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Abstract: The integral representation of the two-parameter Mittag-Leffler function E, ; (z) is considered
in the paper that expresses its value in terms of the contour integral. For this integral representation,
the transition is made from integration over a complex variable to integration over real variables. It is
shown that as a result of such a transition, the integral representation of the function E,, ;,(z) has two forms:
the representation “A” and “B”. Each of these representations has its advantages and drawbacks. In the
paper, the corresponding theorems are formulated and proved, and the advantages and disadvantages of
each of the obtained representations are discussed.
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1. Introduction
The Mittag-Leffler function is an entire function defined by a power series
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where I'(x) is the Gamma-function. This function was introduced by Mittag-Leffler in a number of works
published from 1902 to 1905 in connection with his development of a method of summing divergent series.
For more detailed information on the content of these works and on the history of the introduction of the
Mittag-Leffler function, we refer the reader to the book [1] (see chapter 2 in [1]). The function itself E, (z)
was introduced in the work [2]. In the paper [3], the integral representation for this function was obtained
that expresses its value in terms of the contour integral.

In this paper the two parameter Mittag-Leffler function

o Zk

EPIH(Z):k;oW, p>0, peC, zeC 1)
is studied. This function was first introduced by A. Wiman in 1905 [4,5]. Later in 1953 this function was
rediscovered in the works of Humbert and Agarval [6-8]. A new function was introduced by replacing
the additive unit in the Gamma function argument in E,(z) for an arbitrary complex parameter y. At the
same time, irrespective of Humbert and Agarval, the function (1) was studied by M.M. Djrbashian in the
papers [9,10] (see also [11] Chapter 3, §2, 4). As we can see, the two parameter Mittag-Leffler function
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Epu(z) is connected with the classic Mittag-Leffler function E,(z) by a simple relation E, 1(z) = Ey(z).
For more detailed information on the properties of the function E, , (z) we refer the reader to the book [1],
as well as to other review works [12-14]. In this paper, integral representations of the function E, , (z) will
be obtained and studied.

The integral representation of the Mittag-Leffler function is important from the point of view
of its practical use, as well as for studying the asymptotic properties and zeros of this function.
The integral representation expressed through the contour integral is used for these purposes. Several
such representations are known for the Mittag-Leffler function. One of the earliest integral representations
of the function E, ,(z) was given in the book [15] (see §18.1, formula (20)). Further development of the
issue of the integral representation of the Mittag-Leffler function and the study of its asymptotic properties
was carried out in the works of M.M. Djrbashian. In the work [9] the integral representation was obtained
that expressed the Mittag-Leffler function through the contour integral. Later it was included in his
monograph [11] (see chapter 3, §2, Lemma 3.2.1). Using this integral representation, asymptotic formulas
and the distribution of the zeros of the Mittag-Leffler function were obtained. Further, the results of the
work [9,11] were used in the books of [1,16], as well as in the works of [17-21] to develop the methods
and algorithms of calculating the Mittag-Leffler function. However, despite a wide use of the integral
representation for the Mittag-Leffler function that was obtained in the works of [9,11], it turned out that
there was a mistake in that representation. This fact was pointed out in the work of [22]. In this regard,
there is an issue of obtaining the correct integral representation for the Mittag-Leffler function.

One of the possible solutions to this issue was given in the works of [22,23]. In these works,
the representation of the Mittag-Leffler function was obtained that expresses its value through the contour
integral. As it was noted earlier, this representation is used to study the asymptotic properties of the
Mittag-Leffler function. However, for practical use and for calculating the value of the function, it is
convenient to have integral representations expressing the function in terms of the integrals of real
variables. This paper is devoted to obtaining such integral representations for the Mittag-Leffler function.
The starting point of the solution to this problem is the integral representation of the function E, ;(z)
obtained in the work [22]. Running a little ahead, we will say that the transition from integration over a
complex variable to integration over real variables leads to the appearance of two forms of the integral
representation of the Mittag-Leffler function. The first form will be abbreviated as the representation
“A”, the second as the representation “B”. The representation “A” is a direct consequence of the integral
representation obtained in the work [22]. It is obtained as a result of the transition from the contour
integral to integration over real variables. To obtain the representation “B” in addition to performing such
a transition, it is necessary to carry out a terminal transition ¢ — 0. This leads to the fact that the integral
representation “B” is valid only for parameter values u satisfying the condition R < 1+ 1/p. As aresult,
both the representation “A” and the representation “B” have its advantages and drawbacks which will be
discussed in detail in the paper.

It should be pointed out that in this paper the letters p,  are used to denote the parameters of the
Mittag-Leffler function (1). These notations were introduced by M.M. Djrbashian in his works [9-11].
Parameters p and y of the function (1) are connected with the commonly used notations « and p of the
parameters of the Mittag-Leffler function by simple relations a = 1/p, B = p.

2. Integral Representation “A”

The purpose of this paper is to obtain integral representations for the function E, ; (z) expressing this
function in terms of integrals over real variables. It is convenient to use the representations of such a kind
in practical problems as well as for calculating the values of the Mittag-Leffler function. As an example of
the use of such integral representations, we can mention the work [24]. In that paper, the inverse Fourier
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transform of the characteristic function of the fractionally stable law was performed which is expressed
in terms of the Mittag-Leffler function. To perform the inverse Fourier transform, we used the integral
representation of the Mittag-Leffler function which in the current paper is formulated in Corollary 3 item
2 (see (84)). Using this integral representation in the paper [24] expressions of density and distribution
function of a fractionally stable law were obtained. Articles [25,26] are another example of usage of the
Mittag-Leffler function. In these articles are shown that solutions of a master equation for the fractional
Poisson process [25] and a fractional relaxation equation for dielectrics [26] are expressed thorough the
Mittag-Leffler function. A Monte Carlo method was used for calculation the obtained solutions. However,
the use of the integral representation of the Mittag-Leffler function for calculation of the solutions would
significantly increase the accuracy of the results.

The starting point of this paper is the integral representation of the function E, ,(z), obtained in the
work [22]. The following theorem was formulated in this work

Theorem 1. For any real p, 61y, 62, € satisfying the conditions p > 1/2, 575 < b1 <min(7, 71/p), 35 < 62p <
min(7t, 7w/p), € > 0, any u € Cand any z € C satisfying the condition

7T

T
7—(52p+7r<argz<—2p

20 + 51{) + 7T 2)

the Mittage-Leffler function can be represented in the from

P p(1—u)
Epu(z) = 5 5 exp {(Zg)gi(f@ p

& ®)
where the contour of integration <y; has the form (see Figure 1)

S1= {C:argl=—-bp—m [{|=>1+¢€},
’)/é = C€ = {g : _51[7 -7t < argg < 52p -7, |€‘ =1 +€}/ (4)
Sy = {f:argl{ =10y —m [{|=1+e€}.

™
< %762p+7r

arg z

V% SN, - -

< *Qip+51p+ﬂ'

Figure 1. The contour of integration v;. The region that corresponds to the condition (2) is shaded in grey.

The proof of this theorem can be found in the work [22].
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The form of the contour of integration -; on the complex plane { is given in Figure 1. The cut of the
complex plane goes along the positive part of a real axis. The contour of integration consists of the half-line
S1, the arc of the circle Ce radius 1 + € and the half-line S;. The contour 7, is traversed in a positive
direction. The parameters 41, and d;, have the meaning of inclination angles of the half-lines S; and S; in
relation to the contour axis ;. In Figure 1 the contour axis 1y, coincides with a real axis. The values of the
angles 1, and d,, are measured from the negative part of the real axis. The reference directions of these
angles in Figure 1 are shown by arrows.

We will obtain the integral representations that of interest to us by going from integration over the
complex variable { to integration over variables r and ¢ interconnected by the relation { = re'?. As a
result, the following theorem is true for the function E, (z).

Theorem 2 (The representation “A”). For any real p > 1/2, € > 0and b1,, 65 satisfying the conditions

7T 7T 7T 7T
— <5 gmin<n,>, — <& <min< > ©)
20 ~F p) 20 77 P

for any complex y and any complex z satisfying the condition

s U
5—52p+n<argz<—$+51p+ﬂ, (6)
the Mittag-Leffler function can be represented in the form
o] l5zp—7T
Epu(z) = [ Kop(r, —610, 809 2)dr + / Pou(1+ €, ¢,2)dg. @)
1+e —61p—T

Here

p (2P e 01 Ay (1, 92, 91,2) — Apu(r, 91, 92,2)]

Ko 91, 92,2) = 27i (12 +2rcos @1 + 1)(r2 + 2rcos g + 1) ’ ®)
where
Apu(r, w1, wo,z) = exp {(zr)pe*ipn cos(pwl)} (r? + 2r cos wy 4 1)etrw12) {r + eiwl} , )
1(r,9,2) = (zr)Pe " sin(pg) +p(1 — ), (10)
and (-)eixrp2)y [y — o]
_ p exp{(zr)fcos(pg)} (zr)P M eX 9=y [r — ¢
Po(r, ¢,2) = 27 12 —2rcos @+ 1 ’ (1)
where
x(r,@,z) = (zr)P sin(p@) + p(1 — p)g. (12)
Proof. For convenience we will introduce the notation
bon(8,2) = = exp {(62)F} (£2) 0. (13)
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As a result, the representation (3) will take the form
Pou(C,2)
Epu(z) = pg” —dg, (14)
e

where the contour of integration -, is defined by (4).

Substituting in (14) the variable of integration { = re'? and directly calculating this integral we obtain

Eul@) = [, ‘P”‘_ g [ Poull2) o\ I Peu € )dgz /He Pon€.2) gy,

o rel? —1
p=—061p—TT
sz 1) . 1+€
i i(—=b1p—TT
L / cppy rel?,z) e N ¢p,ﬂ(re (P'Z)eiq"dr _ / o (rel =00 =) Z)el(’élt””)dr
1 rel? —1 ) ret(=0=7) _1
8= r=1+€ 14¢ @=0byp—TT )

-7 .
N 20 4)‘0,#((1 + e)ez(p, Z) i (020 —17)
1 —_—
. (1+e)et?—1
*Olp*ﬂ’ 1+€

(1+€)e'?dg + / Posre 2) i ¢t(6=70)

P (o) _ 1 dr = 151 =+ Ice =+ 152. (15)

We consider the integral s, . Getting rid of the complexity in the denominator we have

1+e 4’P,14 <rei(7519775),z) gi(*‘slp*”) 1te ¢P,]l (rei(f(ﬁp*ﬂ),Z) ei(félpfn) (rel'((slp+7'[) - 1>
Is, = / __ dr = / d
7 e rel(=0,—m) _ 1 Joo (rei(félpfnt) _ 1) (rei(51p+n) _ 1) '

el ()
r

12 4-2rcos 81y + 1

e oxp { (e 000 )} (re O ()
= 27-[1 1’2 4 2rcos ‘Slp +1

o [lieexp {(zr)Pe_iP”(Cos(pélp) - isin(pélp))}
ﬁ[n 12 4-2rcos oy, + 1 (

dr

zr)P(1=1) p=ipt (1= pt) =ip(1=1)01p (1 4 o100 4y

_ 0 14€ exp {(zr)")e*ip” cos(pélp)}
2711 Jeo 12 4 2rcos oy, + 1

(zr)P (=) gmiom(L=p) it (1, =01p:2) (r + e*i‘slﬁ) dr,

where the notation 7 (r, ¢, z) = (zr)Pe 7 sin(p¢) + p(1 — )@ was introduced.
Similarly, for the integral Is, we get

o oy (el z) ¢il020=70) o oy (e, 2) (r+ e
o [T g () (%),
1+e 1+e

ret(020—7) _q 24+ 2rcosdy, +1
0 o exp {(Zr)ﬂe_lpn COS(Pfszp)} (Zr)P(l_V)e_ipﬂ(l—ﬂ)eiﬂ(rr‘Sprz) (1’ + eitSzP)

pum— b d .

2711 J1te 24+ 2rcosdy, +1 4
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Summing now the integrals I, and I5, we obtain

_ P /1+€ exp { (zr)Pe ™ cos(pdip) } (1—p) ,—ipr(1—p) i (r,~d1,,2) —id
I Jo = — P I ° H) M1, —01p, 10 ) 4
5102 2771 Joo 2+ 2rcosdy, +1 (2r) ¢ ¢ (r te ) d

P

d
27Ti 4

o exp {(Zr)Pefipn’ Cos(p52p)} (Zr)p(l7?‘)giipn(lfﬂ)eiﬂ(r'&ﬂ'z) (7’ + ei‘SZP)
27 /l+e 12+ 2rcosdp, + 1

= KP/H (1’, _51p1 52‘0/ Z)d?’, (16)
1+e

where

X (r Z) B L (Zr)P(l_V)e_iPﬂ(l_V) [Ap,y(r, @2, (pl,Z) — Ap,y (1’, P1, (PZrZ)]
o0U 91, P2, - 21i (72_|_2rcosq91—|—1)(72—|—27’COS§02+1)

Apu(r,wi,wo,z) = exp {(zr)Pe_iP” cos(pwl)} (% + 2r cos wy 4 1)e1(712) {r + ei“’l} .

We consider now the integral Ic_. At the beginning, we will get rid of the complexity in the
denominator. To do this, we will multiply and divide the integrand by the complex conjugate of the
denominator and open the brackets in the denominator. Then, in the resulting expression, we substitute
the definition of the function ¢, ,({,z) (see (13)) and in the indices of the exponents we use the Euler
formula e'? = cos ¢ + isin ¢. As a result, we get

Oyp—TC . Sp—TT ; . >
IC :l‘ﬁ7 M(l+€)el¢d¢:1p/ ¢p/V((1+e)eq)"Z)(1+€)ew ((1+€)€ 74)_1) d(P
e By (14e)e? -1 ) ((1—|—€)614’—1) ((1—1—6)6‘"”—1)
10— 7T —01p—TT
o peu((1 )67, )1+ e) ((1 te)— ei‘/’> ,
_l/—élp—n (1+€)2—-2(1+€)cosp+1 ¢
, . 1—n .
o paeree{(z0+0¢7)'} (z0 1) (140 (14¢) - o) )
C2n —81p—1t (1+€)2-2(1+€)cosp+1 ¢
52,;—71’
_ P exp {((1+¢€)z)P(cos(pyp) +isin(pyp))} o(1—1) op(1—1) e
“ox 5/ (1+e)2—2(1+e)cosg+1 (z(1+€)) e (1+€)((1+€) e )dq)
n
(52'077'[
_ [ _ee{ld+e)z)fcosipg)} p(1=p) pix((1+€),9.2) )
T 2m 5/ (1+€)2—2(1+€)cosq)+1(z(1+€)) e (1+e)<(1+e) e >dg0
—01p— 7T
52 —7T
= [y Bl +eg2)de, (17)
where

o exp{(zr)P cos(pg) } (2r)P(U=meix(re2)y [r — €i9]

P @, == 7
ol 9,2) 21 r2—2rcos¢p+1

x(r, ¢,z) = (zr)f sin(pp) + p(1 — p) .

Using (16) and (17) in (15) we obtain the representation (7). It is important to pay attention that in the
process of proving no additional limitations on the values of parameters p, i, 615, d2p and the argument z
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were imposed and it means that the ranges of admissible values pass from Theorem 1 without change.
Thus, the representation (7) is valid for any real p > 1/2, any real d1,, J, satisfying the conditions (5),
any complex y and any complex z satisfying the condition (6). O

The proved theorem formulates an integral representation for the Mittag-Leffler function that
expresses this function in terms of the sum of improper and definite integrals. To be definite, we will
call this integral representation of the Mittag-Leffler function the representation “A”. As we can see,
the representation “A” is a direct consequence of the representation (3). It is obtained by passing from the
contour integral to integrals over the real variable. Moreover, the improper integral in (7) corresponds to
the sum of integrals along the half-lines S and S5 of the contour 7; and the definite integral corresponds
to the integral along the arc of a circle Ce. It should be noted that this integral is taken along the arc of a
circle of radius 1 + €, where € > 0. The representation (7) is valid for arbitrary values p > 1/2, any p and
any 61, and &y, that satisfy the condition (5).

However, in general case, for arbitrary values of parameters d1, and d,,, satisfying the condition (5),
the kernel function K, (7, —d1p, 62, z) turns to be lengthy. The representation (7) takes the more compact
form in case when the half-lines S; and S, of the contour of integration v, run symmetrically relative to
the real axis i.e., when 61, = d5, = 5. We will formulate the obtained result in the form of a corollary.

Corollary 1. For any real € > 0, any complex y the following integral representations of the Mittag-Leffler function
are true:

1. atanyreal p > 1/2, any real 5, satisfying the condition 55 < 6o < min(7, 7) and any complex z satisfying
the condition 35 — 6y + 7T < argz < —z5 + 0+ 7

Sp—7TT

Epu(z) = /1 eKW(r, 5p,z)dr+/ Pou(l+e€,¢9,2)do, (18)

0
+ —0p—TT

where

—_ _ —_; rsin(n(r,@,z)) +sin(y(r, ¢, z) +
Kp,y(r, ¢,z) = %(Zre m)P(l #) exp{(zre m)pCOS(Pgo)} ul (fz -‘Z)ZT’COS ;}17_"(_ 1(P ) (P)/ (19)

1(r, ¢, z) is defined by (10) and Py, (r, ¢,z) has the form (11).
2. atanyreal p > 1at 6y = 71/ p and any complex z satisfying the condition —% + 7 <argz < % +

T
o =—T
Epulz) = [  Konlr,2)dr+ [% P+ g2, (20)
0
where
_i _ i rsin(7t(1 — +sin(7t(l —u) + 7w/
Kpu(r,z) = %(w )P0 exp { —(zre )} (7( - i);rcos( 7(T /L ) +P11) P o

and Py, (v, ¢, z) is defined by (11).

Proof. (1) According to Theorem 2, the Mittag-Leffler function can be represented in the form (7).
This representation is true for arbitrary 61, and 4, satisfying the conditions (5). In case if 61, = d2p = Jp

the conditions (5) take the form

— < 1 —
2 < 5p < min (7‘[, > (22)
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and the condition (6) can be written in the form

7T

5—5p+7t<argz<—£+5p+n. (23)

2p

As a result, the Mittag-Leffler function is written in the form

Sp—Tt
Epu(z) = [ Kou(r,—8p, 60, 2)dr + / " P14 e p,2)dg.
1+e —0p—TC

We consider the integrand of the first integral and denote
Kpu(r,0p,2) = Kp (1, —06p,0p,2). (24)
Using the definition Ky, ,,(r, @1, 92, z) (see (8)) we get

Kp/y(r, 5p, Z) — KP/V (7’, _5p, 5‘0, Z)

27 (1?2 +2rcosd, +1)2 '

Using the definition A (7, w1, ws, z) (see (9)) and the fact that the function #(r, ¢, z) defined by (10)
is an odd function according to the variable ¢

n(r,—,z) = —n(r, ¢,2),

we have

Apu(r,0p,—0p,2) — Apu(r, —0p, 6, 2)
= exp {(zr)Pe_i"P cos(pép)} (r* +2rcos(—d,) + 1)e/%2) (7 4 i)
—exp {(zr)Pe—inP Cos(—pép)} (rz +2rcosé, + 1)ei17(r,—o"p,z) (r+ e_iJP)
= exp { (zr)Pe im0 cos(pép)} (r* +2rcosd, +1) (7 ( in(rdpz) 1 pi(1(r8p,2)+6p) _ po=in(rdpz) _ efi(q(r,ép,z)ﬂsp))

= 2iexp {(zr)f’e””f’ cos(pép)} (r* +2rcosd, + 1) (rsin(y(r,8p,2)) + sin(y(r, 8p,2) + Jp)) -

Now substituting this result in (25) we obtain (19). Since in the proof process no additional restrictions
on the values of parameters p, ;1 and on the value argz were imposed, then the conditions for these
parameters go from Theorem 2 without change. Thus, we come to the conditions of the corollary.

(2) We consider the case 1, = dp = 71/p. As we can see, the case considered is a particular case of
the previous one. It follows from (5) that this case can be implemented if p > 1. For the range of values
arg z from (23) we get

—£+7T<ar z<£+n
2p & 20 ’

Now we consider the representation (18). In the case under consideration it will be written in the form

Eoule) = [ Kou(r,/p,z dr+/ Pou(1+c,,2)dg.
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We denote
Kou(r,z) = Koy (r, %,z) . (26)

From (10) it follows that % (r, %,z) = (1 — p)7t. Now using this result in (19) we get (21). O

From the proved corollary it follows that if the parameter values 41, and J;, coincide, then in this
the kernel function Ky, ;, (7, 91, @2, z) is significantly simplified. Recall that the parameters é1, and d,, are
inclination angles of half-lines S; and S5 in the contour *y; relative to the axis of this contour (see Figure 1).
Since in the Theorem 1 the axis of the contour <, coincides with the real axis, then the selection of
01p = 02p means that half-lines S; and S; run symmetrically in relation to the real axis. The kernel function
Kpu(r, 1, 92, z) takes the simplest form in the case d1, = 2, = 7/p.

Further, it is necessary for us to know the position of singular points of the integrand of the
representation (3). This issue was studied in the work [27]. For completeness of the statement here
we give the result obtained in the work [27] and formulate it in the form of a lemma.

Lemma 1. For any real p > 1/2 and any complex values of the parameter y = pg + iy the integrand of the
representation (3)

(1-p)
by = 2 SEIGLHE D) o

relative to the variable { has two singular points { = 1 and { = 0. The point { = 1 is a pole of the first order.
The point { = 0 is:

1. the regular point of the function ®,,(l,z), with the values of parameters p = n, where n = 1,2,3,...
(the positive integer), uy = 0 and ug = 1 — my/p, where my =0,1,2,3,... (the non-negative integer);

2. apole of the order my, if p = n, where n = 1,2,3, ... (the positive integer), y; = 0 and ug = 1+ my/p,
where my =1,2,3,. .. (the positive integer);

3. the branch point, for any other values of parameters p, yy, Ug.

The proof of this lemma can be found in the work [27].
We will make the following remark to Corollary 1.

Remark 1. In Corollary 1 the special case under consideration 61, = 625 = 71/ p. We will assume that p = 1 and
study the behavior of the Formula (20) in this case. As a result, we obtain

o0 0
Eiu(z) = /1+€ Ky (r,z)dr + /on Pu(1+e€ ¢,z)dg. (28)

Using (21) for Ky,,,(z) we obtain

Ky (r,z) = %(zre_i”)l_” exp {fzre_i”} rein(r(1=p)) +sin(r(l —p) +7) _

r2—2r+1
%(—2)17V627 Sln<n<(1r__.ul)))2(r — 1) — %(_Z)lfyezr Sll’l(7:(_1 1_ ,14)) .

From here it is clear, if u = n, wheren = 0,£1, 42,43, ..., then sin(rt(1 — u)) = 0. Consequently,

0, u=mn,

K = . 29
1,p(Z) { %(_Z)lfyezrsm(f(_ll—y))’ ‘117571 (29)
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Thus, with integer values of y the first summand in (28) becomes zero and to calculate the value of Eq ,,(z) it
remains to calculate the second integral. To calculate this integral, numerical methods can be used. However, in this
case, this integral can be calculated analytically using the residue theory.

In fact, we return to the integral representation formulated in Theorem 1. Recall that we consider the case
p = 1. Using the notation (27), the representation (3) takes the form

Eip(e) = | @1,(02)4e, (30)
4
where the contour of integration ¢, defined by (4), is written in the form

S1= {C:argl{=-2m, [(|>1+¢€},
=4 Ce= {{:-2m<argl <0, [{|=1+¢€}, (31)
S,= {C:argl=0, |g/>1+e}.

We represent the complex parameter y in the form y = ugr + ipuy and make use of Lemma 1. According to
this lemma, the function CDW(@,Z) at values y; = 0and yg =1 —mq, where my =0,1,2,3, ... has one singular
point { = 1 which is a pole of the first order. The point { = 0, in this case, is the regular point. In case, if uyy = 0
and ur = 14 myp, where my =1,2,3,... the function <I>1,M(§,z) has two singular points: the point { = 1 is a pole
of the first order and the point { = 0 is a pole of the order my. As we can see, in both cases the point { = 0 is not
a branch point. As a result, in these two cases, the function ®1,,(Z, z) is the entire function of a complex variable
¢. From here it follows that when u; = 0, and ugr = n, wheren = 0, £1,£2,£3,... the arc of the circle C. that
enters the contour (31) is the closed circle of radius 1 4 €. The half-lines Sy and Sy pass along the positive part of
a real axis in mutually opposite directions. With all other values of the parameter y (when pu; % 0 or ur # n),
according to Lemma 1, the point { = 0 is a branch point of the function ®1,,(C, z). In this case, the circle Ce of the
contour (31) will not close up and half-lines Sy and Sy will go along the upper and lower banks of the cut of the
complex plane which runs along the positive part of a real axis.

It is clear from here that the result (29) is a consequence of Lemma 1 In fact, in the case when the parameter p
takes integer real values, the first and second items of Lemma 1 turn out to be true. As we have already pointed out,
in this case the arc of the circle Ce of the contour (31) is a closed circle and the half-lines Sy and Sy run along the
positive part of a real axis in mutually opposite directions. Consequently, the sum of the integrals along the half-lines
S1 and Sy will be equal to zero. Next, it is necessary to recall that the improper integral in the expression (28) just
corresponds to the sum of the integrals along the half-lines S1 and Sy. Therefore, with integer real values y it should
be equal to zero which has been obtained. A definite integral in (28) corresponds to integration along the closed circle.
Therefore, one can use the theory of residues to calculate it.

The calculation of the integral in (30) using the theory of residues with integer real values of the
parameter u was carried out in the work [27]. For completeness of the statement, we will give the results
obtained in this paper and formulate them in the form of a corollary to Lemma 1.

Corollary 2. For the values of the parameters p = 1, 61p = 63p = 7, any complex z, satisfying the condition
/2 < argz < 371/2 and for integer real values of the parameter y = n,n = 0,x1,+2, 43, ... the Mittag-Leffler
function has the form:

1. ifn<1Gie,n=1,0,-1,-2,-3,...), then

Ein(z) = ezl M,
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2. ifn>2(e,n=2734,...) then

Ein(z) =2'"" (ez - ni:sz>
1n - k! .

The proof of this corollary can be found in the paper [27].

3. Integral Representation “B”

The integral representation “A” consists of the sum of two integrals. As it has been found earlier,
the improper integral in (7) corresponds to the sum of integrals along the half-lines S; and S of the contour
7¢ in the representation (3), a definite integral corresponds to the integral along the arc of the circle Ce.
As a result, in analytical studies of the function E, ,(z), as well as in the solution of problems where it is
encountered, one should conduct studies of these two integrals. This causes certain difficulties. As it will
be shown below in the representation (7) one can get rid of an integral on the arc of the circle C. and write
the integral representation for the function E ;(z) in the form of an improper integral. This representation
will be much easier to use. However, as a result of such a transition, some restrictions are imposed on the
parameter values u. The integral representation of the Mittag-Leffler function represented in the following
theorem will be called the representation “B”.

Theorem 3 (Representation “B”). For any real p > 1/2 and any complex u satisfying the condition Ry <
1+1/p for the function E, ,,(z), the following integral representations are valid:

1. for any real 815, 63 satisfying the conditions

3 <O <5, 2 <0py<%,  if p>1,

2 x : (32)
$<51p<7r, $<52p<7'c, if 1/2<p<1,

and any complex z satisfying the condition % — 0yt <argz < —% + d1p + 7 the Mittag-Leffler
function can be represented in the form

Ep,y(Z) = /0 Kpry(r, —01p, (SZP,z)dr, (33)
where Ky, (1, 91, @2, 2) has the form (8);

2. if1/2<p<land ép =11, % < b2y < T, then for any complex z satisfying the condition % — 0t <
argz < — % + 271, the Mittag-Leffler function can be represented in the form

o 1—81
Epu(z) :/0 K;/H(r,ézp,z)dr—/o K}, (r, —7t,z)dr—

{e’e) —7T
K (r,—m,z dr—I—/ P (e1,¢,—2,2)dy, (34
/l+£1 p,y( ) —on p,y( LY ) P, (34)

where €1 1s an arbitrary real number satisfying the condition 0 < g1 < 1,

' _ o op{(zr)fe ™ cos(pg)} o) ity(rpe) (i) ig
Koulr9,2) = 27i r24+2rcosp+1 (2r) ¢ (r te ) ’
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where 1y (r, ¢, z) has the form (10) and

ot _exp {(ar(,9)) cosloo(r )
o (T 9k 2) = S G 9))2 — 2r(x, ) cos( (T, 9, K)) 1 1

x (zr (T, )P A=l (T k) +y] ( (T, )e (T _ 1) )

where

X' (T, k,z) = (zr(T, ) sin(pg(T, ¢, k) + p(1 — w) (T, ¢,k),
r(t,¢) = \/TZ +2Tcost + 1,

B Tsiny )
¢(T, ¢, k) = arctan (TCOSI[J " 1) + km;

3. 1f1/2 <p<land 7 5 < 01p <7, 0p =TT, then for any complex z satisfying the condition 3% 70 < argz <
% 75+ 01p + 7, the Mzttag—Leﬁler function can be represented in the form

[e9)

1781
E,,(z :/ K (r, 7, z)dr — K. (r, 7, z)dr+
)= [ Ktz [ K0

+ / u(1,9,0,2)dy — /OOK;W(r, —01p,2z)dr, (35)

where €1 is an arbitrary real number satisfying the condition 0 < g1 < 1;
4. if1/2 <p < land é1p = 6yp = 71, then for any complex z satisfying the condition % <argz < —% + 27,
the Mittag-Leffler function can be represented in the form

e

1—81
Epu(z) = / Kpu(r, 7, z)dr — Kpu(r, 7w, z)dr+
0 1+eq

0
+ /77T P/;, €1,9,0,z)dp + / p u(e1, ¥, —2,z)dyp, (36)
where €1 is an arbitrary real number satisfying the condition 0 < &1 < 1and K, ,(r, 9, z) has the form (19).

Proof. The starting point of the proof is Theorem 1 and the integral representation (3) which is defined in
it. In view of the notation (13), the representation (3) will be written in the form

(Ppy(g )
e é—l

The problem consists in calculating this contour integral.

We consider an auxiliary integral
- [Pl (8)
r ¢—1

where the contour I' (see Figure 2) consists of the arc of the circle C of radius 1 4 € with the center at the
origin of coordinates, the segment I', the arc of the circle C; the radius ¢ with the center at the origin of
coordinates and the segment I';, which are defined in the following way:

Epu(z) = | ——F———=d{. (37)
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Ce=1{0: —0p—m<argl <oy —7, [f| =1+¢€},

Ty ={C:argl =0dyp—7m, 14+€=> || > ¢},

Cs:{g: ‘52p_777<arg€< ‘Slp |é| ZS},
={0:argl =01, —m e<|f| <1+e}.

The contour is traversed in the positive direction. The cut of the complex plane { goes along the
positive part of a real axis.

(39)

S

Figure 2. The auxiliary contour of integration I'.

As it follows from Lemma 1, depending on a value of the parameter y, the integrand (38) has one
or two poles. If Ry > 2, then there are two poles in the points { = 0 and ¢ = 1. If Ry < 1, then there is
one pole in the pomt ¢ = 1. In addition, at non-integer values p and y the point { = 0 is the branch point.
In the case when § < p < 1and 61p = 7t the segment I'; will pass through a singular point { = 1 (Figure 2).
The similar 51tuat10r1 will be at 1 < p < land & = 7. In this case, the segment I', will pass through
the point { = 1. These two cases w111 be considered separately. The case 2 <p <161 =0y = malso
requires a separate consideration. In this case each of the segments I'; and I'; passes through a singular
point ¢ = 1. In view of the foregoing, it is necessary to consider four cases:

1.
7T 7T 7T :
$<§]p< 0 $<52P<E’ if p>1, (40)
3 <O <7 F<&p<m i l<p«i,

2. t<p<Lp=mn 7T, g5 < G2p < 7T,

3. 3<p<1,dy 7, 35 < O1p < T,

4. %<p<1,(5lp:n52p—n.

Case 1. We consider the first case at the beginning. Directly calculating the integral I and substituting
the variable of integration { = re’? we obtain
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I— ‘Ppy(g Z) §+ ‘Ppy(g z) g + ‘Ppy(g Z) §+/ 4’p14 )dC—
C (- - e -
520 _(slp_n .
—i 74)""‘_(% re'?dg +/ foa(re?,z) “”dr +i 7%'”-@61?'@ re'?dg
re'? —1 rel? — 1 i re'¥ —1
~b1p—7t r=l+€  1te g=bp=T  Gpy-r r=¢
1+e .
Popu(re?,z) 4, 4’0 (1 +e)e’, Z) ip Do,y ", 2) i(63p—70)
S a1 ¢ dr = / 1+ o) = (I+e)e qu_/re"Zﬂ—”)—le 0~ dr

D Ty
—61p—TC te i(—51 —
+Z/ 47‘0” eel? ) ”"dq)—i— 47[);,(]/3’( 1p 7T) ) 1( P

1 ret(=01p=1) _ dr=1Ic, +1Ir, +Ic, + I, (41)

§2p77‘[

Now we let ¢ — 0 in this expression and we will study the behavior of Ic,, Ir, and Ir,. We consider
the integral Ic, at the beginning. For this integral the relation is true

—81p—7 (cci?, 2)
ee'?,z) .

11m |Ic.| < lim Lsel‘p

T e0 ee'? —1

52p77‘[

|de].

We consider the integrand. To get rid of the complexity in the denominator we multiply and divide
the integrand by ee~'? — 1. We also represent z = |z|e'®8% and y = ug + iji1, and for a power function we
will use the representation §* = exp{aln¢},¢ > 0. As a result, we obtain

exp { (zsei¢)p} (zsei‘/’)p(l_y) ee'? (ee79 — 1)

i )
lim wge"” = L1im . .
e—0| ee'? —1 27T =0 (ge”P — 1) (ge*“l’ — 1)
o . exp {(|Z|€)peip((p+argz)} (|Z|g)P(lfP‘R*iVI)eiP(lfﬂR*iﬂl)((P+argz)g (g — ei‘l’)
:Ell—% €2 —2ecos @+ 1
£ gim L exp {(JzJe) ) o1~ g — i) In([zle) +
T 2mes0|e2 —2ecos g+ 1
+ ip(1— pr —ipy)(@ +argz) +Ine} (e — eiq’)‘
o . 1

= — - o —
27 B T Decos g 11 P L(IZ[e) coslp(p Fargz)) +p(1 = pr) In([zle) +p(g +arg2)ps + Ine

+i[(|zle)? sin(p(¢ +argz)) + p(1 — ur) (¢ +argz) — pIn(|z[e)pr]} (8 - e’”’) ‘

Lhm ’eA+iB(£ —ei(”)‘

27t e50 €2 —2ecosp + 17

where

e)f cos(p(g +argz)) + p(1 — ur) In(|z|e) + p(@ + argz)u; + Ineg,
¢)f sin(p(¢ +argz)) + p(1 — ur) (¢ + argz) — ppy In(|z[e).
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For the numerator we have the estimate

‘EAJriB(S_Ei(p)’ < ’EAJriBS‘ + ’€A+iB+i<p _ eA(s—i—l).
Thus,
Lli |eA+iB(£_ei(p)| L]im eA(€+1)
27 e50 €2 —2ecosp+1 27 e—0 €2 —2ecos @ + 1
. 1
- Py ——————exp {(|z]|¢)’ cos(p(¢ + argz))

T 20 e —2ecosgt 1
+ p(1 = pr)In(|zle) + p(¢ +argz)p; +Ine+In(e + 1)}

_ P 1 p
= tim ooy exp {(le) cos(p(p -+ arg )+

+ (p(1 = pr) + ) Ine+1In(e +1) + (1 — pr) In(|z[) + pps (¢ +argz)}

{ 0, ﬂR<1+%/

_P__plptargz)m —141
271’|Z|e , MR + o

From this it follows that
lir%IQ:O, if ur<1+1/p. (42)
e

Now we consider the behavior of the integral I, at ¢ — 0. We have the estimate

1+e 1+e

¢P1P’ (rei(iélpiﬂ)’ Z) ei(*51p*7'f)

o
lim o (007 ) A
rel(=0w =) _ 1

. el(=0=) gy
e—01 . rel(félpfn) _ 1
€

|dr|

< lim
e—0
€

1+€
0

Consequently, it is necessary to study the behavior of the integrand at r — 0. For convenience,
we introduce the notation ¢; = —41, — 7. Further, similarly to the previous case, we get rid of the
complexity in the denominator. To do this, we multiply and divide the integrand by the complex conjugate
value of the denominator, i.e., by (re='%1 — 1) and represent z = |z|e'®8%, u = ug + u;. For a power
function we will make use of the representation ¢ = exp{aln¢}. Using (13) we get

Pon (re' 007, 2) ol(—d1p—)
rel(=0p=7) _q

|dr|.

exp { (zrei‘Pl)P} (zreiq’l)p(l_y) e'f1(re= i1 — 1)

(rei?1 —1)(re~i91 — 1)

Pou(red 00 )
rel (=07 _q

lim
r—0

= — lim
27T r—0

1 , o . .
P ip(1+argz) p(1=pr~+ipg) ip(1—pr—ipr)(pr1+argz) (. _ Hip1
T areos o1 o0 {07 } (lzlr) e (r =)

_ Py 1 P _
= }13(1) 7~ 2rcos gy +1 lexp {(|z]r)f cos(p(¢1 +argz)) + ppi (@1 +argz) + p(1 — pr) In(|z[r)

+i [(|z]r)f sin(p(g1 +argz)) + p(1 — pr) (@1 +argz) — pps In(|z|r)]} (r — 1)
o0 .. |€A1+iBl (7, _ €i<p1)|

T 2750 12 —2rcosqy + 17
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where

)P cos(p(gr +argz)) + ppi (g1 +argz) + p(1 — ) In(J2]),

A1 =(|z
By =(|z|r)f sin(p(¢1 +argz)) + p(1 — ur) (@1 +argz) — ppsIn(|z|r).

(]z

For the numerator we have the estimate

’eA]+iBl(}, —ei"’l) < ‘reA]+iBl + ‘eAlJriBﬁifPl — A (r+1).
Consequently, we obtain
o |eAtiBL (r — elon)| < 2 lim eM(r+1)
2t =0 2 —2rcos¢r +1 ~ 2w =012 —2rcos @1 + 1
. 1
= 2 tim exp {(|zr)? cos(p(g1 +argz)) + ppi (g1 + arg 2)

27T r—0 12 — 2rcos ¢1 + 1

_ 0, ur <1,
o1~ ) Inlelr) + In(r 1)) = { £ olor oo, ey

We get the similar result for the integral I,

Pop (rei(ézp*”) ) (02— 70)

lim s B

e—0

. 0, UR < 1,
= %e‘g((szp—n-&-argz)%y Ug = 1.

Thus, at Ry < 1 the limits lim. oI, and lim. oIy, will converge to the corresponding
definite integrals

Ite i(—61,—7)
lim Iy, = / Poqure” 0", 2) i(—51p—7T)d,,,
e—0 re ( 61[1 7-[) — 1
1+e ) (43)
Ppu(re’ ¢i(62p=70)
11_1’)1’(1)11“2 = —/ o 1 2077 dy.

We will pay attention to the fact that in the case under consideration when the parameters p, d1,, 62p
satisfy the condition (40), the integrand of the integral I (see (38)) inside the region limited by the contour
I', is an analytical function. Consequently, from (41) we have

I= IC€+IF2+ICS+IT1 =0
Letting ¢ — 0 in this expression and taking into consideration (42) we obtain
Ice = — lim(lrl + Irz). (44)
e—0

Substituting here the expression for I, and using (43) we obtain
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52p n(P ((1+ )i(p )
€)e'?,z .
P(Pi+e)ei¢_1 (1+e)evdy
751‘077'(
47p;4( (=61p—7) ,z) . 1+e¢py(r6i(52pfn)rz) (ooper) 1
— —01p— , 20— 1
ret(—0=7) _q nr / rei02—70) _ 1 e dr, P‘R<1+p' (45)

Here it should be pointed out that at values 1 < ug < 1+ 1/p the integrals (43) have a singularity in
the point r = 0 and at values yug < 1 the singularity disappears.

Now let us return to the Mittag-Leffler function. Directly calculating (37) and replacing the variable
of integration { = re'? we get

1+e ip
Epplz / Pou(C €+ ‘Pp,u(@fz)ngr ‘Pp,u(CrZ)dg:/ Pon (re ’Z> i

p ?d
(1 ¢ (-1 5 -1 e —1
@=—01p—TC
Gop—71 i 1+e i(—d1p—71)
Gou (17e'?,2) bo, re‘/’z ) Pou (re "W 2 )
i <1>¢ p ] e 1 Gale) P R / oo e 1)ez<w>dr
re’vy — — . —O1p— _
—01p—TC r=1+e 1l+e 9=06y—T0 o re
bp—70 )
(PPH 1+€E(PZ> (Pp;z( Zp /Z> .
l(p i(8pp—77)
+i / Aroe—1 (1+e€)e <p+/ e S dr.
—1ﬂ—7'[ 1+e
Using here (45) we obtain
i(—61,—77)
4’9#(76 (%270 Z) s Do (76’1( " /Z) , 1
EW(Z):/ e ey T <14 (46)
0 re'\2e 7 —1 re\ " —1 P

We consider the first summand in this expression. Getting rid of the complexity in the denominator
and using (13) we get

Pou (1’31‘((52/377(), Z) P (rei(szfﬂ)’Z) ol (620—70) (refi(ézpfn) _ 1)

| pi(Gp—70) _
rel(2=7) 1 (rei(%*”) - 1)) (ref"(‘szf’*”) - 1)
(/)py (re (329 =71) z) (r - ei(‘szﬂfn)) _p P { (zrei(‘ssz”))p} (zrei(‘szﬂfﬁ))p(lim (r+ei‘529)
124 2rcos b, + 1)  2mi 24+ 2rcosdy, +1
e {(zr)fe P (cos(pdzy) +isin(pdsy)) } (ar) 0 MG (1 4o )
271 12 4 2rcosdy, +1

i — ) y—ip(1— )71 it (1320, is
0 exp {(zr)Pe ™7 cos(pdy,) } (zr)P1— =ikl 17 i (r:020/2) (r+e’ ZP)
2771 12 4+ 2rcosdy, +1 ’

(47)
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where 7 (7, ¢, z) has the form (10). Similarly, for the second summand in (46) we have

Po,u (7‘3i(_’52p_”), z

rel(=0%=7) _1

)ei(—ézp—n) _

exp { (zr)Pe T cos(pdyp) } (Zr)p(l_”)e_ip(l_}‘>”ei’7(r'_‘slﬁ'z) (r + e‘iélﬂ>

_ P 48
27Ti 12 +2rcosdyp + 1 (48)

Now substituting (47) and (48) in (46) and making simple transformations we finally obtain

Epu(z) :/0 Kp,u(r, —01p,62p,2)dr,

where Ky, ,, (7, @1, ¢2, z) is defined by the expression (8). The values d1, and 4, satisfy the conditions (40).
The condition for the value arg z did not change and passes from Theorem 1 without any changes. Thus,
the first item of the theorem is proved.

Case 2. Now we consider the case when } < p < 1,61, = mand 71/(2p) < &y, < 7. As it was
mentioned earlier, in this case the segment I'; of the auxiliary contour I' (see Figure 2) will go through
the singular point { = 1. That is why, it is necessary to change the contour of integration in such a way
that one could bypass this point leaving it outside the contour. The auxiliary contour I that we get
will consist of the arc of the circle Ce with the center at the origin of coordinates and radius 1 +¢€,e > 0
(see Figure 3), the segment AB, the circle C; with the center at the origin of coordinates and radius ¢
satisfying the condition 0 < & < 1), the segment CD, the arc of the circle C} ¢, With the center in the point
¢’ =1 (argl = —2m) and radius ¢; (here e; < 1 — ¢ and ¢; < €) and the segment EF.

For further study we need to parametrize this contour. As a result, in the plane { the arc of the
circle Ce can be written in the form C. = {{ : —27m < arg{ < 0y — 71, |{| = 1+ €}. The segment AB
is written in the form AB = {{ : argl = 0y — 71, € < [{| < 1+ €}. The arc of the circle C¢ has the
form Cc = {{ : 9y —m < argl < —2m, [{| = e}. The segments CD and EF are written in the form
CD={C:arg{=-2m, e<|{|<1—¢}tand EF ={{: arg{ = —2m, 1 +¢; < || < 1+¢€}.

—3TA

Figure 3. The auxiliary contour of integration I".

To parametrize the arc of the circle C} ¢;» We consider the mapping u = { — 1 of the complex plane {
on the complex plane u. This mapping is a conformal mapping and is a left shift of the entire complex
plane ¢ by the value 1. As a result of such a shift, the point { = 1 in the plane { is mapped onto the point
u = 0 of the plane u. Thus, the circle Ciel with the center in the point { = 1 and the radius &1 < 1 of the
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plane  will be mapped on the circle Cj,, with the center in the point # = 0 and the radius ¢ on the plane
u. Thus, to parametrize the arc of the circle C} ¢, In the plane { it is enough to parametrize the arc of the
circle C,, in the complex plane 1 and then to map the complex plane # on to the plane ¢ with the help of
an inverse conformal mapping { = u + 1.

We will represent the complex number u in the form u = te!¥. Then, an arc of a circle C(”)’81 in the
complex plane u has the form C(”]‘sl ={u: 21 < ¢ < -1, T = €1}, where &g < 1. Now we map the
complex plane u onto the plane {. We have { = te¥ + 1 = Tcos ¢ + iTsiny + 1. From this we obtain

Tsiny

17| = \/T2+2TCOSIP+1, arg { = arctan <Tcos¢+1) (49)
Here it is necessary to note that arctan(x) is a multivalued function. The principal branch of this
function takes values in the interval [—7/2, 71/2]. However, as one can see from the definition of the
auxiliary contour I”, the center of the arc of the circle C; ¢, lies in the point { "= 1in which arg{’ = —2m.
Therefore, it is necessary to choose the required branch in arctan(x) in such a way that the mapping (49)
could map an arc of a circle Cy,, of the plane u on to an arc of a circle C} ¢, Of the plane ¢ with the center in

the point {’ = 1 and arg{’ = —27. As a result, the mapping (49) will take the form

17| = \/T2+2TCOSIIJ+1, arg { = arctan (%) + k. (50)
For the arc of the circle C} ¢, We obtain k = —2. Here it should be pointed out that these formulas

produce the mapping of the circle C, on to the circle C{el only in the case T < 1. If T > 1, then these
formulas will not be true.
Thus, in view of the remarks made the auxiliary contour I can be represented in the form

Ce={0: 2m<arg{ <dyp—m, |{|=1+¢€},
AB={(: argl =0y — 7, € < |§|<1+e}
Ce={{: dpp—m<argl < —2rm, |{| = ¢},
CD={C: arg{=-2m, e<|{|<1—¢},

T = ; 51
arg { = arctan (chfsTpﬁl) +kr, 1)
Cle, =10 |C| = /T2 +2Tcosy + 1,

—nmz2p>-2n, T=¢, k=-2,
EF={C: arg{ = —2m, 14+¢ <|{| <1+¢€}.

The contour is traversed in a positive direction.
Next, we consider an auxiliary integral

‘Pp,y(gzz)

I'=
r -1

ac.

By calculating this integral we have

zZ
. ‘P"g‘g §+/ 4"" )dg—IC€+IAB+IC€+ICD+I’, +Ite. (52)
leg
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One should pay attention to the fact that inside the region limited by the contour I" the integrand
$p,u(C,2)/ (T — 1) of the integral I’ is an analytical function of the complex variable . Consequently,
according to the Cauchy integral theorem

Ie. + Iap + I, + Iep + 1o+ Tgp = 0.
€1

From here we get that
— !

Ie, = =Ihp = le. —Iep = Iey = Ier- (53)
€
Thus, it is possible to substitute integration on the arc of the circle C¢ by integration on the remaining
parts of the contour I".
We consider each integral in the right part of this expression. The integral I, has already been
considered by us earlier in this lemma. Using (42) we obtain that in the case considered

limle, =0, wugr <1+1/p. (54)
e—0

Consider the integral I, 5. Representing the complex number { in the form { = re’? and using (51)
we obtain

i(02p—71)
_ /e Po,u (” ’Z> ¢ gr. (55)
1

1te rel? —1 te -7 _1q

I3 i .
Iﬁ‘lB — /AB ¢Pg<€’12) dé _ (PPr.” (7’(3 ’Z) &P dr

@=0p—T

We introduce the notation

pr,y rei(&—n)lz o
(<> - o 0055 )

Now we transform the function K ,,(r,J,z). Using the definition for ¢, ({, z) (see (13)) and getting
rid of the complexity in the denominator we obtain

p P { (Zf’ei((sfﬂ))p} (Zrei(‘sfn))p(l_y) el(6—m) (refi(é—ﬂ) _ 1)

U _ 7 =
Koulrd,2) = 50 (el —1) (re @0 —1)
o P {(zr)Pe~P7[cos(pd) + isin(pd)] } (zre”’”)p(lim elr(1=1)o (r — e"(‘s’”))
27i r2 —2rcos(6 — ) +1 -
—i —imyp(1—p)
Lexp{(zr)ﬁ’e 7 cos(pd) } (zre m)p . 0 —iTTp B i
o 7 arcosd 11 oxp {i|(zr)te " sinfpa) + p(1 = o] } (r ¢

By introducing the notation 7(r, ¢, z) = (zr)Pe~"" sin(pd) + p(1 — p)J, that coincides with (10) we
obtain that K}, ,, (7,9, z) can be represented in the form

p exp {(zr)Pe~P7 cos(ps) } (zre’i”)p(l_y) ere2) (r 4 ¢i%)

K/ ,0,2) =
p'V(r 2) 27ti 72 4+2rcosé + 1

(57)
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Thus, for the integral I, ; we get

€
I :/ K (r,05,,2)dr. 58
AB Tte p,y( 20 ) ( )

Now consider the integral I|.,,. Representing the complex number { in the form { = re'? and using
(51) we get

i(—m—7r)
(/4514b44(re ?) i(~=) g
e

- 1 ¢

1—¢ .
CD_/ 4’py dg / 1 o (re? Z)el(pdr

rei? — 1

Comparing this expression with (55), we notice that the integrand of the integral obtained is similar
to the integrand of the integral (55). Therefore, using (56) we get that the integrand can be represented in
the form (57). Thus, for the integral I, we obtain

1761
QD:L K, (r, =7, 2)dr. (59)

Similarly, using (51) for the integral I, we obtain

i(—m—m)
/l+€ P (1’(3 ’Z) i(—n—n)dr.
1

. e
te  rei=m=m)

;o Gou(8,2) . 1€ Pou (rei¢’z)i
&P_A{?iTﬂz_A Pon \'€ 7/ 2) ig 4,

e re’? —1

Qg=—T—TT
Using now (56) and (57) the integral Iy takes the form
, 1+e , p
I = / K r,—7T,2Z)dr. 60
EF Jite oM ( ) ( )

In the sum (52) it remains to consider the integral I, . This integral is taken along the arc of the circle
leq

C1 e with the center in the point { = 1 (at that arg { = —27) and radius €. The contour is traversed in the
direction from the point D to the point E (see Figure 3). As it was shown earlier, the arc of the circle C} g N
the plane ¢ can be given in the form (see (51))

i
Cle, =10 arg{ = arctan (chfslrl;)fJ) +k, || = /T2 +2Tcosp +1, 61)
—nt>P> -2, T=¢, k=—

As one can see, the arc traverse in the direction from the point D to the point E corresponds to a
change of the parameter ¢ from —7t to —27t. Thus, in the case under consideration the contour C} ¢, ON the
complex plane { can be represented in the form

g =r(er, p)e?erv—2), (62)

where —7t > ¢ > 27,0 < e < land

r(t, ) = /T2 +2Tcosp + 1,

o(59.8) rcton (288 + b

(63)
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Representing now in the integral I, the complex number { in the form (62) we find
leq

I, = eVdi. (64)

leq C{‘El C -1

o)y g, / n fon (rler et 2, z)

2 r(eq, p)elelend—2) 1

One should pay attention that traversing along the arc of the circle C} ¢, i the direction from the point
D to the point E (see Figure 3) corresponds to the negative traversing direction along the contour. Here the
value of the parameter ¢ = —7t corresponds to the point D and the value of the parameter ¢ = —27t to
the point E. That is why in the integral derived one must transpose the limits of integration.

We now consider the integrand of this integral. We introduce the following notation for it

fo (r(T9)e9THH),2)
| .
oy B R AL (65)

We transform this expression using (13) and getting rid of the complexity in the denominator we get

ot exp { (zr(r, lp)ei‘f’(w'k)y} (zr(r, lp)ei‘P(Tﬂ/"k))
27 I’(T, (p)ei(P(T#’fk) -1

_ pTexp {(zr(7,9))f (cos(pg(T, 9, k)) +isin(pp(T,P,k))) }
S 2n (T(T, lp)eiﬁ"(Tf1l"k) ) ( (T, p)e e—io(tpk) _ 1)

x (zr(t,))P0—H) eip Q=) (tapk) ( r(T, p)e P Tk 1) ol
_ pTexp{(zr (T, 9))F cos(p@(T, ,k))} (2r(t, )P+
21 (r(t,9))? —2r(t,¢) cos @(T,9,k) + 1
x exp {il(zr(T,1))° sin(pg(T,,k)) +p(1 = W) p(7, 9, )]} (r(x, p)e 4R —1) o'

_ prexp {(2r(T, 9))F cos(p@(T, P, k))} (2r(T, ))PIH) e z) ) —ig(t k)
Y (r(t,¢))? —2r(t,¢) cos (7,9, k) + 1 ey (r(T,v,b)e ey _1>’ (66)

o (T 0k, 2) =

X

where
X (T,9,k z) = (zr(T,9))° sin(pp(T, 9,k)) + (1 — ) (T, 9, k).
As a result the integral (64) takes the form

/ Pl (e, —2,2)dy. (67)

]sl

Now we get back to the expression (53) and let ¢ — 0 in this expression. It is necessary to point out
that the integrals I, I/ cr and I;; do not depend on ¢ and, consequently, they will not change with such a

passage to the limit. In view of this, we have

Ic, = —lim g —limIc, —lim I[p — I, — Ifp.
Ce es0 AB T D0 G g5 €D 1, EF



Mathematics 2020, 8, 1101 23 of 35

Taking into account (54) and using the expressions (58), (59), (60) and (67) we get

€ 1—¢
Ic, = —lim K, i (7, 629, z)dr — lim 1 K}, . (r, =1, 2)dr

e—=0J1+4¢ e—0Je

—7T 1+
+/ Pf’),},(£1,tp,—2,z)dlp — K’ u(r, —mz)dr, Rp <1+1/p.
—27 1+e

From this we obtain

0 1—81
Ie =— K (r,60,,2 dr—/ K (r,—m,z)dr
Ce e p,y( 20 ) 0 p,y( )

-7 1+e€
+/ P;,H(sl, Y, —2,z)dyp — / K;W(r, —m,z)dr, Ru<1+1/p. (68)
-2 1+

Now we get back to the Mittag-Leffler function. Assuming that 61, = 7t the contour of integration ¢
in (37) takes the form

S1={¢: arg{ = —2m, [{| > 1+¢}
Y= C€:{§:—2n<arg§<52p—7r, ICl =1+¢€}
Sy ={C: argl =dy—m, [{| > 1+€}

By calculating (37) directly and representing a complex number { in the form { = re'? we obtain

Ep(2) /4’@_1 d§+/ 4’0,_1 d§+/ (Pp”_l)dé

_ /1+€ o (€', 2) i dr

rel?,z) .
' 4)9/# ( ) e dr
[<9) re'$ —1

+ Ic. + :
Ce 1+e rel? —1

Qg=—m—TT

€ —m=m)
_/H gb”‘ Z)e( = dr + I +/ e
—-n—-m) _ 1 €

9=0byp—TC

(re ("Zﬁ_”),z)

i((52 —7'()
) 1 e\ dy

using the notation (56), this expression can be written in the form

1+e 00
Epu(z) = K;J u(r, = z)dr + I, + -/1+€ K;W(r, d2p,2)dr,

where the form of the functions K, , (, 4, z) is defined by (57). Now we will make use of the representation
here (68) for the integral Ic,_. As a result, we obtain

1+e , 1-¢ /
Epu(z) = . K, (r,—m,2 dr—/ K (r,020,2 )dr—/o K, (r, —7t,z)dr

14 ~00
/ /
+/ py (e1,9,—2,z)dyp — /+€1 K, (r, =, z)dr + /1+€ K (1, 62p,2)dr

1—e¢ €1 -7t
= u(7,62, dr—/ K (r,—m,z dr+/ P! (e1,0,—2,2)dy — K (r,—m, z)dr,
/ 20,2 0 p,y( ) o p,y( vy ) (4 14, p,y( )
where i < 14 1/p. It remains to consider how to change the condition (2) in this case. Since, in the case
considered % <p<Ldyp=m, /(2p) < dop < 71, then the condition (2) takes the form - % — G+ <
argz < — % + 27t. Thus, we have obtained the statement of the theorem for the second case.
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Case 3. Consider now the case 1/2 < p < 1, /(2p) < 51P < 7, 62p = 7. In this case the segment
I'; of the auxiliary contour I' (see Figure 2) will run along the positive part of a real axis and, thus,
will run through a singular point ’ = 1. It should be pointed out that in this case an argument of
points of the segment is equal to arg { = 0. Consequently, in this case arg {” = 0. That is why, as in the
previous case, we will change the contour I' in such a way that the contour bypasses this singular point
leaving it outside the contour. The contour formed I'” (Figure 4) consists of the arc of the circle Ce = {{ :
—01p — < argl <0, |¢| = 1+ e} with the center in the point { = 0 and radius 1 + €, € > 0, the segment
AB={(: arg{ =0,1+€ > || > 1+ €}, the arc of the circle C{’sl with the center in the point {" =1,
(arg” = 0) and radius €1, (0 < &1 < 1,&1 < €), thesegment CD = {{ : arg{ = 0,1—¢; > [{| > ¢},
the arc of the circle Ce = {{: 0> arg{ > —d1, — 7, [{| = &} with the center at the origin of coordinates
and radius ¢ > 0 and ¢ < 1 — ¢; and the segment EF = {{ : arg{ = —d1p — 7, ¢ < [{| < 1+€}.

—3TA

Figure 4. The auxiliary contour of integration I'”.

As one can see, only the arc of the circle Cﬁl remains non-parametric. For its parametrization we
will fulfill the procedure as in the previous case. Considering the conformal mapping u = ¢ — 1 and
representing the complex number u in the form u = te'¥ we get that the arc of the circle C{’gl can be
represented in the form (50), where the parameter ¢ varies within the limits from —7 to 0. Note that the
value of the parameter ) = — 7t corresponds to the point C and the value ¢ = 0 to the point B. It should
be pointed out that the center of a circle lies in the point {" = 1 with arg " = 0. Consequently, in the
formulas (50) one should choose the principal branch arctan(x), i.e., to take k = 0. As a result, an arc of a
circle C{’gl can be represented in the form

v _ ;. arg { = arctan (TZ(fslrl}}f-1> + k7, |C] = /T2 4+ 2Tcosp + 1, 69)
ley 0Z2¢p=>—m t=¢,k=0.

In view of the foregoing, the contour I'’ is written in the form

Ce =1{C: —dp—m<argd <0, 7] =1+¢€},

AB={(: arg{ =0,1+e>[{| = 1+e},
arg { = arctan ( Tg;:;fl + kn) ,

r— Cle, =40 1Z] = /T2 +2Tcosyp + 1, , 70)
O0>argl > —-m1=¢,k=0

CD={¢: argl=0,1—¢e1 > (] > ¢},

Cs: {é 0>arg€2 —5]‘0—71', |€‘ :5},

EF ={0: argl = —61p —m, e <|{] <1+€}.
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The contour is traversed in a positive direction.
We consider now an auxiliary integral

(PP,%(Cf Z) d

I// —
N4 g -1

Z.

In a similar way to how it was done in the previous case, we calculate this integral. Using the
definition of the contour I'"” we have

/‘Pp,_l)ng pr,(_ d§+/ 4’1,# §+/ (Pp”_l)dé

AB C

/9"”‘ : dg+/ 4’”‘ )dg—1c€+13+1”{, + Ilp + I, + Igr
. - Sl

It is clear from this expression that inside the region limited by the contour I' the integrand of
the integral I” is an analytical and continuous function of a variable {. Consequently, according to the
Cauchy theorem

Ie, + Ijg + IU{’ + I¢p + Ic, + I = 0.
&

From this we obtain that

Ic, = -5 — I”{,S1 — I¢p — Ic, — Iy (71)

We consider now each of the integrals in the right part separately.
The integral I, was considered by us earlier. Using (42), we obtain

limle, =0, Rpu<1+1/p. (72)
e—0
Now consider the integral I/{ ;. Representing  in the form { = re? we find

1+e i )
1 _/ 1 Pp,ulre 'Z)e’q’dr
1

1+e rei(”*ﬂ)lz .
fam [ o [ w03 e,
+e re'? —1 1

ve  rel(m=m) 1

From this it is clear that this integral is similar to the integral (55). That is why one can use the study
results of this integral. Using (57), we obtain

A /1+€1 K! ( )d (73)
— r, 7T, z)dr.
AB 1+e ook

In the same way, using (70), (56) and (57) for the integrals I(’:’ pand I Pr we find

€ 1+e
I’y = - K, (r,t,z)dr,  Ifp = i K}, (r, 7t z)dr. (74)

It remains to consider the integral Iy . This integral is taken along the arc of the Ci’sl with the center
€

in the point " = 1, where arg {” = 0. This means that the contour is traversed from the point B of the
complex plane ¢ in which arg g = 0 to the point C in which arg {¢ = 0. In other words, the starting and
ending points of this contour have the same value of the argument. As it was shown above, the arc of a
circle Ci’sl can be represented in the form (69). Traversing this arc in the direction from the point B to the
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point C corresponds to a change of the parameter 1 from 0 to —7. Thus, the points of the arc of the circle
Cy;, can be represented in the form

= r(gllllj)ei(P(Slrw/O), (75)

where 7(7,9) and ¢(7, i, k) have the form (63).
Using now the representation (75), in the integral Iq/ we obtain
€1

" n ¢pu  )e (0 Z) iTe'? p y /0 Pou (7(81,¢)€i"’(€1'¢'0>,2) e
T, / r(t, 1/J)e14’('f¢0) -1 ¥ = - (T, p)eleT¥0) —1

T=¢&1

dyp.

Comparing this expression with (64) it is clear that these two integrals are similar. Therefore, using (65)
and (66) for the integral I’C’,, we get

0
—— /f e ,0,2)dy. (76)

leq

We return to the expression (71) and let ¢ — 0 in this expression. Note that the integrals I, A A’ Ig//

do not depend on € and, consequently, with such a passage to the limit they will not change. As a result
we obtain

I 1 lim IZ —hml —hmI
Ce = AB q/ﬁ oiep — e, = A EF-

Using here the expressions (72)—(74), (76) we obtain

1+¢
:_/ pyrnzdr—l—/ P, . (e1,,0,z)dy

g 1+€
— lim K, (r,7t,z)dr — lim K

,m,z)dr, Ru <141/p.
e—=0J1—¢ p,y( e—0 Je P'ﬂ(rnz) r p<l+ /P

As a result, performing the passage to the limit we have

1+e 0
Ic, = —/ 1I<;, (r,m,z dr+/ (€1, 4,0,2)dy — K}, (r, 7t z)dr
1+€ * 1-g;

1+e
—/0 K;/ﬂ(r, m,z)dr, Ru<1+1/p. (77)

We return now to the Mittag-Leffler function. Assuming that é;, = 7t the contour of integration -y in
(37) takes the form

S1={C:argl=—01p,— 7, [{| > 1+¢€}
Y= Ce:{gz—51p—n<arg§§0,|§|:l+e}
Sy ={C: argg =0, [g| > 1+¢},
and the condition (2) will be written in the form % <argz < f% +6