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Abstract: The integral representation of the two-parameter Mittag-Leffler function Eρ,µ(z) is considered
in the paper that expresses its value in terms of the contour integral. For this integral representation,
the transition is made from integration over a complex variable to integration over real variables. It is
shown that as a result of such a transition, the integral representation of the function Eρ,µ(z) has two forms:
the representation “A” and “B”. Each of these representations has its advantages and drawbacks. In the
paper, the corresponding theorems are formulated and proved, and the advantages and disadvantages of
each of the obtained representations are discussed.
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1. Introduction

The Mittag-Leffler function is an entire function defined by a power series

Eρ(z) =
∞

∑
k=0

zk

Γ(1 + k/ρ)
, ρ > 0, z ∈ C,

where Γ(x) is the Gamma-function. This function was introduced by Mittag-Leffler in a number of works
published from 1902 to 1905 in connection with his development of a method of summing divergent series.
For more detailed information on the content of these works and on the history of the introduction of the
Mittag-Leffler function, we refer the reader to the book [1] (see chapter 2 in [1]). The function itself Eρ(z)
was introduced in the work [2]. In the paper [3], the integral representation for this function was obtained
that expresses its value in terms of the contour integral.

In this paper the two parameter Mittag-Leffler function

Eρ,µ(z) =
∞

∑
k=0

zk

Γ(µ + k/ρ)
, ρ > 0, µ ∈ C, z ∈ C (1)

is studied. This function was first introduced by A. Wiman in 1905 [4,5]. Later in 1953 this function was
rediscovered in the works of Humbert and Agarval [6–8]. A new function was introduced by replacing
the additive unit in the Gamma function argument in Eρ(z) for an arbitrary complex parameter µ. At the
same time, irrespective of Humbert and Agarval, the function (1) was studied by M.M. Djrbashian in the
papers [9,10] (see also [11] Chapter 3, §2, 4). As we can see, the two parameter Mittag-Leffler function
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Eρ,µ(z) is connected with the classic Mittag-Leffler function Eρ(z) by a simple relation Eρ,1(z) = Eρ(z).
For more detailed information on the properties of the function Eρ,µ(z) we refer the reader to the book [1],
as well as to other review works [12–14]. In this paper, integral representations of the function Eρ,µ(z) will
be obtained and studied.

The integral representation of the Mittag-Leffler function is important from the point of view
of its practical use, as well as for studying the asymptotic properties and zeros of this function.
The integral representation expressed through the contour integral is used for these purposes. Several
such representations are known for the Mittag-Leffler function. One of the earliest integral representations
of the function Eρ,µ(z) was given in the book [15] (see §18.1, formula (20)). Further development of the
issue of the integral representation of the Mittag-Leffler function and the study of its asymptotic properties
was carried out in the works of M.M. Djrbashian. In the work [9] the integral representation was obtained
that expressed the Mittag-Leffler function through the contour integral. Later it was included in his
monograph [11] (see chapter 3, §2, Lemma 3.2.1). Using this integral representation, asymptotic formulas
and the distribution of the zeros of the Mittag-Leffler function were obtained. Further, the results of the
work [9,11] were used in the books of [1,16], as well as in the works of [17–21] to develop the methods
and algorithms of calculating the Mittag-Leffler function. However, despite a wide use of the integral
representation for the Mittag-Leffler function that was obtained in the works of [9,11], it turned out that
there was a mistake in that representation. This fact was pointed out in the work of [22]. In this regard,
there is an issue of obtaining the correct integral representation for the Mittag-Leffler function.

One of the possible solutions to this issue was given in the works of [22,23]. In these works,
the representation of the Mittag-Leffler function was obtained that expresses its value through the contour
integral. As it was noted earlier, this representation is used to study the asymptotic properties of the
Mittag-Leffler function. However, for practical use and for calculating the value of the function, it is
convenient to have integral representations expressing the function in terms of the integrals of real
variables. This paper is devoted to obtaining such integral representations for the Mittag-Leffler function.
The starting point of the solution to this problem is the integral representation of the function Eρ,µ(z)
obtained in the work [22]. Running a little ahead, we will say that the transition from integration over a
complex variable to integration over real variables leads to the appearance of two forms of the integral
representation of the Mittag-Leffler function. The first form will be abbreviated as the representation
“A”, the second as the representation “B”. The representation “A” is a direct consequence of the integral
representation obtained in the work [22]. It is obtained as a result of the transition from the contour
integral to integration over real variables. To obtain the representation “B” in addition to performing such
a transition, it is necessary to carry out a terminal transition ε→ 0. This leads to the fact that the integral
representation “B” is valid only for parameter values µ satisfying the condition <µ < 1 + 1/ρ. As a result,
both the representation “A” and the representation “B” have its advantages and drawbacks which will be
discussed in detail in the paper.

It should be pointed out that in this paper the letters ρ, µ are used to denote the parameters of the
Mittag-Leffler function (1). These notations were introduced by M.M. Djrbashian in his works [9–11].
Parameters ρ and µ of the function (1) are connected with the commonly used notations α and β of the
parameters of the Mittag-Leffler function by simple relations α = 1/ρ, β = µ.

2. Integral Representation “A”

The purpose of this paper is to obtain integral representations for the function Eρ,µ(z) expressing this
function in terms of integrals over real variables. It is convenient to use the representations of such a kind
in practical problems as well as for calculating the values of the Mittag-Leffler function. As an example of
the use of such integral representations, we can mention the work [24]. In that paper, the inverse Fourier
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transform of the characteristic function of the fractionally stable law was performed which is expressed
in terms of the Mittag-Leffler function. To perform the inverse Fourier transform, we used the integral
representation of the Mittag-Leffler function which in the current paper is formulated in Corollary 3 item
2 (see (84)). Using this integral representation in the paper [24] expressions of density and distribution
function of a fractionally stable law were obtained. Articles [25,26] are another example of usage of the
Mittag-Leffler function. In these articles are shown that solutions of a master equation for the fractional
Poisson process [25] and a fractional relaxation equation for dielectrics [26] are expressed thorough the
Mittag-Leffler function. A Monte Carlo method was used for calculation the obtained solutions. However,
the use of the integral representation of the Mittag-Leffler function for calculation of the solutions would
significantly increase the accuracy of the results.

The starting point of this paper is the integral representation of the function Eρ,µ(z), obtained in the
work [22]. The following theorem was formulated in this work

Theorem 1. For any real ρ, δ1ρ, δ2ρ, ε satisfying the conditions ρ > 1/2, π
2ρ < δ1ρ 6 min(π, π/ρ), π

2ρ < δ2ρ 6
min(π, π/ρ), ε > 0, any µ ∈ C and any z ∈ C satisfying the condition

π

2ρ
− δ2ρ + π < arg z < − π

2ρ
+ δ1ρ + π (2)

the Mittage-Leffler function can be represented in the from

Eρ,µ(z) =
ρ

2πi

∫
γζ

exp {(zζ)ρ} (zζ)ρ(1−µ)

ζ − 1
dζ. (3)

where the contour of integration γζ has the form (see Figure 1)

γζ =


S1 = {ζ : arg ζ = −δ1ρ − π, |ζ| > 1 + ε},
Cε = {ζ : −δ1ρ − π 6 arg ζ 6 δ2ρ − π, |ζ| = 1 + ε},
S2 = {ζ : arg ζ = δ2ρ − π, |ζ| > 1 + ε}.

(4)

S1

S2

Cε

γζ

δ2ρ

δ1ρ

1 + ε

π
2ρ − δ2ρ + π

− π
2ρ + δ1ρ + π

arg z

The cut

1−1

Figure 1. The contour of integration γζ . The region that corresponds to the condition (2) is shaded in grey.

The proof of this theorem can be found in the work [22].
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The form of the contour of integration γζ on the complex plane ζ is given in Figure 1. The cut of the
complex plane goes along the positive part of a real axis. The contour of integration consists of the half-line
S1, the arc of the circle Cε radius 1 + ε and the half-line S2. The contour γζ is traversed in a positive
direction. The parameters δ1ρ and δ2ρ have the meaning of inclination angles of the half-lines S1 and S2 in
relation to the contour axis γζ . In Figure 1 the contour axis γζ coincides with a real axis. The values of the
angles δ1ρ and δ2ρ are measured from the negative part of the real axis. The reference directions of these
angles in Figure 1 are shown by arrows.

We will obtain the integral representations that of interest to us by going from integration over the
complex variable ζ to integration over variables r and ϕ interconnected by the relation ζ = reiϕ. As a
result, the following theorem is true for the function Eρ,µ(z).

Theorem 2 (The representation “A”). For any real ρ > 1/2, ε > 0 and δ1ρ, δ2ρ satisfying the conditions

π

2ρ
< δ1ρ 6 min

(
π,

π

ρ

)
,

π

2ρ
< δ2ρ 6 min

(
π,

π

ρ

)
, (5)

for any complex µ and any complex z satisfying the condition

π

2ρ
− δ2ρ + π < arg z < − π

2ρ
+ δ1ρ + π, (6)

the Mittag-Leffler function can be represented in the form

Eρ,µ(z) =
∫ ∞

1+ε
Kρ,µ(r,−δ1ρ, δ2ρ, z)dr +

∫ δ2ρ−π

−δ1ρ−π
Pρ,µ(1 + ε, ϕ, z)dϕ. (7)

Here

Kρ,µ(r, ϕ1, ϕ2, z) =
ρ

2πi
(zr)ρ(1−µ)e−iρπ(1−µ)[Aρ,µ(r, ϕ2, ϕ1, z)− Aρ,µ(r, ϕ1, ϕ2, z)]

(r2 + 2r cos ϕ1 + 1)(r2 + 2r cos ϕ2 + 1)
, (8)

where

Aρ,µ(r, ω1, ω2, z) = exp
{
(zr)ρe−iρπ cos(ρω1)

}
(r2 + 2r cos ω2 + 1)eiη(r,ω1,z)

[
r + eiω1

]
, (9)

η(r, ϕ, z) = (zr)ρe−iρπ sin(ρϕ) + ρ(1− µ)ϕ, (10)

and

Pρ,µ(r, ϕ, z) =
ρ

2π

exp {(zr)ρ cos(ρϕ)} (zr)ρ(1−µ)eiχ(r,ϕ,z)r
[
r− eiϕ]

r2 − 2r cos ϕ + 1
, (11)

where
χ(r, ϕ, z) = (zr)ρ sin(ρϕ) + ρ(1− µ)ϕ. (12)

Proof. For convenience we will introduce the notation

φρ,µ(ζ, z) =
ρ

2πi
exp {(ζz)ρ} (ζz)ρ(1−µ). (13)
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As a result, the representation (3) will take the form

Eρ,µ(z) =
∫

γζ

φρ,µ(ζ, z)
ζ − 1

dζ, (14)

where the contour of integration γζ is defined by (4).
Substituting in (14) the variable of integration ζ = reiϕ and directly calculating this integral we obtain

Eρ,µ(z) =
∫

S1

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

S2

φρ,µ(ζ, z)
ζ − 1

dζ =
∫ 1+ε

∞

φρ,µ(reiϕ, z)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=−δ1ρ−π

+ i

δ2ρ−π∫
−δ1ρ−π

φρ,µ(reiϕ, z)
reiϕ − 1

reiϕdϕ

∣∣∣∣∣
r=1+ε

+

∞∫
1+ε

φρ,µ(reiϕ, z)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=δ2ρ−π

=

1+ε∫
∞

φρ,µ(rei(−δ1ρ−π), z)

rei(−δ1ρ−π) − 1
ei(−δ1ρ−π)dr

+ i

δ2ρ−π∫
−δ1ρ−π

φρ,µ((1 + ε)eiϕ, z)
(1 + ε)eiϕ − 1

(1 + ε)eiϕdϕ +

∞∫
1+ε

φρ,µ(rei(δ2ρ−π), z)

rei(δ2ρ−π) − 1
ei(δ2ρ−π)dr = IS1 + ICε

+ IS2 . (15)

We consider the integral IS1 . Getting rid of the complexity in the denominator we have

IS1 =
∫ 1+ε

∞

φρ,µ

(
rei(−δ1ρ−π), z

)
ei(−δ1ρ−π)

rei(−δ1ρ−π) − 1
dr =

∫ 1+ε

∞

φρ,µ

(
rei(−δ1ρ−π), z

)
ei(−δ1ρ−π)

(
rei(δ1ρ+π) − 1

)
(

rei(−δ1ρ−π) − 1
) (

rei(δ1ρ+π) − 1
) dr

=
∫ 1+ε

∞

φρ,µ

(
rei(−δ1ρ−π), z

) (
r + e−iδ1ρ

)
r2 + 2r cos δ1ρ + 1

dr

=
ρ

2πi

∫ 1+ε

∞

exp
{(

rze−i(δ1ρ+π)
)ρ} (

zre−i(δ1ρ+π)
)ρ(1−µ) (

r + e−iδ1ρ

)
r2 + 2r cos δ1ρ + 1

dr

=
ρ

2πi

∫ 1+ε

∞

exp
{
(zr)ρe−iρπ(cos(ρδ1ρ)− i sin(ρδ1ρ))

}
r2 + 2r cos δ1ρ + 1

(zr)ρ(1−µ)e−iρπ(1−µ)e−iρ(1−µ)δ1ρ (r + e−iδ1ρ )dr

=
ρ

2πi

∫ 1+ε

∞

exp
{
(zr)ρe−iρπ cos(ρδ1ρ)

}
r2 + 2r cos δ1ρ + 1

(zr)ρ(1−µ)e−iρπ(1−µ)eiη(r,−δ1ρ ,z)
(

r + e−iδ1ρ

)
dr,

where the notation η(r, ϕ, z) = (zr)ρe−iρπ sin(ρϕ) + ρ(1− µ)ϕ was introduced.
Similarly, for the integral IS2 we get

IS2 =
∫ ∞

1+ε

φρ,µ

(
rei(δ2ρ−π), z

)
ei(δ2ρ−π)

rei(δ2ρ−π) − 1
dr =

∫ ∞

1+ε

φρ,µ

(
rei(δ2ρ−π), z

) (
r + eiδ2ρ

)
r2 + 2r cos δ2ρ + 1

dr

=
ρ

2πi

∫ ∞

1+ε

exp
{
(zr)ρe−iρπ cos(ρδ2ρ)

}
(zr)ρ(1−µ)e−iρπ(1−µ)eiη(r,δ2ρ ,z)

(
r + eiδ2ρ

)
r2 + 2r cos δ2ρ + 1

dr.
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Summing now the integrals IS1 and IS2 we obtain

IS1 + IS2 =
ρ

2πi

∫ 1+ε

∞

exp
{
(zr)ρe−iρπ cos(ρδ1ρ)

}
r2 + 2r cos δ1ρ + 1

(zr)ρ(1−µ)e−iρπ(1−µ)eiη(r,−δ1ρ ,z)
(

r + e−iδ1ρ

)
dr

+
ρ

2πi

∫ ∞

1+ε

exp
{
(zr)ρe−iρπ cos(ρδ2ρ)

}
(zr)ρ(1−µ)e−iρπ(1−µ)eiη(r,δ2ρ ,z)

(
r + eiδ2ρ

)
r2 + 2r cos δ2ρ + 1

dr

=
∫ ∞

1+ε
Kρ,µ(r,−δ1ρ, δ2ρ, z)dr, (16)

where

Kρ,µ(r, ϕ1, ϕ2, z) =
ρ

2πi
(zr)ρ(1−µ)e−iρπ(1−µ)[Aρ,µ(r, ϕ2, ϕ1, z)− Aρ,µ(r, ϕ1, ϕ2, z)]

(r2 + 2r cos ϕ1 + 1)(r2 + 2r cos ϕ2 + 1)
,

Aρ,µ(r, ω1, ω2, z) = exp
{
(zr)ρe−iρπ cos(ρω1)

}
(r2 + 2r cos ω2 + 1)eiη(r,ω1,z)

[
r + eiω1

]
.

We consider now the integral ICε
. At the beginning, we will get rid of the complexity in the

denominator. To do this, we will multiply and divide the integrand by the complex conjugate of the
denominator and open the brackets in the denominator. Then, in the resulting expression, we substitute
the definition of the function φρ,µ(ζ, z) (see (13)) and in the indices of the exponents we use the Euler
formula eiϕ = cos ϕ + i sin ϕ. As a result, we get

ICε
= i

δ2ρ−π∫
−δ1ρ−π

φρ,µ((1 + ε)eiϕ, z)
(1 + ε)eiϕ − 1

(1 + ε)eiϕdϕ = i

δ2ρ−π∫
−δ1ρ−π

φρ,µ((1 + ε)eiϕ, z)(1 + ε)eiϕ
(
(1 + ε)e−iϕ − 1

)
(
(1 + ε)eiϕ − 1

) (
(1 + ε)e−iϕ − 1

) dϕ

= i
∫ δ2ρ−π

−δ1ρ−π

φρ,µ((1 + ε)eiϕ, z)(1 + ε)
(
(1 + ε)− eiϕ

)
(1 + ε)2 − 2(1 + ε) cos ϕ + 1

dϕ

=
ρ

2π

∫ δ2ρ−π

−δ1ρ−π

exp
{(

z(1 + ε)eiϕ
)ρ} (

z(1 + ε)eiϕ
)ρ(1−µ)

(1 + ε)
(
(1 + ε)− eiϕ

)
(1 + ε)2 − 2(1 + ε) cos ϕ + 1

dϕ

=
ρ

2π

δ2ρ−π∫
−δ1ρ−π

exp {((1 + ε)z)ρ(cos(ρϕ) + i sin(ρϕ))}
(1 + ε)2 − 2(1 + ε) cos ϕ + 1

(z(1 + ε))ρ(1−µ)eiρϕ(1−µ)(1 + ε)
(
(1 + ε)− eiϕ

)
dϕ

=
ρ

2π

δ2ρ−π∫
−δ1ρ−π

exp {((1 + ε)z)ρ cos(ρϕ)}
(1 + ε)2 − 2(1 + ε) cos ϕ + 1

(z(1 + ε))ρ(1−µ)eiχ((1+ε),ϕ,z)(1 + ε)
(
(1 + ε)− eiϕ

)
dϕ

=
∫ δ2ρ−π

−δ1ρ−π
Pρ,µ(1 + ε, ϕ, z)dϕ, (17)

where

Pρ,µ(r, ϕ, z) =
ρ

2π

exp {(zr)ρ cos(ρϕ)} (zr)ρ(1−µ)eiχ(r,ϕ,z)r
[
r− eiϕ]

r2 − 2r cos ϕ + 1
,

χ(r, ϕ, z) = (zr)ρ sin(ρϕ) + ρ(1− µ)ϕ.

Using (16) and (17) in (15) we obtain the representation (7). It is important to pay attention that in the
process of proving no additional limitations on the values of parameters ρ, µ, δ1ρ, δ2ρ and the argument z
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were imposed and it means that the ranges of admissible values pass from Theorem 1 without change.
Thus, the representation (7) is valid for any real ρ > 1/2, any real δ1ρ, δ2ρ satisfying the conditions (5),
any complex µ and any complex z satisfying the condition (6).

The proved theorem formulates an integral representation for the Mittag-Leffler function that
expresses this function in terms of the sum of improper and definite integrals. To be definite, we will
call this integral representation of the Mittag-Leffler function the representation “A”. As we can see,
the representation “A” is a direct consequence of the representation (3). It is obtained by passing from the
contour integral to integrals over the real variable. Moreover, the improper integral in (7) corresponds to
the sum of integrals along the half-lines S1 and S2 of the contour γζ and the definite integral corresponds
to the integral along the arc of a circle Cε. It should be noted that this integral is taken along the arc of a
circle of radius 1 + ε, where ε > 0. The representation (7) is valid for arbitrary values ρ > 1/2, any µ and
any δ1ρ and δ2ρ that satisfy the condition (5).

However, in general case, for arbitrary values of parameters δ1ρ and δ2ρ, satisfying the condition (5),
the kernel function Kρ,µ(r,−δ1ρ, δ2ρ, z) turns to be lengthy. The representation (7) takes the more compact
form in case when the half-lines S1 and S2 of the contour of integration γζ run symmetrically relative to
the real axis i.e., when δ1ρ = δ2ρ = δρ. We will formulate the obtained result in the form of a corollary.

Corollary 1. For any real ε > 0, any complex µ the following integral representations of the Mittag-Leffler function
are true:

1. at any real ρ > 1/2, any real δρ satisfying the condition π
2ρ < δρ 6 min(π, π

ρ ) and any complex z satisfying
the condition π

2ρ − δρ + π < arg z < − π
2ρ + δρ + π

Eρ,µ(z) =
∫ ∞

1+ε
Kρ,µ(r, δρ, z)dr +

∫ δρ−π

−δρ−π
Pρ,µ(1 + ε, ϕ, z)dϕ, (18)

where

Kρ,µ(r, ϕ, z) =
ρ

π
(zre−iπ)ρ(1−µ) exp

{
(zre−iπ)ρ cos(ρϕ)

} r sin(η(r, ϕ, z)) + sin(η(r, ϕ, z) + ϕ)

r2 + 2r cos ϕ + 1
, (19)

η(r, ϕ, z) is defined by (10) and Pρ,µ(r, ϕ, z) has the form (11).
2. at any real ρ > 1 at δρ = π/ρ and any complex z satisfying the condition − π

2ρ + π < arg z < π
2ρ + π

Eρ,µ(z) =
∫ ∞

1+ε
Kρ,µ(r, z)dr +

∫ π
ρ −π

−π
ρ −π

Pρ,µ(1 + ε, ϕ, z)dϕ, (20)

where

Kρ,µ(r, z) =
ρ

π
(zre−iπ)ρ(1−µ) exp

{
−(zre−iπ)ρ

} r sin(π(1− µ)) + sin(π(1− µ) + π/ρ)

r2 + 2r cos(π/ρ) + 1
(21)

and Pρ,µ(r, ϕ, z) is defined by (11).

Proof. (1) According to Theorem 2, the Mittag-Leffler function can be represented in the form (7).
This representation is true for arbitrary δ1ρ and δ2ρ satisfying the conditions (5). In case if δ1ρ = δ2ρ = δρ

the conditions (5) take the form
π

2ρ
< δρ 6 min

(
π,

π

ρ

)
(22)
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and the condition (6) can be written in the form

π

2ρ
− δρ + π < arg z < − π

2ρ
+ δρ + π. (23)

As a result, the Mittag-Leffler function is written in the form

Eρ,µ(z) =
∫ ∞

1+ε
Kρ,µ(r,−δρ, δρ, z)dr +

∫ δρ−π

−δρ−π
Pρ,µ(1 + ε, ϕ, z)dϕ.

We consider the integrand of the first integral and denote

Kρ,µ(r, δρ, z) ≡ Kρ,µ(r,−δρ, δρ, z). (24)

Using the definition Kρ,µ(r, ϕ1, ϕ2, z) (see (8)) we get

Kρ,µ(r, δρ, z) = Kρ,µ(r,−δρ, δρ, z)

=
ρ

2πi
(zr)ρ(1−µ)e−iρπ(1−µ)

(
Aρ,µ(r, δρ,−δρ, z)− Aρ,µ(r,−δρ, δρ, z)

)
(r2 + 2r cos δρ + 1)2 . (25)

Using the definition Aρ,µ(r, ω1, ω2, z) (see (9)) and the fact that the function η(r, ϕ, z) defined by (10)
is an odd function according to the variable ϕ

η(r,−ϕ, z) = −η(r, ϕ, z),

we have

Aρ,µ(r, δρ,−δρ, z)− Aρ,µ(r,−δρ, δρ, z)

= exp
{
(zr)ρe−iπρ cos(ρδρ)

}
(r2 + 2r cos(−δρ) + 1)eiη(r,δρ ,z)(r + eiδρ )

− exp
{
(zr)ρe−iπρ cos(−ρδρ)

}
(r2 + 2r cos δρ + 1)eiη(r,−δρ ,z)(r + e−iδρ )

= exp
{
(zr)ρe−iπρ cos(ρδρ)

}
(r2 + 2r cos δρ + 1)

(
reiη(r,δρ ,z) + ei(η(r,δρ ,z)+δρ) − re−iη(r,δρ ,z) − e−i(η(r,δρ ,z)+δρ)

)
= 2i exp

{
(zr)ρe−iπρ cos(ρδρ)

}
(r2 + 2r cos δρ + 1)

(
r sin(η(r, δρ, z)) + sin(η(r, δρ, z) + δρ)

)
.

Now substituting this result in (25) we obtain (19). Since in the proof process no additional restrictions
on the values of parameters ρ, µ and on the value arg z were imposed, then the conditions for these
parameters go from Theorem 2 without change. Thus, we come to the conditions of the corollary.

(2) We consider the case δ1ρ = δ2ρ = π/ρ. As we can see, the case considered is a particular case of
the previous one. It follows from (5) that this case can be implemented if ρ > 1. For the range of values
arg z from (23) we get

− π

2ρ
+ π < arg z <

π

2ρ
+ π.

Now we consider the representation (18). In the case under consideration it will be written in the form

Eρ,µ(z) =
∫ ∞

1+ε
Kρ,µ (r, π/ρ, z) dr +

∫ π
ρ −π

−π
ρ −π

Pρ,µ(1 + ε, ϕ, z)dϕ.
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We denote
Kρ,µ(r, z) ≡ Kρ,µ

(
r, π

ρ , z
)

. (26)

From (10) it follows that η
(

r, π
ρ , z
)
= (1− µ)π. Now using this result in (19) we get (21).

From the proved corollary it follows that if the parameter values δ1ρ and δ2ρ coincide, then in this
the kernel function Kρ,µ(r, ϕ1, ϕ2, z) is significantly simplified. Recall that the parameters δ1ρ and δ2ρ are
inclination angles of half-lines S1 and S2 in the contour γζ relative to the axis of this contour (see Figure 1).
Since in the Theorem 1 the axis of the contour γζ coincides with the real axis, then the selection of
δ1ρ = δ2ρ means that half-lines S1 and S2 run symmetrically in relation to the real axis. The kernel function
Kρ,µ(r, ϕ1, ϕ2, z) takes the simplest form in the case δ1ρ = δ2ρ = π/ρ.

Further, it is necessary for us to know the position of singular points of the integrand of the
representation (3). This issue was studied in the work [27]. For completeness of the statement here
we give the result obtained in the work [27] and formulate it in the form of a lemma.

Lemma 1. For any real ρ > 1/2 and any complex values of the parameter µ = µR + iµI the integrand of the
representation (3)

Φρ,µ(ζ, z) =
ρ

2πi
exp{(ζz)ρ}(ζz)ρ(1−µ)

ζ − 1
. (27)

relative to the variable ζ has two singular points ζ = 1 and ζ = 0. The point ζ = 1 is a pole of the first order.
The point ζ = 0 is:

1. the regular point of the function Φρ,µ(ζ, z), with the values of parameters ρ = n, where n = 1, 2, 3, . . .
(the positive integer), µI = 0 and µR = 1−m1/ρ, where m1 = 0, 1, 2, 3, . . . (the non-negative integer);

2. a pole of the order m2, if ρ = n, where n = 1, 2, 3, . . . (the positive integer), µI = 0 and µR = 1 + m2/ρ,
where m2 = 1, 2, 3, . . . (the positive integer);

3. the branch point, for any other values of parameters ρ, µI , µR.

The proof of this lemma can be found in the work [27].
We will make the following remark to Corollary 1.

Remark 1. In Corollary 1 the special case under consideration δ1ρ = δ2ρ = π/ρ. We will assume that ρ = 1 and
study the behavior of the Formula (20) in this case. As a result, we obtain

E1,µ(z) =
∫ ∞

1+ε
K1,µ(r, z)dr +

∫ 0

−2π
P1,µ(1 + ε, ϕ, z)dϕ. (28)

Using (21) for K1,µ(z) we obtain

K1,µ(r, z) =
1
π
(zre−iπ)1−µ exp

{
−zre−iπ

} r sin(π(1− µ)) + sin(π(1− µ) + π)

r2 − 2r + 1
=

1
π
(−z)1−µezr sin(π(1− µ))(r− 1)

(r− 1)2 =
1
π
(−z)1−µezr sin(π(1− µ))

r− 1
.

From here it is clear, if µ = n, where n = 0,±1,±2,±3, . . . , then sin(π(1− µ)) = 0. Consequently,

K1,ρ(z) =

{
0, µ = n,

1
π (−z)1−µezr sin(π(1−µ))

r−1 , µ 6= n.
(29)
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Thus, with integer values of µ the first summand in (28) becomes zero and to calculate the value of E1,n(z) it
remains to calculate the second integral. To calculate this integral, numerical methods can be used. However, in this
case, this integral can be calculated analytically using the residue theory.

In fact, we return to the integral representation formulated in Theorem 1. Recall that we consider the case
ρ = 1. Using the notation (27), the representation (3) takes the form

E1,µ(z) =
∫

γζ

Φ1,µ(ζ, z)dζ, (30)

where the contour of integration γζ , defined by (4), is written in the form

γζ =


S1 = {ζ : arg ζ = −2π, |ζ| > 1 + ε},
Cε = {ζ : −2π 6 arg ζ 6 0, |ζ| = 1 + ε},
S2 = {ζ : arg ζ = 0, |ζ| > 1 + ε}.

(31)

We represent the complex parameter µ in the form µ = µR + iµI and make use of Lemma 1. According to
this lemma, the function Φ1,µ(ζ, z) at values µI = 0 and µR = 1−m1, where m1 = 0, 1, 2, 3, . . . has one singular
point ζ = 1 which is a pole of the first order. The point ζ = 0, in this case, is the regular point. In case, if µI = 0
and µR = 1 + m2, where m2 = 1, 2, 3, . . . the function Φ1,µ(ζ, z) has two singular points: the point ζ = 1 is a pole
of the first order and the point ζ = 0 is a pole of the order m2. As we can see, in both cases the point ζ = 0 is not
a branch point. As a result, in these two cases, the function Φ1,µ(ζ, z) is the entire function of a complex variable
ζ. From here it follows that when µI = 0, and µR = n, where n = 0,±1,±2,±3, . . . the arc of the circle Cε that
enters the contour (31) is the closed circle of radius 1 + ε. The half-lines S1 and S2 pass along the positive part of
a real axis in mutually opposite directions. With all other values of the parameter µ (when µI 6= 0 or µR 6= n),
according to Lemma 1, the point ζ = 0 is a branch point of the function Φ1,µ(ζ, z). In this case, the circle Cε of the
contour (31) will not close up and half-lines S1 and S2 will go along the upper and lower banks of the cut of the
complex plane which runs along the positive part of a real axis.

It is clear from here that the result (29) is a consequence of Lemma 1 In fact, in the case when the parameter µ

takes integer real values, the first and second items of Lemma 1 turn out to be true. As we have already pointed out,
in this case the arc of the circle Cε of the contour (31) is a closed circle and the half-lines S1 and S2 run along the
positive part of a real axis in mutually opposite directions. Consequently, the sum of the integrals along the half-lines
S1 and S2 will be equal to zero. Next, it is necessary to recall that the improper integral in the expression (28) just
corresponds to the sum of the integrals along the half-lines S1 and S2. Therefore, with integer real values µ it should
be equal to zero which has been obtained. A definite integral in (28) corresponds to integration along the closed circle.
Therefore, one can use the theory of residues to calculate it.

The calculation of the integral in (30) using the theory of residues with integer real values of the
parameter µ was carried out in the work [27]. For completeness of the statement, we will give the results
obtained in this paper and formulate them in the form of a corollary to Lemma 1.

Corollary 2. For the values of the parameters ρ = 1, δ1ρ = δ2ρ = π, any complex z, satisfying the condition
π/2 < arg z < 3π/2 and for integer real values of the parameter µ = n, n = 0,±1,±2,±3, . . . the Mittag-Leffler
function has the form:

1. if n 6 1 (i.e., n = 1, 0,−1,−2,−3, . . . ), then

E1,n(z) = ezz1−n,
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2. if n > 2 (i.e., n = 2, 3, 4, . . . ), then

E1,n(z) = z1−n

(
ez −

n−2

∑
k=0

zk

k!

)
.

The proof of this corollary can be found in the paper [27].

3. Integral Representation “B”

The integral representation “A” consists of the sum of two integrals. As it has been found earlier,
the improper integral in (7) corresponds to the sum of integrals along the half-lines S1 and S2 of the contour
γζ in the representation (3), a definite integral corresponds to the integral along the arc of the circle Cε.
As a result, in analytical studies of the function Eρ,µ(z), as well as in the solution of problems where it is
encountered, one should conduct studies of these two integrals. This causes certain difficulties. As it will
be shown below in the representation (7) one can get rid of an integral on the arc of the circle Cε and write
the integral representation for the function Eρ,µ(z) in the form of an improper integral. This representation
will be much easier to use. However, as a result of such a transition, some restrictions are imposed on the
parameter values µ. The integral representation of the Mittag-Leffler function represented in the following
theorem will be called the representation “B”.

Theorem 3 (Representation “B”). For any real ρ > 1/2 and any complex µ satisfying the condition <µ <

1 + 1/ρ for the function Eρ,µ(z), the following integral representations are valid:

1. for any real δ1ρ, δ2ρ satisfying the conditions

π
2ρ < δ1ρ 6 π

ρ , π
2ρ < δ2ρ 6 π

ρ , if ρ > 1,
π
2ρ < δ1ρ < π, π

2ρ < δ2ρ < π, if 1/2 < ρ 6 1,
(32)

and any complex z satisfying the condition π
2ρ − δ2ρ + π < arg z < − π

2ρ + δ1ρ + π the Mittag-Leffler
function can be represented in the form

Eρ,µ(z) =
∫ ∞

0
Kρ,µ(r,−δ1ρ, δ2ρ, z)dr, (33)

where Kρ,µ(r, ϕ1, ϕ2, z) has the form (8);
2. if 1/2 < ρ 6 1 and δ1ρ = π, π

2ρ < δ2ρ < π, then for any complex z satisfying the condition π
2ρ − δ2ρ + π <

arg z < − π
2ρ + 2π, the Mittag-Leffler function can be represented in the form

Eρ,µ(z) =
∫ ∞

0
K′ρ,µ(r, δ2ρ, z)dr−

∫ 1−ε1

0
K′ρ,µ(r,−π, z)dr−∫ ∞

1+ε1

K′ρ,µ(r,−π, z)dr +
∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ, (34)

where ε1 is an arbitrary real number satisfying the condition 0 < ε1 < 1,

K′ρ,µ(r, ϕ, z) =
ρ

2πi
exp

{
(zr)ρe−iπρ cos(ρϕ)

}
r2 + 2r cos ϕ + 1

(zr)ρ(1−µ)ei[η(r,ϕ,z)−πρ(1−µ)]
(

r + eiϕ
)

,
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where η(r, ϕ, z) has the form (10) and

P′ρ,µ(τ, ψ, k, z) =
ρτ

2π

exp {(zr(τ, ψ))ρ cos(ρϕ(τ, ψ, k))}
(r(τ, ψ))2 − 2r(τ, ψ) cos(ϕ(τ, ψ, k)) + 1

×

× (zr(τ, ψ))ρ(1−µ)ei[χ′(τ,ψ,k,z)+ψ]
(

r(τ, ψ)e−iϕ(τ,ψ,k) − 1
)

,

where

χ′(τ, ψ, k, z) = (zr(τ, ψ))ρ sin(ρϕ(τ, ψ, k)) + ρ(1− µ)ϕ(τ, ψ, k),

r(τ, ψ) =
√

τ2 + 2τ cos ψ + 1,

ϕ(τ, ψ, k) = arctan
(

τ sin ψ

τ cos ψ + 1

)
+ kπ;

3. if 1/2 < ρ 6 1 and π
2ρ < δ1ρ < π, δ2ρ = π, then for any complex z satisfying the condition π

2ρ < arg z <

− π
2ρ + δ1ρ + π, the Mittag-Leffler function can be represented in the form

Eρ,µ(z) =
∫ 1−ε1

0
K′ρ,µ(r, π, z)dr−

∫ ∞

1+ε1

K′ρ,µ(r, π, z)dr+

+
∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ−

∫ ∞

0
K′ρ,µ(r,−δ1ρ, z)dr, (35)

where ε1 is an arbitrary real number satisfying the condition 0 < ε1 < 1;
4. if 1/2 < ρ 6 1 and δ1ρ = δ2ρ = π, then for any complex z satisfying the condition π

2ρ < arg z < − π
2ρ + 2π,

the Mittag-Leffler function can be represented in the form

Eρ,µ(z) =
∫ 1−ε1

0
Kρ,µ(r, π, z)dr−

∫ ∞

1+ε1

Kρ,µ(r, π, z)dr+

+
∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ +

∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ, (36)

where ε1 is an arbitrary real number satisfying the condition 0 < ε1 < 1 and Kρ,µ(r, δ, z) has the form (19).

Proof. The starting point of the proof is Theorem 1 and the integral representation (3) which is defined in
it. In view of the notation (13), the representation (3) will be written in the form

Eρ,µ(z) =
∫

γζ

φρ,µ(ζ, z)
ζ − 1

dζ. (37)

The problem consists in calculating this contour integral.
We consider an auxiliary integral

I =
∫

Γ

φρ,µ(ζ, z)
ζ − 1

dζ, (38)

where the contour Γ (see Figure 2) consists of the arc of the circle Cε of radius 1 + ε with the center at the
origin of coordinates, the segment Γ2, the arc of the circle Cε the radius ε with the center at the origin of
coordinates and the segment Γ1, which are defined in the following way:
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Γ =


Cε = {ζ : −δ1ρ − π 6 arg ζ 6 δ2ρ − π, |ζ| = 1 + ε},
Γ2 = {ζ : arg ζ = δ2ρ − π, 1 + ε > |ζ| > ε},
Cε = {ζ : δ2ρ − π 6 arg ζ 6 −δ1ρ − π, |ζ| = ε},
Γ1 = {ζ : arg ζ = −δ1ρ − π, ε 6 |ζ| 6 1 + ε}.

(39)

The contour is traversed in the positive direction. The cut of the complex plane ζ goes along the
positive part of a real axis.

Γ2

Cε

Γ1

S1

S2

Cε

The cut

1−1

δ2ρ

δ1ρ

1 + ε

ε−π

−π
2

− 3π
2

Figure 2. The auxiliary contour of integration Γ.

As it follows from Lemma 1, depending on a value of the parameter µ, the integrand (38) has one
or two poles. If <µ > 2, then there are two poles in the points ζ = 0 and ζ = 1. If <µ 6 1, then there is
one pole in the point ζ = 1. In addition, at non-integer values ρ and µ the point ζ = 0 is the branch point.
In the case when 1

2 < ρ 6 1 and δ1ρ = π the segment Γ1 will pass through a singular point ζ = 1 (Figure 2).
The similar situation will be at 1

2 < ρ 6 1 and δ2ρ = π. In this case, the segment Γ2 will pass through
the point ζ = 1. These two cases will be considered separately. The case 1

2 < ρ 6 1, δ1ρ = δ2ρ = π also
requires a separate consideration. In this case each of the segments Γ1 and Γ2 passes through a singular
point ζ = 1. In view of the foregoing, it is necessary to consider four cases:

1.
π
2ρ < δ1ρ 6 π

ρ , π
2ρ < δ2ρ 6 π

ρ , if ρ > 1,
π
2ρ < δ1ρ < π, π

2ρ < δ2ρ < π, if 1
2 < ρ 6 1,

(40)

2. 1
2 < ρ 6 1, δ1ρ = π, π

2ρ < δ2ρ < π,
3. 1

2 < ρ 6 1, δ2ρ = π, π
2ρ < δ1ρ < π,

4. 1
2 < ρ 6 1, δ1ρ = π, δ2ρ = π.

Case 1. We consider the first case at the beginning. Directly calculating the integral I and substituting
the variable of integration ζ = reiϕ we obtain
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I =
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Γ2

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Γ1

φρ,µ(ζ, z)
ζ − 1

dζ =

= i

δ2ρ−π∫
−δ1ρ−π

φρ,µ(reiϕ, z)
reiϕ − 1

reiϕdϕ

∣∣∣∣∣
r=1+ε

+

ε∫
1+ε

φρ,µ(reiϕ, z)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=δ2ρ−π

+ i

−δ1ρ−π∫
δ2ρ−π

φρ,µ(reiϕ, z)
reiϕ − 1

reiϕdϕ

∣∣∣∣∣
r=ε

+

1+ε∫
ε

φρ,µ(reiϕ, z)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=−δ1ρ−π

= i

δ2ρ−π∫
−δ1ρ−π

φρ,µ((1 + ε)eiϕ, z)
(1 + ε)eiϕ − 1

(1 + ε)eiϕdϕ +

ε∫
1+ε

φρ,µ(rei(δ2ρ−π), z)

rei(δ2ρ−π) − 1
ei(δ2ρ−π)dr

+ i

−δ1ρ−π∫
δ2ρ−π

φρ,µ(εeiϕ, z)
εeiϕ − 1

εeiϕdϕ +

1+ε∫
ε

φρ,µ(rei(−δ1ρ−π), z)

rei(−δ1ρ−π) − 1
ei(−δ1ρ−π)dr = ICε

+ IΓ2 + ICε
+ IΓ1 . (41)

Now we let ε→ 0 in this expression and we will study the behavior of ICε
, IΓ1 and IΓ2 . We consider

the integral ICε
at the beginning. For this integral the relation is true

lim
ε→0
|ICε
| 6 lim

ε→0

−δ1ρ−π∫
δ2ρ−π

∣∣∣∣∣φρ,µ(εeiϕ, z)
εeiϕ − 1

εeiϕ

∣∣∣∣∣ |dϕ|.

We consider the integrand. To get rid of the complexity in the denominator we multiply and divide
the integrand by εe−iϕ − 1. We also represent z = |z|ei arg z and µ = µR + iµI , and for a power function we
will use the representation ξa = exp{a ln ξ}, ξ > 0. As a result, we obtain

lim
ε→0

∣∣∣∣∣φρ,µ(εeiϕ, z)
εeiϕ − 1

εeiϕ

∣∣∣∣∣ = ρ

2π
lim
ε→0

∣∣∣∣∣∣
exp

{(
zεeiϕ)ρ

} (
zεeiϕ)ρ(1−µ)

εeiϕ (εe−iϕ − 1
)(

εeiϕ − 1
) (

εe−iϕ − 1
)

∣∣∣∣∣∣
=

ρ

2π
lim
ε→0

∣∣∣∣∣∣
exp

{
(|z|ε)ρeiρ(ϕ+arg z)

}
(|z|ε)ρ(1−µR−iµI)eiρ(1−µR−iµI)(ϕ+arg z)ε

(
ε− eiϕ)

ε2 − 2ε cos ϕ + 1

∣∣∣∣∣∣
=

ρ

2π
lim
ε→0

∣∣∣∣ 1
ε2 − 2ε cos ϕ + 1

exp
{
(|z|ε)ρeiρ(ϕ+arg z) + ρ(1− µR − iµI) ln(|z|ε)+

+ iρ(1− µR − iµI)(ϕ + arg z) + ln ε} (ε− eiϕ)
∣∣∣

=
ρ

2π
lim
ε→0

1
ε2 − 2ε cos ϕ + 1

|exp {(|z|ε)ρ cos(ρ(ϕ + arg z)) + ρ(1− µR) ln(|z|ε) + ρ(ϕ + arg z)µI + ln ε

+i [(|z|ε)ρ sin(ρ(ϕ + arg z)) + ρ(1− µR)(ϕ + arg z)− ρ ln(|z|ε)µI ]}
(

ε− e−iϕ
)∣∣∣

=
ρ

2π
lim
ε→0

∣∣eA+iB(ε− eiϕ)
∣∣

ε2 − 2ε cos ϕ + 1
,

where

A =(|z|ε)ρ cos(ρ(ϕ + arg z)) + ρ(1− µR) ln(|z|ε) + ρ(ϕ + arg z)µI + ln ε,

B =(|z|ε)ρ sin(ρ(ϕ + arg z)) + ρ(1− µR)(ϕ + arg z)− ρµI ln(|z|ε).
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For the numerator we have the estimate∣∣∣eA+iB(ε− eiϕ)
∣∣∣ 6 ∣∣∣eA+iBε

∣∣∣+ ∣∣∣eA+iB+iϕ
∣∣∣ = eA(ε + 1).

Thus,

ρ

2π
lim
ε→0

∣∣eA+iB(ε− eiϕ)
∣∣

ε2 − 2ε cos ϕ + 1
6

ρ

2π
lim
ε→0

eA(ε + 1)
ε2 − 2ε cos ϕ + 1

=
ρ

2π
lim
ε→0

1
ε2 − 2ε cos ϕ + 1

exp {(|z|ε)ρ cos(ρ(ϕ + arg z))

+ ρ(1− µR) ln(|z|ε) + ρ(ϕ + arg z)µI + ln ε + ln(ε + 1)}

=
ρ

2π
lim
ε→0

1
ε2 − 2ε cos ϕ + 1

exp {(|z|ε)ρ cos(ρ(ϕ + arg z))+

+ (ρ(1− µR) + 1) ln ε + ln(ε + 1) + ρ(1− µR) ln(|z|) + ρµI(ϕ + arg z)}

=

 0, µR < 1 + 1
ρ ,

ρ

2π|z| e
ρ(ϕ+arg z)µI , µR = 1 + 1

ρ .

From this it follows that
lim
ε→0

ICε
= 0, if µR < 1 + 1/ρ. (42)

Now we consider the behavior of the integral IΓ1 at ε→ 0. We have the estimate

lim
ε→0

∣∣∣∣∣∣
1+ε∫
ε

φρ,µ(rei(−δ1ρ−π), z)

rei(−δ1ρ−π) − 1
ei(−δ1ρ−π)dr

∣∣∣∣∣∣ 6 lim
ε→0

1+ε∫
ε

∣∣∣∣∣φρ,µ(rei(−δ1ρ−π), z)

rei(−δ1ρ−π) − 1
ei(−δ1ρ−π)

∣∣∣∣∣ |dr|

=

1+ε∫
0

∣∣∣∣∣φρ,µ(rei(−δ1ρ−π), z)

rei(−δ1ρ−π) − 1
ei(−δ1ρ−π)

∣∣∣∣∣ |dr|.

Consequently, it is necessary to study the behavior of the integrand at r → 0. For convenience,
we introduce the notation ϕ1 = −δ1ρ − π. Further, similarly to the previous case, we get rid of the
complexity in the denominator. To do this, we multiply and divide the integrand by the complex conjugate
value of the denominator, i.e., by (re−iϕ1 − 1) and represent z = |z|ei arg z, µ = µR + µI . For a power
function we will make use of the representation ξa = exp{a ln ξ}. Using (13) we get

lim
r→0

∣∣∣∣∣φρ,µ(rei(−δ1ρ−π), z)

rei(−δ1ρ−π) − 1
ei(−δ1ρ−π)

∣∣∣∣∣ = ρ

2π
lim
r→0

∣∣∣∣∣∣
exp

{(
zreiϕ1

)ρ
} (

zreiϕ1
)ρ(1−µ) eiϕ1(re−iϕ1 − 1)

(reiϕ1 − 1)(re−iϕ1 − 1)

∣∣∣∣∣∣
=

ρ

2π
lim
r→0

∣∣∣∣ 1
r2 − 2r cos ϕ1 + 1

exp
{
(|z|r)ρeiρ(ϕ1+arg z)

}
(|z|r)ρ(1−µR+iµI)eiρ(1−µR−iµI)(ϕ1+arg z)(r− eiϕ1)

∣∣∣∣
=

ρ

2π
lim
r→0

1
r2 − 2r cos ϕ1 + 1

|exp {(|z|r)ρ cos(ρ(ϕ1 + arg z)) + ρµI(ϕ1 + arg z) + ρ(1− µR) ln(|z|r)

+i [(|z|r)ρ sin(ρ(ϕ1 + arg z)) + ρ(1− µR)(ϕ1 + arg z)− ρµI ln(|z|r)]} (r− eiϕ1)
∣∣∣

=
ρ

2π
lim
r→0

∣∣eA1+iB1(r− eiϕ1)
∣∣

r2 − 2r cos ϕ1 + 1
,
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where

A1 =(|z|r)ρ cos(ρ(ϕ1 + arg z)) + ρµI(ϕ1 + arg z) + ρ(1− µR) ln(|z|r),
B1 =(|z|r)ρ sin(ρ(ϕ1 + arg z)) + ρ(1− µR)(ϕ1 + arg z)− ρµI ln(|z|r).

For the numerator we have the estimate

∣∣∣eA1+iB1(r− eiϕ1)
∣∣∣ 6 ∣∣∣reA1+iB1

∣∣∣+ ∣∣∣eA1+iB1+iϕ1
∣∣∣ = eA1(r + 1).

Consequently, we obtain

ρ

2π
lim
r→0

∣∣eA1+iB1(r− eiϕ1)
∣∣

r2 − 2r cos ϕ1 + 1
6

ρ

2π
lim
r→0

eA1(r + 1)
r2 − 2r cos ϕ1 + 1

=
ρ

2π
lim
r→0

1
r2 − 2r cos ϕ1 + 1

exp {(|z|r)ρ cos(ρ(ϕ1 + arg z)) + ρµI(ϕ1 + arg z)

+ρ(1− µR) ln(|z|r) + ln(r + 1)} =
{

0, µR < 1,
ρ

2π eρ(ϕ1+arg z)µI , µR = 1.

We get the similar result for the integral IΓ2

lim
ε→0

∣∣∣∣∣φρ,µ(rei(δ2ρ−π), z)

rei(δ2ρ−π) − 1
ei(δ2ρ−π)

∣∣∣∣∣ =
{

0, µR < 1,
ρ

2π eρ(δ2ρ−π+arg z)=µ, µR = 1.

Thus, at <µ 6 1 the limits limε→0 IΓ1 and limε→0 IΓ2 will converge to the corresponding
definite integrals

lim
ε→0

IΓ1 =

1+ε∫
0

φρ,µ(rei(−δ1ρ−π), z)

rei(−δ1ρ−π) − 1
ei(−δ1ρ−π)dr,

lim
ε→0

IΓ2 = −
1+ε∫
0

φρ,µ(rei(δ2ρ−π), z)

rei(δ2ρ−π) − 1
ei(δ2ρ−π)dr.

(43)

We will pay attention to the fact that in the case under consideration when the parameters ρ, δ1ρ, δ2ρ

satisfy the condition (40), the integrand of the integral I (see (38)) inside the region limited by the contour
Γ, is an analytical function. Consequently, from (41) we have

I = ICε
+ IΓ2 + ICε

+ IΓ1 = 0

Letting ε→ 0 in this expression and taking into consideration (42) we obtain

ICε
= − lim

ε→0
(IΓ1 + IΓ2). (44)

Substituting here the expression for ICε
and using (43) we obtain
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i

δ2ρ−π∫
−δ1ρ−π

φρ,µ((1 + ε)eiϕ, z)
(1 + ε)eiϕ − 1

(1 + ε)eiϕdϕ

= −
1+ε∫
0

φρ,µ(rei(−δ1ρ−π), z)

rei(−δ1ρ−π) − 1
ei(−δ1ρ−π)dr +

1+ε∫
0

φρ,µ(rei(δ2ρ−π), z)

rei(δ2ρ−π) − 1
ei(δ2ρ−π)dr, µR < 1 +

1
ρ

. (45)

Here it should be pointed out that at values 1 < µR < 1 + 1/ρ the integrals (43) have a singularity in
the point r = 0 and at values µR 6 1 the singularity disappears.

Now let us return to the Mittag-Leffler function. Directly calculating (37) and replacing the variable
of integration ζ = reiϕ we get

Eρ,µ(z) =
∫

S1

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

S2

φρ,µ(ζ, z)
ζ − 1

dζ =

1+ε∫
∞

φρ,µ

(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣∣
ϕ=−δ1ρ−π

+ i

δ2ρ−π∫
−δ1ρ−π

φρ,µ

(
reiϕ, z

)
reiϕ − 1

reiϕ ϕ

∣∣∣∣∣∣
r=1+ε

+

∞∫
1+ε

φρ,µ

(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣∣
ϕ=δ2ρ−π

=

1+ε∫
∞

φρ,µ

(
rei(−δ1ρ−π), z

)
rei(−δ1ρ−π) − 1

ei(−δ1ρ−π)dr

+ i

δ2ρ−π∫
−δ1ρ−π

φρ,µ

(
(1 + ε)eiϕ, z

)
(1 + ε)eiϕ − 1

(1 + ε)eiϕ ϕ +

∞∫
1+ε

φρ,µ

(
rei(δ2ρ−π), z

)
rei(δ2ρ−π) − 1

ei(δ2ρ−π)dr.

Using here (45) we obtain

Eρ,µ(z) =
∞∫

0

φρ,µ

(
rei(δ2ρ−π), z

)
rei(δ2ρ−π) − 1

ei(δ2ρ−π) −
φρ,µ

(
rei(−δ1ρ−π), z

)
rei(−δ1ρ−π) − 1

ei(−δ1ρ−π)

 dr, µR < 1 +
1
ρ

. (46)

We consider the first summand in this expression. Getting rid of the complexity in the denominator
and using (13) we get

φρ,µ

(
rei(δ2ρ−π), z

)
rei(δ2ρ−π) − 1

ei(δ2ρ−π) =
φρ,µ

(
rei(δ2ρ−π), z

)
ei(δ2ρ−π)

(
re−i(δ2ρ−π) − 1

)
(

rei(δ2ρ−π) − 1)
) (

re−i(δ2ρ−π) − 1
)

=
φρ,µ

(
rei(δ2ρ−π), z

) (
r− ei(δ2ρ−π)

)
r2 + 2r cos δ2ρ + 1)

=
ρ

2πi

exp
{(

zrei(δ2ρ−π)
)ρ} (

zrei(δ2ρ−π)
)ρ(1−µ) (

r + eiδ2ρ

)
r2 + 2r cos δ2ρ + 1

=
ρ

2πi

exp
{
(zr)ρe−iρπ(cos(ρδ2ρ) + i sin(ρδ2ρ))

}
(zr)ρ(1−µ)eiρ(1−µ)(δ2ρ−π)

(
r + eiδ2ρ

)
r2 + 2r cos δ2ρ + 1

=
ρ

2πi

exp
{
(zr)ρe−iρπ cos(ρδ2ρ)

}
(zr)ρ(1−µ)e−iρ(1−µ)πeiη(r,δ2ρ ,z)

(
r + eiδ2ρ

)
r2 + 2r cos δ2ρ + 1

, (47)
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where η(r, ϕ, z) has the form (10). Similarly, for the second summand in (46) we have

φρ,µ

(
rei(−δ2ρ−π), z

)
rei(−δ2ρ−π) − 1

ei(−δ2ρ−π) =

=
ρ

2πi

exp
{
(zr)ρe−iρπ cos(ρδ1ρ)

}
(zr)ρ(1−µ)e−iρ(1−µ)πeiη(r,−δ1ρ ,z)

(
r + e−iδ1ρ

)
r2 + 2r cos δ1ρ + 1

(48)

Now substituting (47) and (48) in (46) and making simple transformations we finally obtain

Eρ,µ(z) =
∫ ∞

0
Kρ,µ(r,−δ1ρ, δ2ρ, z)dr,

where Kρ,µ(r, ϕ1, ϕ2, z) is defined by the expression (8). The values δ1ρ and δ2ρ satisfy the conditions (40).
The condition for the value arg z did not change and passes from Theorem 1 without any changes. Thus,
the first item of the theorem is proved.

Case 2. Now we consider the case when 1
2 < ρ 6 1, δ1ρ = π and π/(2ρ) < δ2ρ < π. As it was

mentioned earlier, in this case the segment Γ1 of the auxiliary contour Γ (see Figure 2) will go through
the singular point ζ = 1. That is why, it is necessary to change the contour of integration in such a way
that one could bypass this point leaving it outside the contour. The auxiliary contour Γ′ that we get
will consist of the arc of the circle Cε with the center at the origin of coordinates and radius 1 + ε, ε > 0
(see Figure 3), the segment AB, the circle Cε with the center at the origin of coordinates and radius ε

satisfying the condition 0 < ε < 1 ), the segment CD, the arc of the circle C′1ε1
with the center in the point

ζ ′ = 1 (arg ζ ′ = −2π) and radius ε1 (here ε1 < 1− ε and ε1 < ε) and the segment EF.
For further study we need to parametrize this contour. As a result, in the plane ζ the arc of the

circle Cε can be written in the form Cε = {ζ : −2π 6 arg ζ 6 δ2ρ − π, |ζ| = 1 + ε}. The segment AB
is written in the form AB = {ζ : arg ζ = δ2ρ − π, ε 6 |ζ| 6 1 + ε}. The arc of the circle Cε has the
form Cε = {ζ : δ2ρ − π 6 arg ζ 6 −2π, |ζ| = ε}. The segments CD and EF are written in the form
CD = {ζ : arg ζ = −2π, ε 6 |ζ| 6 1− ε1} and EF = {ζ : arg ζ = −2π, 1 + ε1 6 |ζ| 6 1 + ε}.

C′
1ε1

Cε
S1

S2

Cε

1−1

1 + ε

ε−π

−π
2

− 3π
2

F

A

EDC

B

Γ′

Figure 3. The auxiliary contour of integration Γ′.

To parametrize the arc of the circle C′1ε1
, we consider the mapping u = ζ − 1 of the complex plane ζ

on the complex plane u. This mapping is a conformal mapping and is a left shift of the entire complex
plane ζ by the value 1. As a result of such a shift, the point ζ = 1 in the plane ζ is mapped onto the point
u = 0 of the plane u. Thus, the circle C′1ε1

with the center in the point ζ = 1 and the radius ε1 < 1 of the
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plane ζ will be mapped on the circle Cu
0ε1

with the center in the point u = 0 and the radius ε1 on the plane
u. Thus, to parametrize the arc of the circle C′1ε1

in the plane ζ it is enough to parametrize the arc of the
circle Cu

0ε1
in the complex plane u and then to map the complex plane u on to the plane ζ with the help of

an inverse conformal mapping ζ = u + 1.
We will represent the complex number u in the form u = τeiψ. Then, an arc of a circle Cu

0ε1
in the

complex plane u has the form Cu
0ε1

= {u : −2π 6 ψ 6 −π, τ = ε1}, where ε1 6 1. Now we map the
complex plane u onto the plane ζ. We have ζ = τeiψ + 1 = τ cos ψ + iτ sin ψ + 1. From this we obtain

|ζ| =
√

τ2 + 2τ cos ψ + 1, arg ζ = arctan
(

τ sin ψ

τ cos ψ + 1

)
. (49)

Here it is necessary to note that arctan(x) is a multivalued function. The principal branch of this
function takes values in the interval [−π/2, π/2]. However, as one can see from the definition of the
auxiliary contour Γ′, the center of the arc of the circle C′1ε1

lies in the point ζ ′ = 1 in which arg ζ ′ = −2π.
Therefore, it is necessary to choose the required branch in arctan(x) in such a way that the mapping (49)
could map an arc of a circle Cu

0ε1
of the plane u on to an arc of a circle C′1ε1

of the plane ζ with the center in
the point ζ ′ = 1 and arg ζ ′ = −2π. As a result, the mapping (49) will take the form

|ζ| =
√

τ2 + 2τ cos ψ + 1, arg ζ = arctan
(

τ sin ψ

τ cos ψ + 1

)
+ kπ. (50)

For the arc of the circle C′1ε1
we obtain k = −2. Here it should be pointed out that these formulas

produce the mapping of the circle Cu
0ε1

on to the circle C′1ε1
only in the case τ 6 1. If τ > 1, then these

formulas will not be true.
Thus, in view of the remarks made the auxiliary contour Γ′ can be represented in the form

Γ′ =



Cε = {ζ : −2π 6 arg ζ 6 δ2ρ − π, |ζ| = 1 + ε},
AB = {ζ : arg ζ = δ2ρ − π, ε 6 |ζ| 6 1 + ε},
Cε = {ζ : δ2ρ − π 6 arg ζ 6 −2π, |ζ| = ε},
CD = {ζ : arg ζ = −2π, ε 6 |ζ| 6 1− ε1},

C′1ε1
=

ζ :
arg ζ = arctan

(
τ sin ψ

τ cos ψ+1

)
+ kπ,

|ζ| =
√

τ2 + 2τ cos ψ + 1,
−π > ψ > −2π, τ = ε1, k = −2,


EF = {ζ : arg ζ = −2π, 1 + ε1 6 |ζ| 6 1 + ε}.

(51)

The contour is traversed in a positive direction.
Next, we consider an auxiliary integral

I′ =
∫

Γ′

φρ,µ(ζ, z)
ζ − 1

dζ.

By calculating this integral we have

I′ =
∫

Γ′

φρ,µ(ζ, z)
ζ − 1

dζ =
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

AB

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

CD

φρ,µ(ζ, z)
ζ − 1

dζ+∫
C′1ε1

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

EF

φρ,µ(ζ, z)
ζ − 1

dζ = ICε
+ I′AB + ICε

+ I′CD + I′C′1ε1
+ I′EF. (52)
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One should pay attention to the fact that inside the region limited by the contour Γ′ the integrand
φρ,µ(ζ, z)/(ζ − 1) of the integral I′ is an analytical function of the complex variable ζ. Consequently,
according to the Cauchy integral theorem

ICε
+ I′AB + ICε

+ I′CD + I′C′1ε1
+ I′EF = 0.

From here we get that
ICε

= −I′AB − ICε
− I′CD − I′C′1ε1

− I′EF. (53)

Thus, it is possible to substitute integration on the arc of the circle Cε by integration on the remaining
parts of the contour Γ′.

We consider each integral in the right part of this expression. The integral ICε
has already been

considered by us earlier in this lemma. Using (42) we obtain that in the case considered

lim
ε→0

ICε
= 0, µR < 1 + 1/ρ. (54)

Consider the integral I′AB. Representing the complex number ζ in the form ζ = reiϕ and using (51)
we obtain

I′AB =
∫

AB

φρ,µ(ζ, z)
ζ − 1

dζ =
∫ ε

1+ε

φρ,µ
(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=δ2ρ−π

=
∫ ε

1+ε

φρ,µ

(
rei(δ2ρ−π), z

)
rei(δ2ρ−π) − 1

ei(δ2ρ−π)dr. (55)

We introduce the notation

φρ,µ

(
rei(δ−π), z

)
rei(δ−π) − 1

ei(δ−π) = K′ρ,µ(r, δ, z). (56)

Now we transform the function K′ρ,µ(r, δ, z). Using the definition for φρ,µ(ζ, z) (see (13)) and getting
rid of the complexity in the denominator we obtain

K′ρ,µ(r, δ, z) =
ρ

2πi

exp
{(

zrei(δ−π)
)ρ} (

zrei(δ−π)
)ρ(1−µ)

ei(δ−π)
(

re−i(δ−π) − 1
)

(
rei(δ−π) − 1

) (
re−i(δ−π) − 1

) =

ρ

2πi

exp
{
(zr)ρe−iρπ [cos(ρδ) + i sin(ρδ)]

} (
zre−iπ)ρ(1−µ) eiρ(1−µ)δ

(
r− ei(δ−π)

)
r2 − 2r cos(δ− π) + 1

=

ρ

2πi
exp

{
(zr)ρe−iρπ cos(ρδ)

} (
zre−iπ)ρ(1−µ)

r2 + 2r cos δ + 1
exp

{
i
[
(zr)ρe−iπρ sin(ρδ) + ρ(1− µ)δ

]} (
r + eiδ

)
By introducing the notation η(r, ϕ, z) = (zr)ρe−iπρ sin(ρδ) + ρ(1− µ)δ, that coincides with (10) we

obtain that K′ρ,µ(r, δ, z) can be represented in the form

K′ρ,µ(r, δ, z) =
ρ

2πi
exp

{
(zr)ρe−iρπ cos(ρδ)

} (
zre−iπ)ρ(1−µ) eiη(r,ϕ,z) (r + eiδ)

r2 + 2r cos δ + 1
. (57)
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Thus, for the integral I′AB we get

I′AB =
∫ ε

1+ε
K′ρ,µ(r, δ2ρ, z)dr. (58)

Now consider the integral I′CD. Representing the complex number ζ in the form ζ = reiϕ and using
(51) we get

I′CD =
∫

CD

φρ,µ(ζ, z)
ζ − 1

dζ =
∫ 1−ε1

ε

φρ,µ
(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=−π−π

=
∫ 1−ε1

ε

φρ,µ

(
rei(−π−π), z

)
rei(−π−π) − 1

ei(−π−π)dr.

Comparing this expression with (55), we notice that the integrand of the integral obtained is similar
to the integrand of the integral (55). Therefore, using (56) we get that the integrand can be represented in
the form (57). Thus, for the integral I′CD we obtain

I′CD =
∫ 1−ε1

ε
K′ρ,µ(r,−π, z)dr. (59)

Similarly, using (51) for the integral I′EF we obtain

I′EF =
∫

EF

φρ,µ(ζ, z)
ζ − 1

dζ =
∫ 1+ε

1+ε1

φρ,µ
(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=−π−π

=
∫ 1+ε

1+ε1

φρ,µ

(
rei(−π−π), z

)
rei(−π−π) − 1

ei(−π−π)dr.

Using now (56) and (57) the integral I′EF takes the form

I′EF =
∫ 1+ε

1+ε1

K′ρ,µ(r,−π, z)dr. (60)

In the sum (52) it remains to consider the integral I′C′1ε1
. This integral is taken along the arc of the circle

C′1ε1
with the center in the point ζ = 1 (at that arg ζ = −2π) and radius ε1. The contour is traversed in the

direction from the point D to the point E (see Figure 3). As it was shown earlier, the arc of the circle C′1ε1
in

the plane ζ can be given in the form (see (51))

C′1ε1
=

{
ζ :

arg ζ = arctan
(

τ sin ψ
τ cos ψ+1

)
+ kπ, |ζ| =

√
τ2 + 2τ cos ψ + 1,

−π > ψ > −2π, τ = ε1, k = −2

}
(61)

As one can see, the arc traverse in the direction from the point D to the point E corresponds to a
change of the parameter ψ from −π to −2π. Thus, in the case under consideration the contour C′1ε1

on the
complex plane ζ can be represented in the form

ζ = r(ε1, ψ)eiϕ(ε1,ψ,−2), (62)

where −π > ψ > −2π, 0 < ε1 < 1 and

r(τ, ψ) =
√

τ2 + 2τ cos ψ + 1,

ϕ(τ, ψ, k) = arctan
(

τ sin ψ
τ cos ψ+1

)
+ kπ

(63)
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Representing now in the integral I′C′1ε1
the complex number ζ in the form (62) we find

I′C′1ε1
=
∫

C′1ε1

φρ,µ(ζ, z)
ζ − 1

dζ = −iε1

∫ −π

−2π

φρ,µ

(
r(ε1, ψ)eiϕ(ε1,ψ,−2), z

)
r(ε1, ψ)eiϕ(ε1,ψ,−2) − 1

eiψdψ. (64)

One should pay attention that traversing along the arc of the circle C′1ε1
in the direction from the point

D to the point E (see Figure 3) corresponds to the negative traversing direction along the contour. Here the
value of the parameter ψ = −π corresponds to the point D and the value of the parameter ψ = −2π to
the point E. That is why in the integral derived one must transpose the limits of integration.

We now consider the integrand of this integral. We introduce the following notation for it

iτ
φρ,µ

(
r(τ, ψ)eiϕ(τ,ψ,k), z

)
r(τ, ψ)eiϕ(τ,ψ,k) − 1

eiψ = P′ρ,µ(τ, ψ, k, z). (65)

We transform this expression using (13) and getting rid of the complexity in the denominator we get

P′ρ,µ(τ, ψ, k, z) =
ρτ

2π

exp
{(

zr(τ, ψ)eiϕ(τ,ψ,k)
)ρ} (

zr(τ, ψ)eiϕ(τ,ψ,k)
)ρ(1−µ)

eiψ

r(τ, ψ)eiϕ(τ,ψ,k) − 1

=
ρτ

2π

exp
{
(zr(τ, ψ))ρ (cos(ρϕ(τ, ψ, k)) + i sin(ρϕ(τ, ψ, k)))

}(
r(τ, ψ)eiϕ(τ,ψ,k) − 1

) (
r(τ, ψ)e−iϕ(τ,ψ,k) − 1

) ×

× (zr(τ, ψ))ρ(1−µ) eiρ(1−µ)ϕ(τ,ψ,k)
(

r(τ, ψ)e−iϕ(τ,ψ,k) − 1
)

eiψ

=
ρτ

2π

exp {(zr(τ, ψ))ρ cos(ρϕ(τ, ψ, k))} (zr(τ, ϕ))ρ(1−µ)

(r(τ, ψ))2 − 2r(τ, ψ) cos ϕ(τ, ψ, k) + 1
×

× exp {i[(zr(τ, ψ))ρ sin(ρϕ(τ, ψ, k)) + ρ(1− µ)ϕ(τ, ψ, k)]}
(

r(τ, ψ)e−iϕ(τ,ψ,k) − 1
)

eiψ

=
ρτ

2π

exp {(zr(τ, ψ))ρ cos(ρϕ(τ, ψ, k))} (zr(τ, ϕ))ρ(1−µ)

(r(τ, ψ))2 − 2r(τ, ψ) cos ϕ(τ, ψ, k) + 1
ei[χ′(τ,ψ,k,z)+ψ]

(
r(τ, ψ)e−iϕ(τ,ψ,k) − 1

)
, (66)

where
χ′(τ, ψ, k, z) = (zr(τ, ψ))ρ sin(ρϕ(τ, ψ, k)) + ρ(1− µ)ϕ(τ, ψ, k).

As a result the integral (64) takes the form

I′C′1ε1
= −

∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ. (67)

Now we get back to the expression (53) and let ε→ 0 in this expression. It is necessary to point out
that the integrals ICε

, I′C′1ε1
and I′EF do not depend on ε and, consequently, they will not change with such a

passage to the limit. In view of this, we have

ICε
= − lim

ε→0
I′AB − lim

ε→0
ICε
− lim

ε→0
I′CD − I′C′1ε1

− I′EF.
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Taking into account (54) and using the expressions (58), (59), (60) and (67) we get

ICε
= − lim

ε→0

∫ ε

1+ε
K′ρ,µ(r, δ2ρ, z)dr− lim

ε→0

∫ 1−ε1

ε
K′ρ,µ(r,−π, z)dr

+
∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ−

∫ 1+ε

1+ε1

K′ρ,µ(r,−π, z)dr, <µ < 1 + 1/ρ.

From this we obtain

ICε
= −

∫ 0

1+ε
K′ρ,µ(r, δ2ρ, z)dr−

∫ 1−ε1

0
K′ρ,µ(r,−π, z)dr

+
∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ−

∫ 1+ε

1+ε1

K′ρ,µ(r,−π, z)dr, <µ < 1 + 1/ρ. (68)

Now we get back to the Mittag-Leffler function. Assuming that δ1ρ = π the contour of integration γζ

in (37) takes the form

γζ =


S1 = {ζ : arg ζ = −2π, |ζ| > 1 + ε}
Cε = {ζ : −2π 6 arg ζ 6 δ2ρ − π, |ζ| = 1 + ε}
S2 = {ζ : arg ζ = δ2ρ − π, |ζ| > 1 + ε}

By calculating (37) directly and representing a complex number ζ in the form ζ = reiϕ we obtain

Eρ,µ(z) =
∫

S1

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

S1

φρ,µ(ζ, z)
ζ − 1

dζ

=
∫ 1+ε

∞

φρ,µ
(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=−π−π

+ ICε
+
∫ ∞

1+ε

φρ,µ
(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=δ2ρ−π

=
∫ 1+ε

∞

φρ,µ

(
rei(−π−π), z

)
rei(−π−π) − 1

ei(−π−π)dr + ICε
+
∫ ∞

1+ε

φρ,µ

(
rei(δ2ρ−π), z

)
rei(δ2ρ−π) − 1

ei(δ2ρ−π)dr

using the notation (56), this expression can be written in the form

Eρ,µ(z) =
∫ 1+ε

∞
K′ρ,µ(r,−π, z)dr + ICε

+
∫ ∞

1+ε
K′ρ,µ(r, δ2ρ, z)dr,

where the form of the functions K′ρ,µ(r, δ, z) is defined by (57). Now we will make use of the representation
here (68) for the integral ICε

. As a result, we obtain

Eρ,µ(z) =
∫ 1+ε

∞
K′ρ,µ(r,−π, z)dr−

∫ 0

1+ε
K′ρ,µ(r, δ2ρ, z)dr−

∫ 1−ε1

0
K′ρ,µ(r,−π, z)dr

+
∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ−

∫ 1+ε

1+ε1

K′ρ,µ(r,−π, z)dr +
∫ ∞

1+ε
K′ρ,µ(r, δ2ρ, z)dr

=
∫ ∞

0
K′ρ,µ(r, δ2ρ, z)dr−

∫ 1−ε1

0
K′ρ,µ(r,−π, z)dr +

∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ−

∫ ∞

1+ε1

K′ρ,µ(r,−π, z)dr,

where <µ < 1 + 1/ρ. It remains to consider how to change the condition (2) in this case. Since, in the case
considered 1

2 < ρ 6 1, δ1ρ = π, π/(2ρ) < δ2ρ 6 π, then the condition (2) takes the form π
2ρ − δ2ρ + π <

arg z < − π
2ρ + 2π. Thus, we have obtained the statement of the theorem for the second case.
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Case 3. Consider now the case 1/2 < ρ 6 1, π/(2ρ) < δ1ρ 6 π, δ2ρ = π. In this case the segment
Γ2 of the auxiliary contour Γ (see Figure 2) will run along the positive part of a real axis and, thus,
will run through a singular point ζ ′′ = 1. It should be pointed out that in this case an argument of
points of the segment is equal to arg ζ = 0. Consequently, in this case arg ζ ′′ = 0. That is why, as in the
previous case, we will change the contour Γ in such a way that the contour bypasses this singular point
leaving it outside the contour. The contour formed Γ′′ (Figure 4) consists of the arc of the circle Cε = {ζ :
−δ1ρ − π 6 arg ζ 6 0, |ζ| = 1 + ε} with the center in the point ζ = 0 and radius 1 + ε, ε > 0, the segment
AB = {ζ : arg ζ = 0, 1 + ε > |ζ| > 1 + ε1}, the arc of the circle C′′1ε1

with the center in the point ζ ′′ = 1,
(arg ζ ′′ = 0) and radius ε1, (0 < ε1 < 1, ε1 < ε), the segment CD = {ζ : arg ζ = 0, 1− ε1 > |ζ| > ε},
the arc of the circle Cε = {ζ : 0 > arg ζ > −δ1ρ − π, |ζ| = ε} with the center at the origin of coordinates
and radius ε > 0 and ε < 1− ε1 and the segment EF = {ζ : arg ζ = −δ1ρ − π, ε 6 |ζ| 6 1 + ε}.

C′′
1ε1

Cε

S1

S2

Cε

1−1

1 + ε

ε−π

−π
2

− 3π
2

ABCD

E

F

Γ′′

Figure 4. The auxiliary contour of integration Γ′′.

As one can see, only the arc of the circle C′′1ε1
remains non-parametric. For its parametrization we

will fulfill the procedure as in the previous case. Considering the conformal mapping u = ζ − 1 and
representing the complex number u in the form u = τeiψ we get that the arc of the circle C′′1ε1

can be
represented in the form (50), where the parameter ψ varies within the limits from −π to 0. Note that the
value of the parameter ψ = −π corresponds to the point C and the value ψ = 0 to the point B. It should
be pointed out that the center of a circle lies in the point ζ ′′ = 1 with arg ζ ′′ = 0. Consequently, in the
formulas (50) one should choose the principal branch arctan(x), i.e., to take k = 0. As a result, an arc of a
circle C′′1ε1

can be represented in the form

C′′1ε1
=

{
ζ :

arg ζ = arctan
(

τ sin ψ
τ cos ψ+1

)
+ kπ, |ζ| =

√
τ2 + 2τ cos ψ + 1,

0 > ψ > −π, τ = ε1, k = 0.

}
(69)

In view of the foregoing, the contour Γ′′ is written in the form

Γ′′ =



Cε = {ζ : −δ1ρ − π 6 arg ζ 6 0, |ζ| = 1 + ε},
AB = {ζ : arg ζ = 0, 1 + ε > |ζ| > 1 + ε1},

C′′1ε1
=

ζ :
arg ζ = arctan

(
τ sin ψ

τ cos ψ−1 + kπ
)

,

|ζ| =
√

τ2 + 2τ cos ψ + 1,
0 > arg ζ > −π, τ = ε1, k = 0

 ,

CD = {ζ : arg ζ = 0, 1− ε1 > |ζ| > ε},
Cε = {ζ : 0 > arg ζ > −δ1ρ − π, |ζ| = ε},
EF = {ζ : arg ζ = −δ1ρ − π, ε 6 |ζ| 6 1 + ε}.

(70)
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The contour is traversed in a positive direction.
We consider now an auxiliary integral

I′′ =
∫

Γ′′

φρ,µ(ζ, z)
ζ − 1

dζ.

In a similar way to how it was done in the previous case, we calculate this integral. Using the
definition of the contour Γ′′ we have

I′′ =
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

AB

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

C′′1ε1

φ1,µ(ζ, z)
ζ − 1

dζ +
∫

CD

φρ,µ(ζ, z)
ζ − 1

dζ

+
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

EF

φρ,µ(ζ, z)
ζ − 1

dζ = ICε
+ I′′AB + I′′C′′1ε1

+ I′′CD + ICε
+ I′′EF.

It is clear from this expression that inside the region limited by the contour Γ′′ the integrand of
the integral I′′ is an analytical and continuous function of a variable ζ. Consequently, according to the
Cauchy theorem

ICε
+ I′′AB + I′′C′′1ε1

+ I′′CD + ICε
+ I′′EF = 0.

From this we obtain that

ICε
= −I′′AB − I′′C′′1ε1

− I′′CD − ICε
− I′′EF. (71)

We consider now each of the integrals in the right part separately.
The integral ICε

was considered by us earlier. Using (42), we obtain

lim
ε→0

ICε
= 0, <µ < 1 + 1/ρ. (72)

Now consider the integral I′′AB. Representing ζ in the form ζ = reiϕ we find

I′′AB =
∫ 1+ε1

1+ε

φρ,µ(reiϕ, z)
reiϕ − 1

eiϕdr

∣∣∣∣∣
π−π

=
∫ 1+ε1

1+ε

φρ,µ(rei(π−π), z)
rei(π−π) − 1

ei(π−π)dr.

From this it is clear that this integral is similar to the integral (55). That is why one can use the study
results of this integral. Using (57), we obtain

I′′AB =
∫ 1+ε1

1+ε
K′ρ,µ(r, π, z)dr. (73)

In the same way, using (70), (56) and (57) for the integrals I′′CD and I′′EF we find

I′′CD =
∫ ε

1−ε1

K′ρ,µ(r, π, z)dr, I′′EF =
∫ 1+ε

ε
K′ρ,µ(r, π, z)dr. (74)

It remains to consider the integral IC′′1ε1
. This integral is taken along the arc of the C′′1ε1

with the center

in the point ζ ′′ = 1, where arg ζ ′′ = 0. This means that the contour is traversed from the point B of the
complex plane ζ in which arg ζB = 0 to the point C in which arg ζC = 0. In other words, the starting and
ending points of this contour have the same value of the argument. As it was shown above, the arc of a
circle C′′1ε1

can be represented in the form (69). Traversing this arc in the direction from the point B to the
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point C corresponds to a change of the parameter ψ from 0 to −π. Thus, the points of the arc of the circle
C′′1ε1

can be represented in the form

ζ = r(ε1, ψ)eiϕ(ε1,ψ,0), (75)

where r(τ, ψ) and ϕ(τ, ψ, k) have the form (63).
Using now the representation (75), in the integral IC′′1ε1

we obtain

I′′C′′1ε1
=
∫ −π

0

φρ,µ

(
r(τ, ψ)eiϕ(τ,ψ,0), z

)
iτeiψ

r(τ, ψ)eiϕ(τ,ψ,0) − 1
dψ

∣∣∣∣∣∣
τ=ε1

= −iε1

∫ 0

−π

φρ,µ

(
r(ε1, ψ)eiϕ(ε1,ψ,0), z

)
eiψ

r(τ, ψ)eiϕ(τ,ψ,0) − 1
dψ.

Comparing this expression with (64) it is clear that these two integrals are similar. Therefore, using (65)
and (66) for the integral I′′C′′1ε1

we get

I′′C′′1ε1
= −

∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ. (76)

We return to the expression (71) and let ε→ 0 in this expression. Note that the integrals ICε
, I′′AB, I′′C′′1ε1

do not depend on ε and, consequently, with such a passage to the limit they will not change. As a result
we obtain

ICε
= −I′′AB − I′′C′′1ε1

− lim
ε→0

I′′CD − lim
ε→0

ICε
− lim

ε→0
I′′EF.

Using here the expressions (72)–(74), (76) we obtain

ICε
= −

∫ 1+ε1

1+ε
K′ρ,µ(r, π, z)dr +

∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ

− lim
ε→0

∫ ε

1−ε1

K′ρ,µ(r, π, z)dr− lim
ε→0

∫ 1+ε

ε
K′ρ,µ(r, π, z)dr, <µ < 1 + 1/ρ.

As a result, performing the passage to the limit we have

ICε
= −

∫ 1+ε1

1+ε
K′ρ,µ(r, π, z)dr +

∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ−

∫ 0

1−ε1

K′ρ,µ(r, π, z)dr

−
∫ 1+ε

0
K′ρ,µ(r, π, z)dr, <µ < 1 + 1/ρ. (77)

We return now to the Mittag-Leffler function. Assuming that δ2ρ = π the contour of integration γζ in
(37) takes the form

γζ =


S1 = {ζ : arg ζ = −δ1ρ − π, |ζ| > 1 + ε}
Cε = {ζ : −δ1ρ − π 6 arg ζ 6 0, |ζ| = 1 + ε}
S2 = {ζ : arg ζ = 0, |ζ| > 1 + ε},

and the condition (2) will be written in the form π
2ρ < arg z < − π

2ρ + δ1ρ + π.

By direct calculating (37) and representing the complex number ζ in the form ζ = reiϕ we get
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Eρ,µ(z) =
∫

S1

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

S1

φρ,µ(ζ, z)
ζ − 1

dζ

=
∫ 1+ε

∞

φρ,µ
(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=−δ1ρ−π

+ ICε
+
∫ ∞

1+ε

φρ,µ
(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=π−π

=
∫ 1+ε

∞

φρ,µ

(
rei(−δ1ρ−π), z

)
rei(−δ1ρ−π) − 1

ei(−δ1ρ−π)dr + ICε
+
∫ ∞

1+ε

φρ,µ

(
rei(π−π), z

)
rei(π−π) − 1

ei(π−π)dr

using the notation (56) this expression can be written in the form

Eρ,µ(z) =
∫ 1+ε

∞
K′ρ,µ(r,−δ1ρ, z)dr + ICε

+
∫ ∞

1+ε
K′ρ,µ(r, π, z)dr,

where the form of functions K′ρ,µ(r, δ, z) is defined as (57). We substitute the integral ICε
in this expression

by the expression (77). As a result, we obtain

Eρ,µ(z) =
∫ 1−ε1

0
K′ρ,µ(r, π, z)dr +

∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ

+
∫ ∞

1+ε1

K′ρ,µ(r, π, z)dr−
∫ ∞

0
K′ρ,µ(r,−δ1ρ, z)dr, <µ < 1 + 1/ρ.

Thus, we have obtained the statement of the theorem for the third case.
Case 4. Consider now the case 1/2 < ρ 6 1, δ1ρ = δ2ρ = π. In this case the segments Γ1 = {ζ :

arg ζ = −2π, ε 6 |ζ| 6 1 + ε} and Γ2 = {ζ : arg ζ = 0, ε 6 |ζ| 6 1 + ε} of the auxiliary contour Γ
(see Figure 2) run along the positive part of a real axis. However, the argument of these segments differs by
the angle 2π. Thus, the segment Γ1 passes through a singular point ζ ′ = 1 (|ζ ′| = 1, arg ζ ′ = −2π), and the
segment Γ2 passes through a singular point ζ ′′ = 1 (|ζ ′′| = 1, arg ζ ′′ = 0). Consequently, the contour Γ
must be changed so as to bypass these two points leaving them outside the contour.

We consider the auxiliary contour Γ′′′ (Figure 5) consisting of the arc of the circle Cε with the center at
the origin of coordinates and radius 1 + ε, ε > 0, the segment AB, the arc of the circle C′′1ε1

with the center
in the point ζ ′′ = 1 (|ζ ′′| = 1, arg ζ ′′ = 0) and radius 0 < ε1 < min(1, ε) defined by the expression (69),
the segment CD, the arc of the circle Cε with the center at the origin of coordinates and radius 0 < ε < 1− ε1,
the segment EF, the arc of the circle C′1ε1

with the center in the point ζ ′ = 1 (|ζ ′| = 1, arg ζ ′ = −2π) and
radius 0 < ε1 < min(1, ε) having the form (61) and the segment GH. The contour is traversed in a positive
direction. As a result, the contour Γ′′′ is written in the form
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Γ′′′ =



Cε = {ζ : −2π 6 arg ζ 6 0, |ζ| = 1 + ε},
AB = {ζ : arg ζ = 0, 1 + ε > |ζ| > 1 + ε1},

C′′1ε1
=

ζ :
arg ζ = arctan

(
τ sin ψ

τ cos ψ+1

)
+ kπ,

|ζ| =
√

τ2 + 2τ cos ψ + 1,
0 > ψ > −π, τ = ε1, k = 0

 ,

CD = {ζ : arg ζ = 0, 1− ε1 > |ζ| > ε},
Cε = {ζ : 0 > arg ζ > −2π, |ζ| = ε},
EF = {ζ : arg ζ = −2π, ε 6 |ζ| 6 1− ε1},

C′1ε1
=

ζ :
arg ζ = arctan

(
τ sin ψ

τ cos ψ+1

)
+ kπ,

|ζ| =
√

τ2 + 2τ cos ψ + 1,
−π > ψ > −2π, τ = ε1, k = −2,

 ,

GH = {ζ : arg ζ = −2π, 1 + ε1 6 |ζ| 6 1 + ε}.

C′′
1ε1

Cε

C′
1ε1

S1

S2

Cε

1−1

1 + ε

ε−π

−π
2

− 3π
2

H

A

GFE

D C B

Γ′′′

Figure 5. The auxiliary contour of integration Γ′′′.

Next, we consider an auxiliary integral

I′′′ =
∫

Γ′′′

φρ,µ(ζ, z)
ζ − 1

dζ,

where φρ,µ(ζ, z) is defined by (13). By calculating this integral directly we obtain

I′′′ =
∫

Γ′′′

φρ,µ(ζ, z)
ζ − 1

dζ =
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

AB

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

C′′1ε1

φρ,µ(ζ, z)
ζ − 1

dζ

+
∫

CD

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

EF

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

C′1ε1

φρ,µ(ζ, z)
ζ − 1

dζ

+
∫

GH

φρ,µ(ζ, z)
ζ − 1

dζ = ICε
+ I′′′AB + I′′′C′′1ε1

+ I′′′CD + ICε
+ I′′′EF + I′′′C′1ε1

+ I′′′GH .
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We immediately note that inside the region bounded by the contour Γ′′′, the function φρ,µ(ζ, z)/(ζ− 1)
is an analytical function of the complex variable ζ. Consequently, according to the Cauchy integral theorem,

ICε
+ I′′′AB + I′′′C′′1ε1

+ I′′′CD + ICε
+ I′′′EF + I′′′C′1ε1

+ I′′′GH = 0.

From this it directly follows that

ICε
= −I′′′AB − I′′′C′′1ε1

− I′′′CD − ICε
− I′′′EF − I′′′C′1ε1

− I′′′GH . (78)

Next, we calculate each integral on the right-hand side of this expression. However, these integrals
were already calculated by us earlier. The integral I′′′AB corresponds to the integral I′′AB. Therefore, using
(73) we obtain

I′′′AB =
∫ 1+ε1

1+ε
K′ρ,µ(r, π, z)dr.

The integral I′′′CD corresponds to the integral I′′CD. Using (74), we obtain

I′′′CD =
∫ ε

1−ε1

K′ρ,µ(r, π, z)dr.

The integral I′′′C′′1ε1
corresponds to the integral I′′C′′1ε1

. Using (76)

I′′′C′′1ε1
= −

∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ.

The integral ICε
was considered by us when dealing with case 1. Using (42) for the case considered,

we obtain
lim
ε→0

ICε
= 0, <µ < 1 + 1/ρ.

The integral I′′′EF corresponds to the integral I′CD. Using (59), we obtain

I′′′EF =
∫ 1−ε1

ε
K′ρ,µ(r,−π, z)dr.

The integral I′′′GH corresponds to the integral I′EF. Therefore, using (60) we obtain

I′′′GH =
∫ 1+ε

1+ε1

K′ρ,µ(r,−π, z)dr.

The integral I′′′C′1ε1
corresponds to the integral I′C′1ε1

. Using (67), we obtain

I′′′C′1ε1
= −

∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ.

We get back to the expression (78) and let ε→ 0 in it. Note that the integrals I′′′AB, I′′′C′′1ε1
, I′′′C′1ε1

, I′′′GH do

not depend on ε. Therefore, with such a passage to the limit, they do not change. Taking into account the
above expressions for the integrals, the sum (78) takes the form
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ICε
= −

∫ 1+ε1

1+ε
K′ρ,µ(r, π, z)dr +

∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ− lim

ε→0

∫ ε

1−ε1

K′ρ,µ(r, π, z)dr

− lim
ε→0

∫ 1−ε1

ε
K′ρ,µ(r,−π, z)dr +

∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ−

∫ 1+ε

1+ε1

K′ρ,µ(r,−π, z)dr, <µ < 1 + 1/ρ.

Performing the passage to the limit in this expression ε→ 0 we obtain

ICε
= −

∫ 1+ε1

1+ε
K′ρ,µ(r, π, z)dr +

∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ−

∫ 0

1−ε1

K′ρ,µ(r, π, z)dr−
∫ 1−ε1

0
K′ρ,µ(r,−π, z)dr

+
∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ−

∫ 1+ε

1+ε1

K′ρ,µ(r,−π, z)dr, <µ < 1 + 1/ρ. (79)

Now we consider the Mittag-Leffler (37). Taking into account that in the studied case δ1ρ = δ2ρ = π

we get

Eρ,µ(z) =
∫

γζ

φρ,µ(ζ, z)
ζ − 1

dζ, (80)

where the contour γζ takes the form

γζ =


S1 = {ζ : arg ζ = −2π, |ζ| > 1 + ε},
Cε = {ζ : −2π 6 arg ζ 6 0, |ζ| = 1 + ε,
S2 = {ζ : arg ζ = 0, |ζ| > 1 + ε},

and the condition (2) is written in the form π
2ρ < arg z < − π

2ρ + 2π.

Directly calculating this integral and representing the complex number ζ in the form ζ = reiϕ we have

Eρ,µ(z) =
∫

S1

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

Cε

φρ,µ(ζ, z)
ζ − 1

dζ +
∫

S2

φρ,µ(ζ, z)
ζ − 1

dζ =

=
∫ 1+ε

∞

φρ,µ
(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=−π−π

+ ICε
+
∫ ∞

1+ε

φρ,µ
(
reiϕ, z

)
reiϕ − 1

eiϕdr

∣∣∣∣∣
ϕ=π−π

=
∫ 1+ε

∞

φρ,µ

(
rei(−π−π), z

)
rei(−π−π) − 1

ei(−π−π)dr + ICε
+
∫ ∞

1+ε

φρ,µ

(
rei(π−π), z

)
rei(π−π) − 1

ei(π−π)dr.

Now using here (56) we obtain that the expression may be represented in the form

Eρ,µ(z) =
∫ 1+ε

∞
K′ρ,µ(r,−π, z)dr + ICε

+
∫ ∞

1+ε
K′ρ,µ(r, π, z)dr.

Now here we make use of the representation (79) for the integral ICε
. As a result, we obtain
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Eρ,µ(z) =
∫ 1+ε

∞
K′ρ,µ(r,−π, z)dr−

∫ 1+ε1

1+ε
K′ρ,µ(r, π, z)dr +

∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ−

∫ 0

1−ε1

K′ρ,µ(r, π, z)dr

−
∫ 1−ε1

0
K′ρ,µ(r,−π, z)dr +

∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ−

∫ 1+ε

1+ε1

K′ρ,µ(r,−π, z)dr +
∫ ∞

1+ε
K′ρ,µ(r, π, z)dr

=
∫ 1−ε1

0
(K′ρ,µ(r, π, z)− K′ρ,µ(r,−π, z))dr +

∫ ∞

1+ε1

(K′ρ,µ(r, π, z)− K′ρ,µ(r,−π, z))dr

+
∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ +

∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ. (81)

In the expression derived there is the difference of K′ρ,µ(r, π, z)− K′ρ,µ(r,−π, z). We transform this
difference. For this we use the representation (57) for the function K′ρ,µ(r, δ, z). As a result, we obtain

K′ρ,µ(r, δ, z)− K′ρ,µ(r,−δ, z)

=
ρ

2πi
exp

{
(zr)ρe−iπρ cos(ρδ)

}
(zre−iπ)ρ(1−µ)

r2 + 2r cos δ + 1

(
eiη(r,δ,z)

(
r + eiδ

)
− eiη(r,−δ,z)

(
r + e−iδ

))
.

From the definition for the function η(r, δ, z) (10) it follows that it is an odd function relative to the
parameter δ

η(r,−δ, z) = −η(r, δ, z),

In the total, we have

K′ρ,µ(r, δ, z)− K′ρ,µ(r,−δ, z)

=
ρ

2πi
exp

{
(zr)ρe−iπρ cos(ρδ)

}
(zre−iπ)ρ(1−µ)

r2 + 2r cos δ + 1

(
eiη(r,δ,z)

(
r + eiδ

)
− e−iη(r,δ,z)

(
r + e−iδ

))
ρ

2πi
exp

{
(zr)ρe−iπρ cos(ρδ)

}
(zre−iπ)ρ(1−µ)

r2 + 2r cos δ + 1

(
r
(

eiη(r,δ,z) − e−iη(r,δ,z)
)
+
(

ei(η(r,δ,z)+δ) − e−i(η(r,δ,z)+δ)
))

=
ρ

2πi
exp

{
(zr)ρe−iπρ cos(ρδ)

}
(zre−iπ)ρ(1−µ)

r2 + 2r cos δ + 1
(r sin(η(r, δ, z)) + sin(η(r, δ, z) + δ)) = Kρ,µ(r, δ, z).

Here the function Kρ,µ(r, δ, z) was obtained by us earlier and has the form (19). As a result,
the expression (81) takes the form

Eρ,µ(z) =
∫ 1−ε1

0
Kρ,µ(r, π, z)dr +

∫ ∞

1+ε1

Kρ,µ(r, π, z)dr +
∫ 0

−π
P′ρ,µ(ε1, ψ, 0, z)dψ +

∫ −π

−2π
P′ρ,µ(ε1, ψ,−2, z)dψ.

The derived expression proves the theorem completely.

The proved theorem shows that in the representation (3) at the values of parameters ρ, δ1ρ, δ2ρ

satisfying the conditions (32) the integral over the arc of the circle Cε of the contour γζ can be replaced with
integration with respect to the segments Γ1 and Γ2 of the contour (39). Such a transition makes it possible
to replace the contour integral with one improper integral over the real variable of the complex-valued
function, which simplifies the use and study of the Mittag-Leffler function. The integral representation of
the Mittag-Leffler function obtained in this theorem will be called the integral representation “B”.

Consider in detail the differences between two derived representations. The integral representation
“A” (see (7)) of the Mittag-Leffler function consists of two summands. The first summand corresponds to
the sum of integrals along the half-lines S1 and S2 and the second summand is the integral along the arc
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of a circle Cε. Such a representation is not convenient in analytical studies of the Mittag-Leffler function
since one has to deal with two integrals. The representation “B” turns out to be more convenient and it
consists of one improper integral (see (33)). However, this convenience is fraught with the appearance of
constraints imposed on values of the parameters of the function Eρ,µ(z). As it was shown in Theorem 3,
the representation “B” is true only at values <µ < 1 + 1/ρ. If <µ > 1 + 1/ρ, then it is necessary to use
the representation “A” which is the main integral representation for the Mittag-Leffler function. It should
also be noted that in the representation “B” with the parameter values 1/2 < ρ 6 1 and values δ1ρ = π

or δ2ρ = π the segments Γ1 or Γ2 of the auxiliary contour Γ (see Figure 2) pass through the pole ζ = 1.
This leads to the need to deform the contour of integration so as to bypass the pole. As a result, in integral
representations (34), (35), (36) there are summands describing the pole bypass along the arcs of the circle
C′1ε1

and C′′1ε1
. In addition, one has to split the integrals along the half-lines Γ1 + S1 and Γ2 + S2 into parts

to exclude the sections corresponding to the integrals along the arcs of the circle C′1ε1
and C′′1ε1

. All this
leads to the appearance of additional terms in the corresponding integral representations. It should also
be noted that at parameter values 1/2 < ρ 6 1, δ1ρ = δ2ρ = π in the representation (36) the integral∫ 1−ε1

0 Kρ,µ(r, π, z)dr corresponds to the sum of integrals along the segments CD and EF the contour of
integration Γ′′′ (see Figure 5) the integral

∫ ∞
1+ε1

Kρ,µ(r, π, z)dr corresponds to the sum of integrals along
AB + S2 and GH + S1. As one can see, the specified sections of the integration contour go along the
positive part of a real axis. As it was shown in the Lemma 1 at values of parameters 1/2 < ρ < 1 or ρ = 1
and =µ 6= 0 or ρ = 1, =µ = 0 and <µ is not an integer, the point ζ = 0 is a branch point of the integrand
(37). Consequently, the indicated sections of the integration contour will go along different sides of the
cut of the complex plane ζ. As a result,

∫ 1−ε1
0 Kρ,µ(r, π, z)dr 6= 0 and

∫ ∞
1+ε1

Kρ,µ(r, π, z)dr 6= 0. In case,
if ρ = 1, =µ = 0 and <µ is an integer, Lemma 1 shows that in this case the point ζ = 0 is a regular point.
Consequently, the segments CD and EF, as well as the half-lines AB + S2 and GH + S1 will go along one
straight line of the complex plane, but in different directions, and arcs of the circles C′1ε1

and C′′1ε1
will

close. As a result, we obtain
∫ 1−ε1

0 K1,µ(r, π, z)dr = 0 and
∫ ∞

1+ε1
K1,µ(r, π, z)dr = 0, and the sum of integrals∫ 0

−π P′1,µ(ε1, ψ, 0, z)dψ +
∫ −π
−2π P′1,µ(ε1, ψ,−2, z)dψ corresponds to the integral over the closed contour and

will be equal to the residue in the point ζ = 1. Thus, we come to the condition of Corollary 2.
The formulas of the integral representation obtained in Theorem 3 are rather lengthy. They can be

simplified and reduced to a simpler form. The representation “B” takes the simplest form in the case when
δ1ρ and δ2ρ coincide, i.e., δ1ρ = δ2ρ = δρ. We will formulate the result obtained in the form of a corollary.

Corollary 3. For any real ρ > 1/2, any complex µ and z satisfying the conditions <µ < 1 + 1
ρ and

π

2ρ
− δρ + π < arg z < − π

2ρ
+ δρ + π, (82)

the Mittag-Leffler function can be represented in the form:

1. at any real δρ satisfying the conditions π
2ρ < δρ 6 π

ρ if ρ > 1 and π
2ρ < δρ < π if 1/2 < ρ 6 1

Eρ,µ(z) =
∫ ∞

0
Kρ,µ(r, δρ, z)dr, (83)

where Kρ,µ(r, δρ, z) has the form (19).
2. at δρ = π

ρ and ρ > 1

Eρ,µ(z) =
∫ ∞

0
Kρ,µ(r, z)dr, (84)

where Kρ,µ(r, z) has the form (21).
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Proof. (1) According to Theorem 3 the representation (33) is true at values δ1ρ and δ2ρ satisfying the
conditions (32). In this corollary it is assumed that δ1ρ = δ2ρ = δρ. In view of this assumption,
the conditions (32) take the form π

2ρ < δρ 6 π
ρ if ρ > 1 and π

2ρ < δρ < π if 1/2 < ρ 6 1. The representation
(33) will be written in the form

Eρ,µ(z) =
∫ ∞

0
Kρ,µ(r,−δρ, δρ, z)dr.

From this it is clear that it is necessary to consider how the kernel function Kρ,µ(r,−δρ, δρ, z) is
transformed at the parameter values specified. This issue was already considered when proving item 1 of
Corollary 1 (see (25)). It was shown there that

Kρ,µ(r,−δρ, δρ, z) = Kρ,µ(r, δρ, z) =

=
ρ

π
(zre−iπ)ρ(1−µ) exp

{
(zre−iπ)ρ cos(ρδρ)

} r sin(η(r, δρ, z)) + sin(η(r, δρ, z) + δρ)

r2 + 2r cos δρ + 1
.

The first part of the corollary is proved.
(2) Consider the case δρ = π/ρ. Note immediately that the value of an angle δρ cannot exceed π.

Consequently, this case is implemented only at values ρ > 1. However, the value ρ = 1 should be excluded
from consideration. In fact, at ρ = 1 the segments Γ1 and Γ2 of the auxiliary contour Γ (see Figure 2) pass
through the pole ζ = 1. Consequently, it is necessary to deform the contour Γ so as to bypass this pole.
However, this has already been done by us in item 4 of Theorem 3. By putting the value δρ = π/ρ in the
representation (83) we obtain

Eρ,µ(z) =
∫ ∞

0
Kρ,µ(r, π/ρ, z)dr.

Using the definition of the function η(r, ψ, z) (see (10)) we obtain η(r, π/ρ, z) = (1 − µ)π.
Now using this result when calculating the kernel function Kρ,µ(r, π/ρ, z) and introducing the notation
Kρ,µ(r, π/ρ, z) ≡ Kρ,µ(r, z) we obtain

Eρ,µ(z) =
∫ ∞

0
Kρ,µ(r, z)dr,

where Kρ,µ(r, z) has the form (21).

4. Conclusions

It has been shown in the paper that when passing from the integral representation formulated in
Theorem 1 to integration over real variables, the integral representation of the Mittag-Leffler function can
be written in two forms: the representation “A” and “B”. The integral representation “A” was given in
Theorem 2 and the representation “B” in Theorem 3. Each of these representations has its own advantages
and drawbacks. The representation “A” is true for any complex µ and at values 1/2 < ρ 6 1 there is
no need to bypass a pole in the point ζ = 1. This excludes the necessity to consider particular cases
and greatly simplifies the presentation itself. These facts are the advantages of the representation “A”.
The disadvantages of this representation include the fact that it consists of the sum of two integrals:
improper and definite. This leads to certain difficulties when working with this representation, since one
has to study the behavior of these two integrals. The representation “B” is valid only for the parameter
values µ satisfying the condition <µ < 1 + 1/ρ. Particular cases also arise at values 1/2 < ρ 6 1 in which
one has to bypass a singular point ζ = 1. That is why, in the problems in which there is a necessity to
investigate these particular cases this form of representation is not very convenient. These facts are the
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disadvantage of the representation “B”. In all other cases the representation “B” consists of one improper
integral and turns out to be more convenient in use than the representation “A”. This is the advantage of
the representation “B”.

The forms of the representations “A” and “B” obtained in Theorems 2 and 3 are given for the case of
four parameters ρ, µ, δ1ρ, δ2ρ. The parameters ρ and µ are referred to the Mittag-Leffler function directly,
and parameters δ1ρ and δ2ρ describe the integration contour. As a result, in the general case, the integral
representations “A” and “B” of the Mittag-Leffler function turn out to be four-parameter. For definiteness,
we call this four-parameter description parametrization 1. However, in parametrization 1 though the
representations “A” and “B” of the function Eρ,µ(z) have a more general form but they are awkward
enough. The representations “A” and “B” take a simpler form if δ1ρ = δ2ρ = δρ. In this case, the integral
representations “A” and “B” can be described in three parameters: ρ, µ, δρ. We call this parametrization
2. An even simpler view of the form “A” and “B” is adopted if δ1ρ = δ2ρ = π/ρ. In this case integral
representations of the Mittag-Leffler function can be described in two parameters ρ and µ. We call this case
of parametrization—parametrization 3. Thus, the integral representations of the Mittag-Leffler function
in the form “A” and parameterizations 2 and 3 are given in Corollary 1, and the representation “B” in
parametrizations 2 and 3 in Corollary 3.

Taking into account of the geometric meaning of the parameters δ1ρ and δ2ρ one can give the
geometric interpretation of three introduced parametrizations of the representations “A” and “B”.
In fact, the parameters δ1ρ and δ2ρ describe an inclination angle of half-lines S1 and S2 in the contour
γζ (see Figure 1). Thus, in case if the half-lines S1 and S2 independently lie in the range of angles
π
2ρ < δ1ρ 6 min

(
π, π

ρ

)
, π

2ρ < δ2ρ 6 min
(

π, π
ρ

)
, then we have parametrization 1. If these half-lines

lie symmetrically in relation to the positive part of a real axis, then we obtain parametrizations 2 and 3.
With this, parametrization 3 corresponds to the angle of inclination δ1ρ = δ2ρ = π/ρ.

In conclusion it should be pointed out that the representations for the function Eρ,µ(z), formulated in
Theorems 2 and 3 are valid for the vaues arg z satisfying the condition π

2ρ − δ2ρ +π < arg z < − π
2ρ + δ1ρ +π.

This constraint appears as a result of the use of the proof of Theorem 1 of the integral representation for
the gamma function obtained in the work [22] (see Appendix in [22]). The presence of this constraint
somewhat narrows the possibilities of using the obtained integral representations of the function Eρ,µ(z).
Nevertheless, it is possible to get rid of this constraint and expand the range of admissible values arg z to
the entire complex plane. However, this requires additional studies that are beyond the scope of this paper.
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