, f is an ω− periodic function
}
.

where X may be a real or complex space.
For k = 0, we replace C0(ω, X) with C(ω, X). The inner product and norm of L2(Ω) are denoted

by (., .) and ‖ . ‖, respectively. We also denote that:

T = −∆, D(T) = H2
per, N(u) = −γ|u|3u, and N

is a cubic nonlinear operator on L2(Ω).
Now, we state the LS fixed point theorem, which will be used as the main tools of this study.

Theorem 1 [13]. Let B be a Banach space and T : B→ B be a continuous and compact mapping with property
“there exists R > 0 such that the statement (u = rTu with r ∈ [0, 1)) implies ‖u‖B < R ”. Then T has a fixed
point u∗ such that ‖u∗‖ ≤ R.

We now provide a brief discussion on the GLK method [11,12].
The GLK method is a strong and general method. Here, we introduce the GLK method with a

nonconcrete problem modelled as a frail design on a Hilbert space H, V {\displaystyle V} specifically
searching for x ∈ H:

y ∈ H, and b(x, y) = h(y)

where b(., .) is bilinear and h(y) is a bounded linear functional on H.
Select a n dimension subspace Hn of the Hilbert space H to solve the following problem: search

xn ∈ Hn from:
b(xn, yn) = h(yn), for all yn ∈ Hn (7)

Equation (7) is known as the GLK formula. The main theme of the GLK method is that the mistake
is orthogonal to the preferred sub-spaces, since Hn ⊂ H V n ⊂ V {\displaystyle V_{n}\subset V}, yn is
used v n {\displaystyle v_{n}} as a trial vector in the main problem. If the mistake between the solution
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of the main problem x u {\displaystyle u} and the solution of the GLK formula xn is mn = x − xn,
ε n = u − u n {\displaystyle \epsilon _{n} = u − u_{n}}thenthethen we have:

b(mn, yn) = b(x, yn) − b(xn, yn) = h(yn) − h(yn) = 0 (8)

In the GLK method, we can represent the problem in matrix form and calculate the solution
algorithmically. Regarding this matrix representation, if we consider e1, e2, e3, · · · , en as a basis of Hn,
then from Equation (7), we can obtain xn ∈ Hn from b(xn, ei) = h(ei), i = 1, 2, 3, · · · , n.

Now, if we enlarge xn according to this basis, we get xn =
n∑

j=1
x je j and hence obtain

b

 n∑
j=1

x je j, ei

 = n∑
j=1

x jb
(
e j, ei

)
= h(ei), i = 1, 2, 3, · · · , n. (9)

Equation (9) represents a system of equations given by Ci jx j = hi, where the coefficient matrix Ci j

is given by
n∑

j=1
b
(
e j, ei

)
and hi = h(ei).

3. Existence of Uniform Priori Estimates for the Solution of 2DDCNLKGE

In this section, applying the GLK method and Theorem 1, we formulate uniform priori estimates
for an approximate solution to the 2DDCNLKGE.

In space C
(
ω, L2

per

)
, we write the problem given in Equation (6) as the following abstract problem:

utt + αut + βu + Tu = N(u) + f , u(., t) = u(., t +ω), ∀ f ∈ C1
(
ω, H1

per

)
. (10)

Now, we obtain an approximate solution of 2DDCNLKGE given in Equation (6) using the
GLK method. Let

{
ω j

}∞
j=0

be a normal orthogonal basis of the space L2
per and satisfy Tω j =

λ jω j, ( j = 1, 2, · · ·), where λ j are eigenvalues for the map T and the eigenvectors ω j, ( j = 1, 2, · · ·).
We denote Hn = span{ω1, ω2, · · · , ωn}, ∀ n ∈ ℵ (set of natural numbers).

Now, by the GLK method, for any n ∈ ℵ and any sequence of functions
{
a jn(t)

}n

j=1
, where

a jn(t) ∈ C2( ω, <), ( j = 1, 2, 3, · · · , n) and< denotes the set of real numbers, we can say that the

function un =
n∑

j=1
a jn(t)ω j ∈ C2( ω, Hn) is an approximate solution of Equation (10), if the following

system holds: (
untt + αunt + βun + Tun, ω j

)
=

(
N(un) + f , ω j

)
, j = 1, 2, 3, · · · , n, (11)

where,
N(un) = −γ|un|

3un and Hn = span{ω1, ω2, ω3, · · · , ωn}.

In order to demonstrate that Equation (10) has an approximate solution, we use Theorem 1.
A solution u(x, t) of Equation (10) is said to be unique if it has a fixed value u1(x, t), which satisfies
Equation (10) uniquely, that is the solution u(x, t) has no any value that is not equal to u1(x, t) and this
solution will be ω-periodic if u(x, t) = u(x, t +ω).

Now, from the classical viewpoint of ordinary differential equations, it is clear that for any fixed

vn(t) =
n∑

j=1
b jn(t)ω j ∈ C2( ω, Hn), the following linear ordinary equation system

(
untt + αunt + βun + Tun, ω j

)
=

(
µN(vn) + f , ω j

)
, 0 ≤ µ ≤ 1, j = 1, 2, 3, · · · , n, (12)
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offers a unique ω-periodic solution a jn(t) and the map Fµ : vn(t)→ un(t) is continuous and compact
on C2(ω, Hn). Furthermore, the map Fµ is completely continuous and hence uniform for 0 ≤ µ ≤ 1.
Clearly for µ = 0, the linear ordinary equation system given by Equation (12) has a unique solution.
Therefore, to prove the existence of the time periodic solution of Equation (12) by applying Theorem 2,
it is enough to show that the inequality

sup
0≤t≤ω

‖untt(t)‖ ≤ c (13)

holds for all possible solutions of Equation (12), and the nonlinear term N(un) is replaced by
µN(un), (0 ≤ µ ≤ 1), and c is a constant function of α, β, γ, ω, f and L.

Now, we establish some lemmas that convey the required uniform priori estimators for the time
periodic solution of Equation (11).

Lemma 1. If f ∈ C1
(
ω, H1

per

)
, then

‖unt(t)‖
2 + ‖∇un(t)‖

2 + ‖un(t)‖
2 + ‖un(t)‖

5
5 ≤ d1

where d1 is a positive constant function of α, β, γ, ω, f and L .

Proof. After multiplication by a′ jn(t) and taking sum over j from 1 to n on both sides of Equation (12),
we get:

1
2

d
dt

(
‖unt‖

2 + ‖∇un‖
2 + β‖un‖

2
)
+ α‖unt‖

2 +
µγ
5

d
dt

∫
Ω

∣∣∣un(t)
∣∣∣5dx

=
∫

Ω f untdx ≤α2 ‖unt‖
2 + 2

α‖ f ‖,
(14)

That is
d
dt

(
‖unt‖

2 + ‖∇un‖
2 + β‖un‖

2 +
2µγ

5
‖un‖

5
5

)
+ α‖unt‖

2
≤

4
α
‖ f ‖. (15)

Now, after multiplication by a jn(t) and taking sum over j from 1 to n on both sides of Equation (12),
we yield:

(untt + αunt + βun + Tun, un) = (µN(un) + f , un),

This implies that

d
dt
α‖un‖

2 + 2‖∇un‖
2 + β‖un‖

2 + 2
∫

Ω
unttundx +

5µγ
2
‖un‖

5
5 ≤

4
β
‖ f ‖. (16)

Multiplying both sides of Equation (16) by δ and adding Equation (15), we have:

d
dt

(
‖unt‖

2 + ‖∇un‖
2 + (β+ δα)‖un‖

2 +
2µγ

5 ‖un‖
5
5

)
+ α‖unt‖

2 + 2δ‖∇un‖
2

+δβ‖un‖
2 +δµγ‖un‖

5
5 + 2δ

∫
Ω untt(t)undx ≤ 4

(
1
α +

δ
β

)
‖ f ‖ = c1

(17)

Integrating inequality (17) over the closed interval [0, ω], we get:∫ ω

0

[
(α− 2δ)‖unt‖

2 + 2δ‖∇un‖
2 + δβ‖un‖

2 +
5δµγ

2
‖un‖

5
5

]
dt ≤ ωc1.

Now, if we take δ < α/2, then for t∗ ∈ (0, ω), b > 0, we have:

‖unt(t∗)‖
2 + ‖∇un(t∗)‖

2 + ‖un(t∗)‖
2 + ‖un(t∗)‖

5
5 ≤

c1

b
.

Again, integrating inequality (17) from t∗ to t ∈ (t∗, t∗ +ω) and for any L > 0, we have:

‖unt(t)‖
2 + ‖∇un(t)‖

2 + ‖un(t)‖
2 + ‖un(t)‖

5
5 ≤ 2c1ω+ (c1L/b) = d1
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Therefore, we deduce that:

sup
0≤t≤ω

(
‖unt(t)‖

2 + ‖∇un(t)‖
2 + ‖un(t)‖

2 + ‖un(t)‖
5
5

)
≤ d1. (18)

Which finishes the proof. �

Remark 1. From inequality (18), we can obtain the estimate sup
0≤t≤ω

‖untt(t)‖ ≤ d. Hence, LS fixed point

Theorem 2 and Lemma 1 offers the following result:
“If f ∈ C

(
ω, H1

per

)
, then for any positive integer n Equation (10) has an approximate solution

(un(t), u′n(t)) ∈ C2(ω, Hn) ×C1(ω, Hn) ”.
From the above established results, it is clear that {un}

∞

n=1 is the sequence of an approximate solution of
Equation (10). Now we have to prove that the sequence {un}

∞

n=1 is convergent and that the converging
point is a solution of Equation (10) and to fulfill the requirement, we have to establish a priori estimates
for un.

Lemma 2. If f ∈ C
(
ω, H1

per

)
, then there exists a positive constant d2 = d2(α, β, γ, ω, L, f ) such that:

sup
0≤t≤ω

(
‖∇unt(t)‖

2 + ‖∆un(t)‖
2 + ‖∇un(t)‖

2
)
≤ d2

Proof. The following inequalities, which are obtained from Ladyzhenskaya’s inequality [22–25], will be
needed to prove this lemma: ‖un‖4 ≤ c‖∇un‖

1/2
‖un‖

2/2, un ∈ H1(Ω),

‖un‖8 ≤ c‖∆un‖
1/6
‖un‖

5/6, un ∈ H2(Ω).
(19)

Multiplying both sides of Equation (12) by −λ ja jn(t) and taking the sum over j from 1 to n,
we have (untt + Tun + αunt + βum, −∆ un) = (µN(un) + f , −∆un), and hence applying inequalities of
(19), Hölder’s inequality, and Young’s inequality, we yield the following:

1
2

d
dtα‖∇un‖

2 + ‖∆un‖
2 + β‖∇un‖

2 +
∫

Ω ∇un∇untt(t)dx

≤ µγd2‖∆un‖‖un‖4‖un‖
3
8 + ‖ f ‖‖∆un‖

≤ µγd2c2
‖∆un‖‖∇un‖

1/2
‖un‖

1/2
‖∆un‖

1/2
‖un‖

5/2 + ‖ f ‖‖∆un‖

≤ µγed3‖∆un‖
3/2 + ‖ f ‖‖∆un‖

≤ 2ε‖∆un‖
2 + e(ε, γ, c, d3) +

‖ f ‖2

ε .

Taking ε to be small enough, we get:

1
2

d
dt
α‖∇un‖

2 +
3
4
‖∆un‖

2 + β‖∇un‖
2 +

∫
Ω
∇un∇untt(t)dx ≤ d4. (20)

Multiplying both sides of Equation (12) by −λ ja′ jn(t) and taking the sum over j from 1 to n,
we obtain (untt + Tun + αunt + βum, −∆ unt) = (µN(un) + f , −∆unt), and hence applying inequalities
of (19), Hölder’s inequality, and Young’s inequality, we get the following:
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1
2

d
dt

[
β‖∇un‖

2 + ‖∆un‖
2 + ‖∇unt‖

2
]
+ α‖∇unt‖

2

= −µγRe
∫

Ω |un|
3
∇un.∇untdx +

∫
Ω ∇ f .∇untdx, (0 ≤ µ ≤ 1)

≤ eγ‖∇unt‖‖un‖
3
8‖∇un‖4 + ‖∇ f ‖‖∇unt‖

≤ ed5c2
‖∇unt‖‖∆un‖

1/2
‖un‖

5/2
‖∇un‖

1/2
‖∆un‖

1/2 + ‖∇ f ‖‖∇unt‖

≤ ε‖∇unt‖
2 + e(ε, γ, c, d5)‖∆un‖+ ε‖∇unt‖

2 + e‖∇ f ‖2.

Taking ε to be small enough, we get:

1
2

d
dt

[
β‖∇un‖

2 + ‖∆un‖
2 + ‖∇untt‖

2
]
+

3α
4
‖∇unt‖

2
≤ e‖∆un‖+ e‖∇ f ‖2. (21)

Multiplying both sides of (20) by δ and by adding with (21), we have:

1
2

d
dt

[
‖∇unt‖

2 + ‖∆un‖
2 + (β+ αδ)‖∇un‖

2
]
+ 3α

4 ‖∇unt‖
2 + 3δ

4 ‖∆un‖
2

+βδ‖∇un‖
2 + δ

∫
Ω ∇un∇untt(t)dx

≤ δd4 + e‖∆un‖+ e‖∇ f ‖2 ≤ d5 +
1
4δ‖∆un‖

2 + d6,

(22)

where, d5 and d6 are constants.
Integrating both sides of (22) with respect to t from 0 to ω, we get:∫ ω

0

[
(3α− 4δ)‖∇unt‖

2 + 2δ‖∆un‖
2 + 4δβ‖∇un‖

2
]
dt ≤

∫ ω

0
4(d5 + d6)dt = d7ω.

Now, for 0 < δ < α
4 and t∗∗ ∈ (0, ω), we obtain:

‖∇unt(t∗∗)‖
2 + ‖∆un(t∗∗)‖

2 + ‖∇un(t∗∗)‖
2
≤ d8.

Again, integrating both sides of (22) from t∗∗ to t ∈ (t∗∗, t∗∗ +ω), we have:

‖∇unt(t)‖
2 + ‖∆un(t)‖

2 + ‖∇un(t)‖
2
≤ d9.

Thus, for a constant d2 = d2(α, β, γ, ω, f , L), we have:

sup
0≤t≤ω

(
‖∇unt(t)‖

2 + ‖∆un(t)‖
2 + ‖∇un(t)‖

2
)
≤ d2

which finishes the proof. �

The next lemma will establish the priori estimates of a higher order for un.

Lemma 3. If f ∈ C1
(
ω, H1

per

)
and d10 = d10(α, β, γ, ω, L, f ) is positive constant, then

sup
0≤t≤ω

‖untt(t)‖ ≤ d10

Proof. Differentiating Equation (11), we get:(
unttt + αuntt + βunt − ∆unt, ω j

)
=

(
−4γ|un|

3unt + f ′, ω j
)
, j = 1, 2, 3, · · · , n. (23)
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After multiplying both sides of (23) with 2a′′ jn(t) and taking the sum over j from 1 to n, we get:

d
dt

(
‖untt‖

2 + β‖unt‖
2 + ‖∇unt‖

2 + ‖∇unt‖
2
)
+ 2α‖untt‖

2

≤ 8γ‖untt‖‖unt‖4‖un‖
3
8 + 2‖untt‖‖ f ′‖ ≤ α‖untt‖

2 + 1
α

[
8‖ f ′‖2 + 8γ

(
‖unt‖4‖un‖

3
8

)2
]
.

Using inequality (19) and Lemma 2, we have:

d
dt

(
‖untt‖

2 + β‖unt‖
2 + ‖∇unt‖

2 + ‖∇unt‖
2
)
+ 2α‖untt‖

2
≤ d11. (24)

Again multiplying both sides of (23) with 2a′ jn(t) and taking the sum over j from 1 to n and by
lemma 2, we get:

d
dtα‖unt‖

2 + 2‖∇unt‖
2 + 2β‖unt‖

2 + 2
∫

Ω untttuntdx

≤ 8γ
∫

Ω |un|
3u2

ntdx + 2
∫

Ω f ′ untdx ≤ 8γ‖un‖
3
4‖unt‖

2
4 + 2‖unt‖‖ f ′‖ = d12

(25)

Multiplying both sides of (25) by δ and on adding with (24), we have:

d
dt

(
‖unttt‖

2 + ‖∇unt‖
2 + (β+ αδ)‖unt‖

2
)
+ 2α‖untt‖

2 + 2δ‖∇unt‖
2

+2βδ‖unt‖
2 + 2δ

∫
Ω untttuntdx ≤ d11 + δd12 � d13.

(26)

Integrating both sides of (26) from 0 to ω, we get:∫ ω

0

[
2(α− δ)‖untt‖

2 + 2δ‖∇unt‖
2 + 2δβ‖unt‖

2
]
dt ≤ d14ω.

Now, for 0 < δ < α
2 and t∗∗∗ ∈ (0, ω), we have:

‖untt(t∗∗∗)‖
2 + ‖∇unt(t∗∗∗)‖

2 + ‖∇unt(t∗∗∗)‖
2
≤

d15

n
.

Again, integrating Inequality (26) from t∗∗∗ to t ∈ [t∗∗∗, t∗∗∗ +ω], we have:

‖untt(t)‖
2 + ‖∇unt(t)‖

2 + ‖unt(t)‖
2
≤ d16. (27)

Thus, for a constant d10 = d10(α, β, γ, ω, f , L), we obtain:

sup
0≤t≤ω

‖untt(t)‖
2
≤ d10.

This completes the proof. �

4. Solvability of Periodic Solution to the 2DDCNLKGE

In this section, we establish the existence and uniqueness of time periodic solutions to 2DDCNLKGE
given in Equation (6).

The next theorem leads the existence criteria of a time periodic solution for 2DDCNLKGE given
in Equation (6).

Theorem 2. For any f ∈ C1
(
ω, H1

per

)
, the time periodic solution (u(x, t), u′(x, t)) of 2DDCNLKGE

given in Equation (6), is expressed in the following way:

u(x, t) ∈ C2
(
ω, H2

per

)
, u′(x, t) ∈ L2

per
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Proof. For all positive integers, we have proven that Equation (6) has an approximate solution un(t),
i.e., the system given by Equation (11) holds and we have estimates of the norm of un(t). It is possible
to consider a subsequence

{(
unk(t), u′nk(t)

)}
converging weakly to (u(t), u′(t)) ∈ H1

per × L2
per, for fixed

t and uniform boundedness norms ‖un(t)‖H1
per

and ‖u′n(t)‖
2
per. We have to prove that (u(t), u′(t)) is a

solution of the 2DDCNLKGE given in Equation (6). In fact, by weak convergence of
{
unk(t)

}
and

{
u′nk(t)

}
to u(t) and u′(t) in spaces H1

per and L2
per, respectively, we mean that the following are true:

unk(t)⇀ u(t) as k→∞, weakly in H1
per, (28)

u’nk(t)⇀ u’(t) as k→∞, weakly in L2
per. (29)

Since H1
per ↪→ L2

per is compact, hence for a subsequence of
{
unk(t)

}
which is again denoted by{

unk(t)
}

for convenience and for any t ∈ [0, ω), we have:

unk(t) converges strongly to u(t) as k→∞ in L2
per(Ω), (30)

and
unk(t) converges to u(t) as k→∞, a.e. (almost every where) Ω. (31)

By inequality (13), lemmas 2 and 3 and for any t ∈ [0, ω), we have
{
unk(t)

}
is uniformly bounded

in H1
per. Consequently, for a subsequence of

{
unk(t)

}
, which is again denoted by

{
unk(t)

}
for convenience

and for any t ∈ [0, ω), we get:

unk(t) converges to u(t) as k→∞, a.e. (almost every where) Ω.{
unk(t)

}
converges weakly to u(t) as k→∞ in H2

per,

and
∆unk(t)⇀ ∆u(t) as k→∞, converges weakly in L2

per. (32)

Similar to (30), for a subsequence of
{
unk(t)

}
, which is still denoted by

{
unk(t)

}
, for convenience

and for any t ∈ [0, ω), we obtain:

∇unk(t)converges strongly tow ∈ H1
per as k→∞ in L2

per(Ω), (33)

and
∇unk( t)→ w as k→∞, a.e. Ω. (34)

Combining Equations (28), (29) and (34), we obtain:

∇unk( t)→ ∇u(t) as k→∞, a.e. Ω. (35)

Since
{
u′nk(t)

}
is uniform bound in H1

per, similar to the above procedure, we obtain:

∇u′nk(t) converges strongly to u′(t) as k→∞ in L2
per(Ω), (36)

and
u′nk( t) converges to u′(t) as k→∞, a.e. Ω. (37)

According as inequality (13) and lemma 2, we have:

‖N
(
unk( t)

)
‖ ≤ d17, (38)
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where d17 = d17(α, β, γ, ω, f , L) is a constant.
Now, combining (31) and (35), we get:

N
(
unk( t)

)
converges to N(u(t)) as k→∞, a.e. Ω. (39)

Applying lemma 1.3 of Lions [16], we get:

N
(
unk( t)

)
converges weakly to N(u( t)) as k→∞ in L4

per. (40)

Since (un(t), u′n(t)) ∈ C2
(
ω, H2

per

)
× C1

(
ω, L2

per

)
, then from lemma 3, Equations (28) and(29),

we get (u(t), u′(t)) ∈ C2
(
ω, H2

per

)
×C1

(
ω, L2

per

)
, and hence for some t ∈ [0, ω), we obtain:

untt(t) converges weakly to utt(t) as k→∞ in L2
per(Ω). (41)

Multiplying each equation in (11) by any a jn(t) ∈ C2( ω, <), and summing up over j from 1 to n,
we get:

(untt + αunt + βun + Tun, τ) = (N(un) + f , τ), for all τ ∈ C2(ω, Hn).

For any fixed k0 ≤ k, by Hnk0
⊂ Hnk0

+1 ⊂ · · · , we have:(
unktt + αunkt + βunk + Tunk , τ

)
=

(
N

(
unk

)
+ f , τ

)
, for all τ ∈ C2

(
ω, Hnk0

)
. (42)

Combining (32), (40), (41), and (42), we deduce:

(utt + αut + βu + Tu, τ) = (N(u) + f , τ), for all τ ∈ C2
(
ω, Hnk0

)
. (43)

Here k0 is an arbitrarily chosen number such that (43) holds for all τ ∈ C2
(
ω,

∞

∪
n=1

Hn

)
. Since

∞

∪
n=1

Hn

is dense in L2
per, then (u(t), u′(t)) is a solution of (43), where τ ∈ C2

(
ω, L2

per

)
, i.e., (u(x, t), u′(x, t)) is a

solution of 2DDCNLKGE given by (6).
This completes the proof. �

The next theorem will form a new uniqueness criteria of time periodic solution to 2DDCNLKGE
given in Equation (6).

Theorem 3. If the hypothesis of Theorem 2 holds, then the 2DDCNLKGE given in Equation (6) has a unique
time periodic solution.

Proof. Let (u(x, t), u′(x, t) ) and (u∗(x, t), u∗′(x, t) ) be distinct time periodic solutions of (6).
If we set (v(x, t), v′(x, t) ) = (u(x, t), u′(x, t)) − (u∗(x, t), u∗′(x, t)) then from (11), we get:

vtt + αvt + βv + Tv = Nu−Nu∗. (44)

From (44), we obtain:

1
2

d
dt

(
‖vt‖

2 + α‖v‖2
)
+ β‖v‖2 + ‖∇v‖2 = (Nu−Nu∗, v). (45)

Using lemmas 1, 2, and 3 in (45), we get:

d
dt

(
‖vt‖

2 + ‖v‖2
)
+ δ

(
‖v‖2 + ‖∇v‖2

)
≤ 0, (46)

where, δ ≥ 0.
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Now, using Gronwall’s Inequality [26] in (46), we obtain:(
‖vt(t)‖

2 + ‖v(t)‖2
)
≤

(
‖vt(0)‖

2 + ‖v(0)‖2
)
e−δt, ∀ t ≥ 0 (47)

.
From ω-periodicity of v, we get:(

‖vt(t)‖
2 + ‖v(t)‖2

)
=

(
‖vt(t + κω)‖2 + ‖v(t + κω)‖2

)
. (48)

where, κ is any positive integer.
Using (47) and (48), we get:(

‖vt(t)‖
2 + ‖v(t)‖2

)
≤

(
‖vt(0)‖

2 + ‖v(0)‖2
)
e−δ(t+κω).

This gives us:
vt(0) = v(0) = 0

.
Hence:

(u(x, t), u′(x, t) ) = (u∗(x, t), u∗′(x, t) ),

i.e., the time periodic solution of 2DDCNLKGE given by (6) is unique. This completes the proof. �

5. Conclusions

This article has proven a new solvability criterion for a time periodic solution for 2DDCNLKGE
given in Equation (6) with the help of the GLK method and the LS fixed point theorem. The LS fixed
point theorem helps us to determine the existence of approximate solution points within uniform
priori estimates, whereas uniform priori estimates of the approximate solution of 2DDCNLKGE is
constructed by using the GLK method. Theorem 2 provided an easy procedure to check the presence of
a time periodic solution of 2DDCNLKGE given in Equation (6) and Theorem 3 ensured the uniqueness
of that time periodic solution. The results of this article provided an easy and straightforward technique
to identify a unique time periodic solution of 2DDCNLKGE given by Equation (6). Furthermore,
these results extend the corresponding results of Gao and Guo [10], Kosecki [14], Geoggiev [15],
Ozawa et al. [16], and Gao et al. [18].
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