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Abstract: In this paper, based on previous results on AND-OR parallel dynamical systems over
directed graphs, we give a more general pattern of local functions that also provides fixed point
systems. Moreover, by considering independent sets, this pattern is also generalized to get systems
in which periodic orbits are only fixed points or 2-periodic orbits. The results obtained are also
applicable to homogeneous systems. On the other hand, we study the periodic structure of parallel
dynamical systems given by the composition of two parallel systems, which are conjugate under an
invertible map in which the inverse is equal to the original map. This allows us to prove that the
composition of any parallel system on a maxterm (or minterm) Boolean function and its conjugate one
by means of the complement map is a fixed point system, when the associated graph is undirected.
However, when the associated graph is directed, we demonstrate that the corresponding composition
may have points of any period, even if we restrict ourselves to the simplest maxterm OR and the
simplest minterm AND. In spite of this general situation, we prove that, when the associated digraph
is acyclic, the composition of OR and AND is a fixed point system.

Keywords: boolean networks; fixed points; periodic points; independent sets; conjugate and
equivalent systems; boolean functions

MSC: Primary 90B10; Secondary 37E15; 54H25; 68R10; 05C69; 94C10

1. Introduction

Discrete-time dynamical systems on a finite state space have an important role in several different
branches of science and engineering. Examples of such systems include deterministic networks
models, logical models, agent-based models, Petri nets, and finite state machines. Indeed, these kinds
of systems have been used to model natural events such as gene regulatory networks [1–6], and
processes coming from computer sciences [7,8], chemistry [9,10], physics [11–14], biology [15,16], and
social sciences [17]. Although these systems can be simulated on a computer, only a few analytical
results beyond simulation are available.

Let X be a non-empty finite set and F : X → X be a map. Then, the iterations of the function F
evaluated on one point x ∈ X, given by Ft(x), t ∈ N, can be seen as the description of the evolution of
x in discrete steps of time. Thus, (X, F) induces a discrete-time dynamical system when considering
the iterations of the function F. To simplify, we usually say that F is a dynamical system on X. In this
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context, a point x ∈ X is called a fixed point of F if F(x) = x, while x is called a periodic point of
F of period t > 0 when Ft(x) = x and Fs(x) 6= x for every 0 < s < t. Otherwise, x is said to be a
non-periodic point. The set of fixed points of F is usually denoted by Fix(F) while the set of t-periodic
points of F is denoted by Pert(F). For any x ∈ X, the orbit of x is defined as Orb(x) = {Ft(x) : t ∈ N}.
An eventually fixed point (resp. eventually periodic orbit) is a non-periodic point in which the orbit
converges to a fixed point (resp. periodic orbit). One of the first problems in the study of the dynamics
of a system is to find its fixed points and periodic points. In the literature, one can find several studies
that have been carried out for different discrete-time dynamical systems on finite sets (see [18–24],
for example).

We say that F is a fixed point system, if every x ∈ X is a fixed point or an eventually fixed point.
Likewise, F is called a t-periodic point system, if every x ∈ X is t-periodic point or an eventually
t-periodic point. One of the main objectives in this work is to find fixed point systems among a
particular class of systems that can present periodic orbits of any period.

Let F and G be two discrete-time dynamical systems on X. We say that F and G are conjugate
if there exists an invertible map H : X −→ X such that G = H−1 ◦ F ◦ H. Observe that if F and G
are conjugate then Pert(F) = {H(x) : x ∈ Pert(G)} for any positive integer t and, in particular
Fix(F) = {H(x) : x ∈ Fix(G)}. This means that the dynamics of both F and G are the same and,
for this reason, F and G are said to be dynamically equivalent.

Specifically, in this work, we focus on dynamical systems induced by vector-valued Boolean
functions on X = {0, 1}n. Recall that a function

f : {0, 1}n −→ {0, 1}

is said to be a Boolean function when f (x1, . . . , xn) is obtained from x1, . . . , xn ∈ {0, 1} using the logical
AND (∧), the logical OR (∨) and the logical NOT (′). In particular, a maxterm (resp. minterm) of n
variables is a Boolean function

f (x1, . . . , xn) = z1 ∨ · · · ∨ zn (resp. f (x1, . . . , xn) = z1 ∧ · · · ∧ zn),

where zi = xi or zi = x′i .
A dynamical system

F : {0, 1}n −→ {0, 1}n, F(x1, . . . , xn) = ( f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

where each fi is a Boolean function, is called a parallel dynamical system (PDS) over {0, 1}n.
Given a parallel dynamical system, we can consider a digraph associated with it by considering n

vertices, 1, . . . , n, corresponding to the variables x1, . . . , xn of F and a directed edge (or arc) (i, j), if the
function f j depends on xi. That is, the associated digraph encodes the variable dependencies in F. In
the following, we shall assume that each fi depends on xi and avoid drawing the associated graph
loops. If for every i 6= j, f j depends on xi if and only if fi depends on xj, then the associated graph
is a simple (undirected) one. Usually, the acronym PDS is used for parallel dynamical systems over
undirected graphs, whereas if the associated graph is properly a digraph, F is said to be a parallel
directed dynamical system (PDDS). As can be seen in the recent literature [25–32], the dynamics of
PDDS are, in general, much more involved than the dynamics of PDS.

Let

F : {0, 1}n −→ {0, 1}n, F(x1, . . . , xn) = ( f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)),

be a PDS or a PDDS. If every fi is the restriction of a global function f : {0, 1}n −→ {0, 1} acting only
over the state of the entity i and their related ones, then the system is called homogeneous. In this
case, we say that F is a f -PDS or a f -PDDS depending on the associated graph. For example, when
f is a maxterm function (resp. minterm function), the corresponding PDS or PDDS will be denoted
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by MAX-PDS or MAX-PDDS (resp. MIN-PDS or MIN-PDDS), as usually done in the previously
cited references. Otherwise, if the local functions f1, . . . , fn are independent and chosen from a set of
Boolean functions, for instance, {g, h}, the corresponding PDS or PDDS will be denoted by g-h-PDS or
g-h-PDDS, respectively.

In recent literature, some theoretical results have been obtained in relation to the periodic structure
for PDS and PDDS. In particular, in [30], it is proved that any OR-PDS and AND-PDS are fixed
point systems, while NAND-PDS and NOR-PDS are 2-periodic point systems, independently of
the associated (simple) graph. Furthermore, these results are generalized in [25–29,33,34] where the
authors study the periodic structure of MAX-PDS, MAX-PDDS, MIN-PDS, and MIN-PDDS. That
is, parallel dynamical systems where the future state of each node is computed using the Boolean
maxterm MAX or the Boolean minterm MIN. Specifically, it is proved that MAX-PDS and MIN-PDS are
either fixed point systems or 2-periodic point systems, while MAX-PDDS and MIN-PDDS can present
orbits of any period. The main idea in those papers is to study the dependency of the dynamics on
the associated graph of the system. Indeed, it is shown that the dynamics of such systems strongly
depend on the combinatorial properties of the corresponding associated graph. In particular, it is
shown that AND-PDDS and OR-PDDS are fixed point systems like their PDS counterparts (whichever
the associated graph is), while NAND-PDDS and NOR-PDDS are 2-periodic point systems if the
associated digraph is acyclic.

In several previous works [19,28,35], the periodic structure of non-homogeneous systems,
especially their fixed points, were studied. In particular, in [28], based on the mentioned results
for homogeneous systems, it was demonstrated that AND-OR-PDS are also fixed point systems,
while NAND-NOR-PDS are 2-periodic point systems. Regarding PDDS, AND-OR-PDDS are also
fixed point systems, but NAND-NOR-PDDS can present periodic orbits of any period. Another
interesting result obtained in this work is that AND-OR-NAND-NOR-PDS can only present fixed
points and 2-periodic orbits as periodic orbits.

Inspired by these works, in this paper, we extend these results to systems with more general local
Boolean functions as evolution operators. Specifically, based on the result on AND-OR-PDDS, we give
a more general pattern of local Boolean functions that also provides fixed point systems. Moreover,
by considering independent sets, the results on AND-NOR-NAND-NOR-PDDS are also generalized
by providing a pattern to get parallel systems in which the periodic orbits are only fixed points or
2-periodic orbits. The results so obtained are also applicable to homogeneous systems.

On the other hand, we study the periodic structure of parallel dynamical systems given by the
composition of two parallel systems that are conjugate by means of an invertible map whose inverse
is equal to the original map. This allows us to prove that the composition of any parallel system
on a maxterm (or minterm) Boolean function and its conjugate one by means of the complement
map c© : {0, 1}n −→ {0, 1}n, such that c©(x1, . . . , xn) = (x′1, . . . , x′n), is a fixed point system when the
associated graph is undirected. However, when the associated graph is directed, we demonstrate that
the corresponding composition may have points of any period, even for the simplest maxterm OR
and the simplest minterm AND. In spite of this general situation, we prove that, when the associated
digraph is acyclic, the composition of OR and AND is a fixed point system. As a consequence, it can be
inferred that cycles in the associated digraph are the responsible of the appearance of periodic orbits
with periods greater than 1.

The results here obtained could be of great relevance in applied models where the expression of
the local functions are more general than maxterm or minterms.

The paper is organized as follows. In Section 2, first, we find a general class of fixed point PDDS.
In the rest of this section, we complete the study by considering general independent local functions
and prove that, although such systems can present periodic orbits of any period greater than one,
under particular conditions related to independent sets, they can only present fixed points or 2-periodic
orbits, as in the known case of AND-OR-NAND-NOR-PDS. Actually, both fixed and 2-periodic points
can coexist, so breaking the pattern found for homogeneous PDS on any of these Boolean functions.
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In Section 3, we study the behavior of the composition of two PDDS, which are conjugate under an
invertible map H such that H−1 = H, and give some applications of this result. In particular, we show
that the composition of a MAX-PDS and a MIN-PDS, which are conjugate under the complement map,
is a fixed point system. In contrast, if we consider directed dependency graphs, then we prove that the
corresponding composition may have points of any period.

2. Periodic Structure of PDDS on Generalized Independent Local Functions

Let D = (V, E) be the (directed) graph associated with a parallel dynamical system F. Given j ∈ V
and Q ⊆ V, we will use the following traditional terminology:

AD(j) = {i : (i, j) ∈ E}, AD(j) = AD(j) ∪ {j}

AD(Q) = ∪j∈Q AD(j), AD(Q) = AD(Q) ∪Q

If D is a simple (undirected) graph, in the definition of AD(j), we should replace the arc (i, j)
by the edge {i, j}. Anyway, observe that a simple graph can be considered as a particular case of
a digraph.

The next theorem gives a simple criterion in order to characterize a class of fixed point PDDS,
which are not necessarily homogeneous. This theorem generalizes some classes of fixed point PDS and
PDDS (for example, see [26] (Theorem 1, Theorem 2), [28] (Theorem 1) and [25] (Theorem 1, Theorem 2)).

Theorem 1. Let F be a PDDS given by

F : {0, 1}n −→ {0, 1}n, F(x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)).

If for each 1 ≤ i ≤ n, Fi = xi ∨ Mi or Fi = xi ∧ Mi, and each Mi is a Boolean function on
{x1, . . . , xi−1, xi+1, . . . , xn}, then F is a fixed point system, independently of the associated graph of the system.

Proof. Let x = (x0
1, . . . , x0

n) be a periodic point of F and let t ≥ 1 be the smallest positive integer such
that Ft(x) = x. Denote Fm(x) = (xm

1 , . . . , xm
n ) for m ≥ 1 and

Am = {i : (xm
i = 1 and Fi = xi ∨Mi) or (xm

i = 0 and Fi = xi ∧Mi)}.

Since Ft(x) = x, we have A0 = At. Observe that Am ⊆ Am+1 for each m ≥ 0. In fact:

• If i ∈ Am is such that xm
i = 1 and Fi = xi ∨Mi, then xm+1

i = 1 and so i ∈ Am+1.
• If i ∈ Am is such that xm

i = 0 and Fi = xi ∧Mi, then xm+1
i = 0 and so i ∈ Am+1.

Therefore,
A0 ⊆ A1 ⊆ · · · ⊆ At = A0,

and consequently A0 = A1.
Finally, let us show that (x0

1, . . . , x0
n) = (x1

1, . . . , x1
n), which means that x = F(x). If x0

i = 1 and
i ∈ A0 = A1, then it is clear that x1

i = 1. Assume that x0
i = 1 and i 6∈ A0. Then Fi = xi ∧ Mi for

some Boolean function Mi on {x1, . . . , xi−1, xi+1, . . . , , xn}. However, this implies that x1
i = 1, since

otherwise i ∈ A1 = A0, which is a contradiction. By a similar argument we get that if x0
i = 0 then

x1
i = 0, which finishes the proof.

Example 1. Let F : {0, 1}3 −→ {0, 1}3 be

F(x1, x2, x3) = (x1 ∧ (x2 ∨ x3), x2 ∧ (x′1 ∨ x′3), x3 ∨ (x2 ∧ x1)).

Then, its associated graph is given in Figure 1.
F is a fixed point system, as can be seen in its phase portrait (Figure 2).
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As another example, let F be F(x1, x2, x3) = (x1 ∧ x2, x2 ∧ (x′1 ∨ x′3), x3 ∨ x1). Then, its associated graph
is given in Figure 3.

Again, F is a fixed point system as can be seen in its phase portrait (Figure 4).

Let D = (V, E) be a (directed) graph and Q ⊆ V. We say that Q is an independent set of vertices of
D, if there is no arc connecting two vertices in Q.

Then we have:

Theorem 2. Let F be a PDDS given by

F : {0, 1}n −→ {0, 1}n,

F(x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)).

Assume that for each 1 ≤ i ≤ n, Fi = zi ∨Mi or Fi = zi ∧Mi where zi = xi or zi = x′i , and each Mi is a
Boolean function on {x1, . . . , xi−1, xi+1, . . . , xn}. Let D = (V, E) be a graph associated with F and

ZF = {i ∈ V : Fi = x′i ∨Mi or Fi = x′i ∧Mi}.

Then, every periodic point of F is a fixed point or has period 2 provided that ZF is an independent set.

1

2 3

Figure 1. Graph associated with F(x1, x2, x3) = (x1 ∧ (x2 ∨ x3), x2 ∧ (x′1 ∨ x′3), x3 ∨ (x2 ∧ x1)).

110

111

101

100

000

011010 001

Figure 2. Phase portrait of the system F(x1, x2, x3) = (x1 ∧ (x2 ∨ x3), x2 ∧ (x′1 ∨ x′3), x3 ∨ (x2 ∧ x1)).

1 2

3

Figure 3. Graph associated with the system F(x1, x2, x3) = (x1 ∧ x2, x2 ∧ (x′1 ∨ x′3), x3 ∨ x1).
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Figure 4. Phase portrait of the system F(x1, x2, x3) = (x1 ∧ x2, x2 ∧ (x′1 ∨ x′3), x3 ∨ x1).

Proof. Let x = (x0
1, . . . , x0

n) be a periodic point for F and for each m ≥ 1, Fm(x) = (xm
1 , . . . , xm

n ).
Observe that if ZF = ∅, the result follows from Theorem 1. On the other hand, if ZF = V then all
the vertices in D are isolated since ZF is an independent set, and the result is immediate. Thus, let us
assume that ZF 6= ∅ and ZF 6= V.

Without loss of generality, assume that ZF = {1, . . . , p} for some 1 ≤ p < n. By a similar argument
as the one in Theorem 1, it can be seen that x0

i = xm
i for each p + 1 ≤ i ≤ n and every m ≥ 1. That is,

(x0
p+1, . . . , x0

n) = (xm
p+1, . . . , xm

n ) for each m ≥ 1. (1)

Now, take i ∈ ZF, i.e., 1 ≤ i ≤ p. Since ZF is an independent set, there is no arc between i and any
other vertex in ZF. Therefore the Boolean function Mi does not depend on the variables x1, . . . , xp and
we can write Mi(x1, . . . , xn) = Mi(xp+1, . . . , xn). This observation and Equation (1) show that for the
periodic point x we have

Mi(x) = Mi(x0
1, . . . , x0

n) = Mi(x0
p+1, . . . , x0

n)

= Mi(xm
p+1, . . . , xm

n ) = Mi(xm
1 , . . . , xm

n ) = Mi(Fm(x))

for each m ≥ 1. Hence, for every 1 ≤ i ≤ p one of the following situations happens:
Case 1: Fi = x′i ∨Mi and Mi(x) = Mi(x0

p+1, . . . , x0
n) = 1. Then xm

i = 1 for each m ≥ 1.

Case 2: Fi = x′i ∨ Mi and Mi(x) = Mi(x0
p+1, . . . , x0

n) = 0. Then xm
i = (xm−1

i )′ for each m ≥ 1.

In particular, for each m ≥ 1 we have xm
i =

{
(x0

i )
′, if m is odd

x0
i , if m is even

.

Case 3: Fi = x′i ∧Mj and Mi(x) = Mi(x0
p+1, . . . , x0

n) = 0. Then xm
i = 0 for each m ≥ 1.

Case 4: Fi = x′i ∧ Mi and Mi(x) = Mi(x0
p+1, . . . , x0

n) = 1. Then xm
i = (xm−1

i )′ for each m ≥ 1.

In particular, for each m ≥ 1 we have xm
i =

{
(x0

i )
′, if m is odd

x0
i , if m is even

.

Therefore, if there exists some i ∈ ZF in the Cases 2 or 4, then x is a 2−periodic point. Otherwise,
x is a fixed point. With all of this, the thesis follows.

Remark 1. Let F be a PDDS as in Theorem 2. From the proof, it follows that if x = (x0, . . . , xn) is a fixed

point of F, then for each i ∈ ZF we have xi =

{
1, if Fi = x′i ∨Mi
0, if Fi = x′i ∧Mi

Example 2. Let F be a PDDS given by

F : {0, 1}3 −→ {0, 1}3, F(x1, x2, x3) = (x′1 ∨ x3, x′2 ∨ x3, x3).
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We show its associated graph and its phase portrait in Figures 5 and 6, respectively.
As can be easily checked, this system holds the conditions in Theorem 2, being ZF = {1, 2} an independent

set. Then, every periodic point of F is a fixed point or has period 2. Specifically, (1, 1, 1) is the only fixed point of
F, and {(0, 0, 0), (1, 1, 0)}, {(1, 0, 0), (0, 1, 0)} are 2-periodic orbits.

Now, let F be a PDDS given by

F : {0, 1}3 −→ {0, 1}3, F(x1, x2, x3) = (x′1 ∧ x3, x′2 ∨ x′3, x1 ∨ x3).

We show its associated graph and its phase portrait in Figures 7 and 8, respectively.
Again, this system holds the conditions in Theorem 2, being ZF = {1, 2} an independent set. Then,

every periodic point of F is a fixed point or has period 2. Specifically, (0, 1, 0) is the only fixed point of F, and
{(0, 1, 1), (1, 0, 1)}, {(1, 1, 1), (0, 0, 1)} are 2-periodic orbits.

3 21

Figure 5. Graph associated with F(x1, x2, x3) = (x′1 ∨ x3, x′2 ∨ x3, x3).
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Figure 6. Phase portrait of the system F(x1, x2, x3) = (x′1 ∨ x3, x′2 ∨ x3, x3).

3 21

Figure 7. Graph associated with F(x1, x2, x3) = (x′1 ∧ x3, x′2 ∨ x′3, x1 ∨ x3).
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Figure 8. Phase portrait of the system F(x1, x2, x3) = (x′1 ∧ x3, x′2 ∨ x′3, x1 ∨ x3).

Example 3. Let F be a PDDS given by

F : {0, 1}n −→ {0, 1}n, F(x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

and assume that the set ZF is not independent. Note that it implies that |ZF| ≥ 2. Then F may have points of
period bigger than two.

For example, take

F : {0, 1}3 −→ {0, 1}3, F(x1, x2, x3) = (x′1 ∨ x′3, x′2 ∧ x′3, x′3 ∧ x1 ∧ x2).

Then, the associated graph of F is a line graph on three vertices (see Figure 9). Note that ZF = {1, 2, 3} is
not an independent set of vertices.



Mathematics 2020, 8, 1088 8 of 14

The system has an orbit of period 3, as can be seen in the phase portrait (Figure 10).
As another example, take

F : {0, 1}3 −→ {0, 1}3, F(x1, x2, x3) = (x′1 ∨ x2 ∨ x3, x′2 ∧ x′1, x3 ∧ x′1).

The dependency graph and the phase portrait of F are given in Figures 11 and 12, respectively.
Observe that ZF = {1, 2} is not an independent set of vertices, and the system has a 3-period orbit.

1 3 2

Figure 9. Graph associated with F(x1, x2, x3) = (x′1 ∨ x′3, x′2 ∧ x′3, x′3 ∧ x1 ∧ x2).

011

100

110101

000

010001

111

Figure 10. Phase portrait of the system F(x1, x2, x3) = (x′1 ∨ x′3, x′2 ∧ x′3, x′3 ∧ x1 ∧ x2).

1 32

Figure 11. Graph associated with F(x1, x2, x3) = (x′1 ∨ x2 ∨ x3, x′2 ∧ x′1, x3 ∧ x′1).
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110

Figure 12. Phase portrait of the system F(x1, x2, x3) = (x′1 ∨ x2 ∨ x3, x′2 ∧ x′1, x3 ∧ x′1).

3. Periodic Structure of the Composition of Conjugate PDDS

Recall that two discrete-time dynamical systems F and G on X are conjugate, if there exists an
invertible map H : X −→ X such that G = H−1 ◦ F ◦ H.

In this section, we assume that F and G are two conjugate PDDS or PDS under an invertible map
H such that H−1 = H. In this context, we study the periodic structure of F ◦ G by means of F and H.

Theorem 3. Let F and G be two conjugate PDDS under an invertible map H such that H−1 = H. Then,

(i) x is a periodic point of F ◦ G if, and only if, x is a periodic point of F ◦ H.
(ii) Pert(F ◦ H) = Pert(F ◦ G) provided that t is odd.
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(iii) Pert(F ◦ H) = Per t
2
(F ◦ G) provided that t is even.

Proof. First of all, note that, under the assumptions of the theorem,

F ◦ G = (F ◦ H)2.

(i) Let x be a periodic point of F ◦ G. Then, for some t ≥ 1, (F ◦ G)t(x) = x. Therefore (F ◦
H)2t(x) = x, which means that x is a periodic point of F ◦ H.

Conversely, if x is a periodic point of F ◦ H then (F ◦ H)s(x) = x for some s ≥ 1.
Therefore (F ◦ G)s(x) = (F ◦ H)2s(x) = x, and so x is a periodic point of F ◦ G.

On the other hand, observe that if x ∈ Pert(F) and Fs(x) = x, then t|s. Of course, this assertion is
true for whichever discrete dynamical system.

Let x ∈ Pert(F ◦ H) ∩ Pert′(F ◦ G). Since (F ◦ H)2t′(x) = (F ◦ G)t′(x) = x, then t|2t′

(ii) Assume that t is an odd number. Then, from t|2t′ we get that t|t′. Moreover, since (F ◦ G)t(x) =
(F ◦ H)2t(x) = x, we have that t′|t. Hence, t = t′ and the conclusion follows.

(iii) Assume now that t is an even number. Then (F ◦ G)
t
2 (x) = (F ◦ H)t(x) = x and so t′| t2 , which

jointly t|2t′ yields that t′ = t
2 and the proof finishes.

Let F be a maxterm function (resp. a minterm function) and D = (V, E) be the (directed or simple)
graph associated with the corresponding discrete dynamical system MAX-PDDS or MAX-PDS (resp.
MIN-PDDS or MIN-PDS). For such a dynamical system, we denote by WF ⊆ V (resp. W ′F ⊆ V)
the subset of vertices in V such that the corresponding variables in F appear in the direct (resp.
complemented) form.

Consider the invertible map c© : {0, 1}n −→ {0, 1}n such that c©(x1, . . . , xn) = (x′1, . . . , x′n). Note
that c©−1 = c©. Let F be a MAX-PDS (resp. MAX-PDDS) and G be a MIN-PDS (resp. MIN-PDDS)
with the same associated graph D = (V, E). Then, F and G are conjugate under c© if, and only if,
WF = WG.

Example 4. Let F be the MAX-PDS system given by

F(x1, x2, x3, x4) = (x′1 ∨ x2, x′1 ∨ x2 ∨ x′3 ∨ x4, x2 ∨ x′3, x2 ∨ x4)

and G the MIN-PDS system given by

G(x1, x2, x3, x4) = (x′1 ∧ x2, x′1 ∧ x2 ∧ x′3 ∧ x4, x2 ∧ x′3, x2 ∧ x4).

Note that F and G are conjugate under c© and WF = WG. In particular, both F and G are fixed point
systems with a unique fixed point, as can be easily checked using [29] (Theorems 3 and 9). Specifically,
Fix(F) = {(1, 1, 1, 1)} and Fix(G) = {(0, 0, 0, 0)}.

It is well-known that if F is an arbitrary MAX-PDS or MIN-PDS over a graph D, then all the
periodic points of this system are 2−periodic points or fixed points [26] (Theorem 3, Theorem 4).
In particular, periodic orbits of different periods cannot coexist [29] (Theorem 7). Thus, based on these
results, we have:

Corollary 1. Let F be a MAX-PDS with associated graph D and G be the corresponding MIN-PDS conjugate
with F under c©. Then, F ◦ G and G ◦ F are fixed point systems.

In particular
Fix(F ◦ G) = Fix(F ◦ c©) ∪ Per2(F ◦ c©)

Fix(G ◦ F) = Fix(G ◦ c©) ∪ Per2(G ◦ c©)
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Proof. It is enough to prove the assertion for F ◦ G. Note that F ◦ c© is also a MAX-PDS over D, and so
F ◦ c© is a fixed point system or a 2−periodic point system. Therefore, by Theorem 3, it follows that
F ◦ G is a fixed point system.

Example 5. Consider the conjugate dynamical systems F and G in Example 4. Observe that F ◦ c© is a
2−periodic point MAX-PDS because, as can be observed in the associated graph (Figure 13), the vertex 4 is in
the complemented form and it is not adjacent to any vertex in the directed form.

In particular, as can be seen in its phase portrait (Figure 14),

Per2(F ◦ c©) = {(1, 1, 0, 0), (1, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

which coincides with Fix(F ◦ G) by Corollary 1. Therefore, we have obtained Fix(F ◦ G) through Per2(F ◦ c©).

2

41
3

Figure 13. Graph associated with F ◦ c©(x1, x2, x3, x4) = (x1 ∨ x′2, x1 ∨ x′2 ∨ x3 ∨ x′4, x′2 ∨ x3, x′2 ∨ x′4).
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Figure 14. Phase portrait of F ◦ c©(x1, x2, x3, x4) = (x1 ∨ x′2, x1 ∨ x′2 ∨ x3 ∨ x′4, x′2 ∨ x3, x′2 ∨ x′4).

In the study of MAX-PDS and MAX-PDDS (resp. MIN-PDS and MIN-PDDS) over a graph D,
often researchers have focused on the simplest Boolean functions

OR(x1, x2, . . . , xn) = x1 ∨ x2 ∨ · · · ∨ xn

AND(x1, x2, . . . , xn) = x1 ∧ x2 ∧ · · · ∧ xn

NAND(x1, x2, . . . , xn) = x′1 ∨ x′2 ∨ · · · ∨ x′n

NOR(x1, x2, . . . , xn) = x′1 ∧ x′2 ∧ · · · ∧ x′n

The corresponding dynamical systems are called OR-PDS, AND-PDS, NAND-PDS and
NOR-PDS (OR-PDDS, AND-PDDS, NAND-PDDS and NOR-PDDS in the case that D is a directed
graph), respectively. Note that OR-PDS and AND-PDS are conjugate under c©. Also NAND-PDS and
NOR-PDS are conjugate under c© (the same holds for OR-PDDS and AND-PDDS, and also for
NAND-PDDS and NOR-PDDS).
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If D = (V, E) is a connected graph and F is the NAND-PDS with associated graph D, then F is a
2-periodic point system (see [29] (Theorem 5)). The number of 2-periodic points of NAND-PDS has
been computed in [34] (Proposition 3) as:

Proposition 1. Let F be the NAND-PDS over the graph D = (V, E) and P(V) be the power set of V. Then,
the number of 2−periodic points of this system is |Θ|, where

Θ = {AD(Q) : Q ∈ P(V)}.

Actually, as the proof of Proposition 1 shows, if F is an NAND-PDS, then x = (x1, . . . , xn) ∈
Per2(F) if and only if {j : xj = 1} ∈ Θ.

It is interesting to note that if x = (x1, . . . , xn) is an arbitrary point of {0, 1}n, then F(x) =

(x1
1, . . . , x1

n) is a 2−periodic point for F. This happens because, if we let Q = {j : xj = 0},
then {j : x1

j = 1} = AD(Q). Thus, we have the following result for the composition of AND-PDS and
OR-PDS.

Corollary 2. Let F be the OR-PDS and G be the AND-PDS over the same graph D = (V, E). Then the
following sentences are equivalent:

• x = (x1, . . . , xn) is a fixed point for F ◦ G.
• x is a 2−periodic point of the NAND-PDS over D.
• {j : xj = 1} ∈ Θ = {AD(Q) : Q ∈ P(V)}.

Moreover, Image(F ◦ G) = Fix(F ◦ G).

Proof. Observe that F ◦ c© is nothing but the NAND-PDS over the graph D. Then, since F and G are
conjugate under c©, the result follows from Corollary 1 and Proposition 1.

Dually, we have:

Corollary 3. Let F be the OR-PDS and G be the AND-PDS over the same graph D = (V, E). Then the
following sentences are equivalent:

• x = (x1, . . . , xn) is a fixed point for G ◦ F.
• x is a 2−periodic point of the NOR-PDS over D.
• {j : xj = 0} ∈ Θ = {AD(Q) : Q ∈ P(V)}.

Moreover, Image(G ◦ F) = Fix(G ◦ F).

Next, we give some applications of Theorem 3 for the composition of AND-PDDS and OR-PDDS.

Corollary 4. Let F be the OR-PDDS and G be the AND-PDDS over the same graph D = (V, E). Then, F ◦ G
and G ◦ F can present periodic points of any period.

Proof. It is a consequence of [25] (Theorem 3) and Theorem 3.

The thesis of Corollary 4 is kind of surprising since both AND-PDDS and OR-PDDS are fixed
point systems. As the following result shows, this is due to the existence of cycles.

Recall that an acyclic directed graph is a directed graph without (directed) cycles. In spite of the
general result in Corollary 4, for this particular class of digraphs we have:

Corollary 5. Let F be the OR-PDDS and G be the AND-PDDS over the same directed acyclic graph D =

(V, E). Then, F ◦ G and G ◦ F are fixed point systems.
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Proof. Note that F and G are conjugate under c©. Moreover, F ◦ c© (resp. G ◦ c©) is an
NAND-PDDS(resp. NOR-PDDS) and by [27] (Propositions 7 and 8), it is a 2−periodic point system.
Then the conclusion follows from Theorem 3.

For the particular case when D is a (directed) cycle, we have:

Corollary 6. The composition of an OR-PDDS and an AND-PDDS over directed cycles can present periodic
points of any period except of period 2.

Proof. Let F and G be the OR-PDDS and the AND-PDDS, respectively, over a directed cycle of n nodes
Cn. We know that F and G are conjugate under c© and that F ◦ c© is the NAND-PDDS over Cn.

• It is easy to see that x = (1, . . . , 1) is a 2−periodic point of F ◦ c©. Hence, by Theorem 3, x is a
fixed point of F ◦ G.

• If n = 3, x = (1, 1, 0) is a point of period 3 of F ◦ c©. Thus, by Theorem 3, x is a point of period 3
of F ◦ G.

• Finally, if n ≥ 4, x = (1, 1, 0, . . . , 0) is a point of period 2n for F ◦ c© (see [27] (Corollary 3)).
Therefore, by Theorem 3, x is a point of period n for F ◦ G.

As another application of Theorem 3 we have:

Corollary 7. Let F be an OR-PDDS (or an AND-PDDS) over a directed graph D and σ : {1, 2, . . . , n} →
{1, 2, . . . , n} be a permutation such that σ−1 = σ. Let H be the map that sends (x1, . . . , xn) to
(xσ(1), . . . , xσ(n)). Then, any periodic point of F ◦ σ has period 2 or it is a fixed point.

Proof. Assume that F is an OR-PDDS over a directed graph D = (V, E) and let G = σ−1 ◦ F ◦ σ.
It is easy to see that G is an OR-PDDS over the directed graph D1 = (V, E1) where E1 =

{(i, j) ; (σ(i), σ(j)) ∈ E}. Note that F ◦ G satisfies the necessary condition of Theorem 1, and so
it is a fixed point system. Therefore, by Theorem 3, the conclusion follows.

From Corollary 1, it is clear that the composition of NOR-PDS and NAND-PDS over the same
undirected graph is a fixed point system. In the following result, we detail the fixed points of
such composition.

Corollary 8. Let F be the NOR-PDS and G be the NAND-PDS over the connected simple graph D = (V, E).
Then, Fix(F ◦ G) = Fix(G ◦ F) = {(1, . . . , 1), (0, . . . , 0)}.

Proof. It is enough to note that in this case F ◦ c© is the AND-PDS and G ◦ c© is the OR-PDS over
the associated graph D. Then, since F and G are conjugate under c©, the conclusion follows from
Corollary 1.

Despite the fact that the composition of AND-PDDS and OR-PDDS over the same graph can
have periodic points of any period, the composition of NAND-PDDS and NOR-PDDS are fixed point
systems as we show in the following result.

Corollary 9. Let F be the NOR-PDDS and G be the NAND-PDDS over the same graph D = (V, E). Then,
F ◦ G and G ◦ F are fixed point systems and {(1, . . . , 1), (0, . . . , 0)} ⊆ Fix(F ◦ G) ∩ Fix(G ◦ F).

Proof. Note that F ◦ c© and G ◦ c© are, respectively, the AND-PDDS and the OR-PDDS over D. It
is well know that AND-PDDS and OR-PDDS are fixed point systems and {(1, . . . , 1), (0, . . . , 0)} are
always fixed points of these systems. Therefore, since F and G are conjugate under c©, the conclusion
follows from Corollary 1.
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4. Conclusions

The results of this paper widely extend those known on the periodic structure for homogeneous
parallel dynamical systems on certain types of Boolean functions. Specifically, a more general context
is set out, by considering non-homogeneous parallel dynamical systems with general local Boolean
functions as their evolution operators, and digraphs as dependency graphs instead of simple graphs.
Thus, homogeneous parallel systems on (simple or directed) graphs can be seen as particular cases of
the ones studied here. The results generalize the class of (non-homogeneous) parallel systems in which
periodic orbits are only fixed points or 2-periodic orbits. Actually, some examples in this work show that,
in such a class of parallel systems, fixed and 2-periodic points can coexist, thus breaking the pattern found
for homogeneous parallel systems. Furthermore, in contrast with the homogeneous case, periodic
points of a period greater than two can appear, as shown in some of the examples of this article.

On the other hand, as a novel research line in this field, we study the periodic structure of parallel
dynamical systems given by the composition of two parallel systems that are conjugate under an
invertible map in which the inverse is equal to the original map. In view of our results, it can be
concluded that cycles in the associated digraph are responsible for the appearance of periodic orbits
with periods greater than 1.

The results here obtained could be of great relevance for applied models, since in such models local
functions are usually independent, giving as a result non-homogeneous systems, and the expression of
the local functions could be more general than maxterm or minterms, threshold, monotone, or any
other specific type of Boolean functions. Thus, our results could be a better support in the development
of the study of such models.
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