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Abstract: A shift-dependent information measure is favorable to handle in some specific applied
contexts such as mathematical neurobiology and survival analysis. For this reason, the weighted
differential entropy has been introduced in the literature. In accordance with this measure, we propose
the weighted generalized cumulative residual entropy as well. Despite existing apparent similarities
between these measures, however, there are quite substantial and subtle differences between them
because of their different metrics. In this paper, particularly, we show that the proposed measure
is equivalent to the generalized cumulative residual entropy of the cumulative weighted random
variable. Thus, we first provide expressions for the variance and the new measure in terms of the
weighted mean residual life function and then elaborate on some characteristics of such measures,
including equivalent expressions, stochastic comparisons, bounds, and connection with the excess
wealth transform. Finally, we also illustrate some applications of interest in system reliability with
reference to shock models and random minima.

Keywords: weighted generalized cumulative residual entropy; non-homogeneous Poisson process;
excess wealth transform; shock model; variance
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1. Introduction and Preliminaries

One of the most important issues in several fields such as biology, survival analysis, reliability
engineering, econometrics, statistics, and demography is the investigation of distribution functions
on the ground on partial information. Few examples of relevant activities involve model selection,
estimation, tests of hypotheses, inequality/poverty evaluation, and portfolio analysis. Stochastic
dominance and other order relations are useful to attain partial rankings of distributions, whose
advantage is the avoidance of strong cardinalization sometimes induced by other criteria applied to
rank distributions. The notions of uncertainty and information are relative and involve comparison
of distributions in terms of a probabilistic point of view in which the comparisons are always
explicit. A pioneer measure of uncertainty in Information Theory is the concept of entropy which
was introduced and studied by Shannon [1] for discrete random variables. For an absolutely
continuous non-negative random variable X, the (differential) entropy is H(X) = −E[log f (X)] =

−
∫ ∞

0 f (x) log f (x)dx, where f is the probability density function (PDF) and “log" is the natural
logarithm, with 0 log 0 = 0. Namely, bearing in mind possible applications to stochastic modeling
in biology, X represents the random lifetime of a living organisms. More generally, it describes the
operating time of a suitable system.
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The differential entropy allows for having equal importance (or weights) to every event of the
form {X = x}. However, in certain situations, they provide different qualitative features. This remark
motivated Di Crescenzo and Longobardi [2] to define the weighted entropy of X as

Hw(X) = −E[X log f (X)] = −
∫ ∞

0
x f (x) log f (x)dx. (1)

The term x in (1) can be viewed as a weight function, so that Hw(X) provides a “length-biased”
shift-dependent information measure. Clearly, it assigns greater importance to large outcomes of X.
Furthermore, in analogy with (1), Misagh et al. [3] studied another weighted measure called weighted
cumulative residual entropy (WCRE). For a non-negative random variable X with survival function
F(x) = P(X > x), the WCRE is

Ew(X) = −
∫ ∞

0
xF(x) log F(x)dx =

∫ ∞

0
xF(x)Λ(x)dx, (2)

where

Λ(x) = − log F(x) =
∫ x

0
λ(t)dt, x ≥ 0, and λ(t) =

f (t)
F(t)

, t > 0,

denote, respectively, the cumulative hazard function and the hazard rate function of X.
We recall that several results on weighted entropies including stochastic ordering, aging classes

properties, effects of linear transformations, bounds, and their relationships with some well-known
concepts are investigated and discussed in Mirali and Baratpour [4] and Mirali et al. [5]. Moreover,
numerous results for the WCRE are derived by Suhov and Yasaei Sekeh [6] for general weights.

Recently, the WCRE was extended in Tahmasebi [7] by the weighted generalized cumulative
residual entropy (WGCRE) expressed as

Eφ
n (X) =

∫ ∞

0
φ(x)

[Λ(x)]n

n!
F(x)dx, (3)

for all n ∈ N0 ≡ N∪ {0} = {0, 1, 2, . . .}, and for any non-negative weight function φ(x). In particular,
by taking φ(x) ≡ 1 in (3), we immediately derive the generalized cumulative residual entropy (GCRE),
see Psarrakos and Navarro [8]. Various characteristics of the generalized measure (3) and its connection
with some other notions have been studied in Tahmasebi [7]. See Kayal [9] for some characterizations
of weighted GCRE for the linear weight function φ(x) = x. Despite investigations on such measure,
the analysis of its exact meaning and interpretation can still be improved. In this paper, we show that
the WGCRE is the GCRE of the transformed random variable ψ(X), namely the cumulative weighted
random variable, where ψ(x) =

∫ x
0 φ(t)dt. Moreover, we show that they are suitable alternatives for

the standard deviation of transformed random variables.
Therefore, this is the organization of the paper: In Section 2, we first introduce the cumulative

weight function and the weighted mean residual life that plays a crucial role in developing our
results, and then provide examples and investigate general properties, and sufficient conditions for the
monotonicity of the latter function. In particular, we show that the variance of a transformed random
variable is equal to the mean of the square of the weighted mean residual life of the same random
variable. We also provide some inequalities for the mentioned notion that involve the variance and the
cumulative residual entropy.

In Section 3, we elaborate the concept of WGCRE, with special attention to its intimate connection
with the non-homogeneous Poisson process (NHPP). Indeed, it can be expressed as the mean of the
weighted mean residual life of the epoch times of a NHPP. Then, we obtain several results related
to the WGCRE, with special emphasis on its monotonicity, bounds, a recurrence relation, and two
probabilistic meanings.

Section 4 is devoted to ordering results that involve the weighted mean residual life function.
Specifically, we first define the weighted mean residual life stochastic order and then apply this notion
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to several stochastic comparisons for the variance and the WGCRE of transformed random variables
having suitable aging distributions related to the well-known stochastic orders.

In Section 5, we focus on some connections with the excess wealth transform, by showing that the
weighted mean residual life function is strictly related to the transformed (or weighted) excess wealth
function. This allows us to reconsider some results investigated in the other sections under the light of
the excess wealth transform.

Section 6 deals with applications in survival analysis and reliability. We consider a system subject
to shocks governed by a non-homogeneous Poisson process, and for two such systems we show some
comparison results related to the variance and WGCRE in terms of their random lifetimes, under
suitable ordering conditions for the random numbers of shocks survived by the systems. We finally
provide similar results for random minima, by bearing in mind applications to the random lifetimes of
series systems composed by a random number of identical components.

Finally, some concluding remarks are provided in Section 7.
The main results of this paper involve typical notions such as the hazard rate, the mean residual

life function, and various stochastic orders.
We use the terms increasing and decreasing in non-strict sense, and use g′(x) for the derivative of

g(x). For simplicity, we write gn(x) instead of [g(x)]n for any given function g, we denote by σ2(X)

or Var(X) the variance of X. The expectations are assumed to exist whenever used. Furthermore, for
the random lifetimes X and Y, their survival functions will be F(x) = 1− F(x) and G(x) = 1− G(x),
with PDFs f (x) and g(x), respectively.

Throughout the paper, we denote by S(R+) the set of nonnegative absolutely continuous random
variables having support R+ = (0, ∞), and by S(N) the set of integer-valued random variables taking
values in N = {1, 2, . . .}.

2. Variance of a Transformed Random Variable

In what follows, we assume that φ(t) is a non-negative and differentiable function in [0, ∞).
The cumulative weight function is defined as

ψ(x) =
∫ x

0
φ(s)ds, x ≥ 0. (4)

It has a crucial role in developing our results. Specifically, given the random lifetime X, hereafter
we analyze various properties of the transformed random variable ψ(X), where the latter may be
viewed as an increasing time-change of X. By virtue of (4), we get an expression for the variance
of the cumulative weighted random variable ψ(X). It is clear that (4) is an increasing function of
x ≥ 0 with ψ(0) = 0 since ψ′(x) = φ(x) ≥ 0; in addition, if φ(x) is increasing (decreasing) in
x > 0, then clearly ψ(x) is convex (concave). If X ∈ S(R+) represents the lifetime of a system or a
component, then assuming that the system has survived up to age t, the residual lifetime is defined
by Xt = [X− t |X > t]. Indeed, the distribution Xt is the same of X− t conditional on X > t. For all
t ≥ 0, the mean residual life (MRL) function of X is defined as

m(t) = E[X− t|X > t] =
1

F(t)

∫ ∞

t
F(x)dx. (5)

This topic is attracting interest especially in various contexts; see, e.g., Eryilmaz [10] and
Goliforushani et al. [11] and references therein. As pointed out by Hall and Wellner [12] (see also
Toomaj and Di Crescenzo [13]), the variance of X is represented by means of the MRL function
as follows:

σ2(X) = E[m2(X)]. (6)
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With references to (6), henceforward, we develop the case under consideration for the transformed
random variable ψ(X). To this purpose, we introduce the weighted mean residual life (WMRL) function by

mψ(t) := mψ(X)(t) = E[ψ(X)− ψ(t)|X > t]
= 1

F(t)

∫ ∞
t φ(x)F(x)dx, (7)

for all t ≥ 0. Hence, mψ(t) represents the mean residual life of the system in the transformed time
scale. In addition, we assume that

E[ψ(X)] = mψ(0) =
∫ ∞

0
φ(x)F(x)dx < ∞, (8)

to ensure the finiteness of mψ(t). In particular, when ψ(t) = t, and hence φ(t) = 1, then (7) coincides
with the MRL function (5).

Remark 1. The effect of transformations based on the function (4) is relevant in several contexts. For instance,
in reliability theory, ψ(X) may represent the lifetime of a system under time-dependent scale transformation that
sometimes is called the accelerated life model. It is useful to transform random lifetimes having different nature.
For instance, consider the translated standard Brownian motion W(t) = x + Bt, t ≥ 0, where x > 0 and Bt is
the standard Brownian motion. Let

τ(x) = inf{t > 0 : W(t) ≤ 0}, A(x) =
∫ τ(x)

0
W(t)dt, W(0) = x,

be the first-passage time below zero and the first-passage area of W(x), respectively (see Abundo and
Del Vescovo [14] for a detailed analysis). Since the PDF of A(x) is given by

f (t) =
21/3

22/3Γ(1/3)
x

t4/3 e−(2x3)/(9t), t > 0,

where Γ(·) is the gamma function, one has P[A(x) < +∞] = 1 and E[A(x)] = +∞. It is worth noting that,
for ψ(x) = xα, α > 0, one has P[ψ(A(x)) < +∞] = 1 and

E[ψ(A(x))] =
2α

32α
x3α Γ(1/3− α)

Γ(1/3)
, 0 < α <

1
3

.

Hence, use of ψ allows for transforming a lifetime with infinite mean into a finite one, for 0 < α < 1/3.

To begin the analysis, from Equations (4) and (7), the following lemma is easily obtained.

Lemma 1. For any X ∈ S(R+), we have

m′ψ(t) + φ(t) = λ(t)mψ(t), t ≥ 0. (9)

Remark 2. From Equations (7) and (9), it immediately follows that the weighted mean residual life is constant,
say mψ(t) = m, if and only if the weight function and the hazard rate function are proportional, i.e., φ(t) =
m λ(t) for all t ≥ 0. The latter condition, which is equivalent to ψ(t) = m Λ(t) ≡ −m log F(t) for all t ≥ 0,
clearly yields that ψ(X) has exponential distribution.
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Example 1. Let X have exponential distribution with parameter η > 0. For λ, µ > 0, consider the weight
function φ(x) = λ

µ eλx, x ≥ 0, so that the survival function of ψ(X) ≡ 1
µ (e

λX − 1) is Fψ(X)(x) = (1 +

µx)−η/λ, x ≥ 0. From (7), we thus have that the weighted mean residual life is finite when 0 < λ < η, for

mψ(t) =
λ

µ

1
η − λ

eλt, t ≥ 0.

We remark that, if η = λ, then mψ is infinite, and ψ(X) is distributed as the first arrival time of a
Geometric counting process with intensity µ (see Di Crescenzo and Pellerey [15] for details).

Given a random lifetime X ∈ S(R+), we recall that it is said to have a new worse (better) than
used in expectation distribution, i.e., X is NWUE (NBUE), if m(t) ≥ (≤) m(0) = E[X] for any t > 0.

Lemma 2. Let us suppose that X is NWUE (NBUE). If ψ(t) is increasing convex (concave) on [0, ∞), then

mψ(t) ≥ (≤)ψ(E[X]), (10)

for all t ≥ 0.

Proof. By assumption, ψ(t) is increasing convex (concave) on [0, ∞), with ψ(0) = 0. Thus, ψ(x) is
superadditive (subadditive), i.e., ψ(z + y) ≥ (≤)ψ(z) + ψ(y), z, y ≥ 0. By substituting z = t and
y = x − t, x ≥ t, we obtain ψ(x)− ψ(t) ≥ (≤)ψ(x − t) for all x, t ≥ 0. Recalling (7), for t ≥ 0, we
find that

mψ(t) = E[ψ(X)− ψ(t)|X > t],
≥ (≤) E[ψ(X− t)|X > t],
≥ (≤) ψ(E[X− t|X > t]) = ψ(m(t)).

(11)

The last relation follows by Jensen’s inequality. Recalling that ψ(t) is an increasing function and by
assumption m(t) ≥ (≤)E(X) for all t ≥ 0, since X is NWUE (NBUE), this gives the desired result.

Equation (9) and Lemma 2 will be used to derive various results presented in the sequel. A typical
problem in reliability theory is the analysis of the monotonicity of the mean residual life. Henceforth,
we concentrate on the monotonicity of the weighted mean residual life function mψ(t).

Definition 1. A random variable X ∈ S(R+) is said to have increasing (decreasing) weighted mean residual
life function, denoted by IWMRL (DWMRL), if mψ(t) is an increasing (decreasing) function of t ≥ 0.

In the following two theorems, we provide sufficient conditions for the monotonicity of mψ(t).
First, we recall the concept of total positivity which is applied to demonstrate monotonicity results
in the remainder of this paper. For two subsets of the real line A and B, a non-negative function
K(x, y) defined on A× B is said to be totally positive of order 2 (regular of order 2), denoted by TP2 (RR2),
if K(x1, y1)K(x2, y2) ≥ (≤)K(x1, y2)K(x2, y1), for all x1 ≤ x2 in A and y1 ≤ y2 in B. For further details,
we refer to Karlin [16].

The first result shows that the monotonicity of the weighted mean residual life function is obtained
when the ratio between the function φ(x) and the hazard rate function is monotonic.

Theorem 1. Let λ(x) be the hazard rate function of X ∈ S(R+). If φ(x)/λ(x) is increasing (decreasing) in
x ≥ 0, then X is IWMRL (DWMRL).
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Proof. From (7), it is sufficient to assert that the function

mψ(t) =

∫ ∞

t
φ(x)F(x)dx∫ ∞

t
f (x)dx

, (12)

is increasing (decreasing) in t ≥ 0. We set

Ψ(i, t) =
∫ ∞

0
ν(i, x)η(x, t)dx, i = 1, 2, (13)

where

ν(i, x) =

{
f (x), i = 1,

φ(x)F(x), i = 2,

and η(x, t) = 1[x > t], such that 1[π] = 1 when π is true, and 1[π] = 0, otherwise. Due to an
assumption, we observe that

ν(2, x)
ν(1, x)

=
φ(x)
λ(x)

,

is increasing (decreasing) in x, i.e., ν(i, x) is TP2 (RR2) in (i, x) for i = 1, 2, and x ∈ (0, ∞). Moreover,
it is not hard to find that η(x, t) is TP2 in (x, t) for x > 0 and t > 0. Consequently, the general
composition theorem of Karlin [16] shows that Ψ(i, t) is TP2 (RR2) in (i, t) for i = 1, 2 and t > 0, i.e.,
mψ(t) is increasing (decreasing) in t, due to (12). This gives the desired result.

Remark 3. The condition given in Theorem 1 that φ(x)
λ(x) is increasing (decreasing) in x, is ensured by the

conditions that ψ(x) is convex (concave) and X is DFR (IFR). (We remark that X is said to be, or to have,
increasing (decreasing) failure rate, i.e., X is IFR (DFR), if λ(x) is increasing (decreasing) in x.)

Example 2. Let X ∈ S(R+), with decreasing and differentiable PDF f (x) such that 0 < f (0) < ∞.
We consider

ψ(x) = − log
f (x)
f (0)

, φ(x) = − f ′(x)
f (x)

≥ 0, x > 0.

(The ratio f ′(x)
f (x) is termed the score function corresponding to f , cf. Kharazmi and Asadi [17] for instance.)

After some calculations, from (7), one has that the WMRL function for t > 0 is

mψ(t) = −
∫ ∞

t

f (x)
F(t)

log
f (x)
f (t)

dx = H(t) + log λ(t),

where

H(t) = −
∫ ∞

t

f (x)
F(t)

log
f (x)
F(t)

dx, t > 0,

is the residual entropy of X. Namely, H(t) is the entropy of the residual lifetime [X− t|X > t]; it has been first
investigated by Ebrahimi [18], Ebrahimi and Pellerey [19], and Muliere et al. [20], and subsequently has been
the object of many investigations. In this case, if

f ′(x)F(x)
f 2(x)

is decreasing (increasing) in x > 0,

then X is IWMRL (DWMRL) due to Theorem 1. The above condition can be also expressed as

λ′(x)
λ2(x)

is decreasing (increasing) in x > 0. (14)
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Remark 4. With reference to condition (14), it is worth noting that

λ′(x)
λ2(x)

is constant in x > 0

when X has the generalized Pareto distribution, with

F(x) =
(

b
ax + b

) 1
a +1

, λ(x) =
a + 1

ax + b
, x ≥ 0 such that x < − b

a
if a < 0,

where a > −1, a 6= 0, b > 0. Indeed, in this case, we have

λ′(x)
λ2(x)

= − a
a + 1

.

Clearly, for a→ 0, we obtain the exponential distribution. See, for instance, Arriaza et al. [21] for a recent
characterization of the generalized Pareto distribution.

Hereafter, we provide different conditions such that mψ(x) is monotonic. In this second result,
we require that m(x) and the function φ(x) are both monotonic. To this aim, recall that X ∈ S(R+)

is increasing (decreasing) in mean residual life, i.e., IMRL (DMRL), if the MRL function m(x) is
increasing (decreasing).

Theorem 2. If φ(x) is increasing (decreasing) in x, and if X is IMRL (DMRL), then X is
IWMRL (DWMRL).

Proof. Recalling (5) and (7), if φ(x) is increasing (decreasing), then mψ(x)/m(x) is increasing
(decreasing) in x. From this and from the assumption that the MRL function m(x) is increasing
(decreasing) in x, we conclude that the function

mψ(x) = m(x)
mψ(x)
m(x)

, x > 0,

is increasing (decreasing) in x, that is, X is IWMRL (DWMRL).

Example 3. Let us consider φ(t) = Λ(t) = − log F(t), and thus ψ(t) =
∫ t

0 Λ(τ)dτ. In this case, from (7),
we have

mψ(t) = −
1

F(t)

∫ ∞

t
F(x) log F(x)dx, t ≥ 0.

Hence, making use of Equation (14) of Asadi and Zohrevand [22], one has

mψ(t) = E(X; t)−m(t) log F(t), t ≥ 0, (15)

where

E(X; t) = −
∫ ∞

t

F(x)
F(t)

log
F(x)
F(t)

dx, t ≥ 0,

is the dynamic cumulative residual entropy (DCRE) of X. Recalling Corollary 4.4 in Asadi and Zohrevand [22],
we have that if X is IMRL, then E(X; t) is increasing in t, and thus from (15) we obtain that in this case X is
IWMRL. This conclusion can also be obtained from Theorem 2.

Example 4. Assume that the weight function φ is expressed as φ(t) = h(v(t)), t > 0, where v(t) :=
m(t)F(t) ≡

∫ ∞
t F(x)dx and where h is a non-negative and differentiable function. Then, from (7), we get that

the WMRL function of X is expressed as mψ(t) = H(v(t))/F(t), t > 0, where H(t) :=
∫ t

0 h(s)ds. Moreover,
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due to Theorem 2, one has that, if h is a decreasing (increasing) function and if X is IMRL (DMRL), then X is
IWMRL (DWMRL).

As reported in (6), the variance of X can be represented as the expectation of the squared MRL
function evaluated at X. Similarly, in the main result of this section, hereafter we express the variance
of ψ(X) in terms of the WMRL function (7).

Theorem 3. If the weighted mean residual life function evaluated at X has finite second moment, i.e.,
E[m2

ψ(X)] < ∞, then
σ2[ψ(X)] = E[m2

ψ(X)]. (16)

Proof. Recalling (7), let us set

vψ(x) := F(x)mψ(x) =
∫ ∞

x
φ(u)F(u)du, x > 0, (17)

so that vψ(x)λ(x) = f (x)mψ(x). Then, by applying Equation (9), we get

E[m2
ψ(X)] =

∫ ∞
0 f (x)m2

ψ(x)dx =
∫ ∞

0 vψ(x)λ(x)mψ(x)dx
=
∫ ∞

0 vψ(x)φ(x)dx +
∫ ∞

0 vψ(x)m′ψ(x)dx.
(18)

By noting that ψ(0) = 0, upon recalling (17) and (4), and using Fubini’s theorem, we have∫ ∞
0 vψ(x)φ(x)dx =

∫ ∞
0 φ(x)mψ(x)F(x)dx =

∫ ∞
0

∫ ∞
x φ(x)φ(u)F(u)du dx

=
∫ ∞

0 ψ(u)φ(u)F(u)dx =
∫ ∞

0 f (z)
∫ z

0 ψ(u)φ(u)du dz
= 1

2 E[ψ
2(X)],

(19)

where last equality holds by noting that∫ z

0
ψ(u)φ(u)du =

1
2

ψ2(z), z > 0.

On the other hand, recalling (8) and (19), we have∫ ∞

0
vψ(x)m′ψ(x)dx =

∫ ∞

0
m′ψ(x)

∫ ∞

x
φ(u)F(u)du dx =

∫ ∞

0
φ(u)F(u)

∫ u

0
m′ψ(x)dx du

=
∫ ∞

0
φ(u)F(u)mψ(u)du−mψ(0)

∫ ∞

0
φ(u)F(u)du

=
1
2
E[ψ2(X)]− (E[ψ(X)])2.

Combining the latter result with Equations (18) and (19), we get

E[m2
ψ(X)] = E[ψ2(X)]− (E[ψ(X)])2 = σ2[ψ(X)],

thus completing the proof.

We note that condition ψ(0) = 0 in Theorem 3 is not compulsory. Indeed, by using similar
arguments, we find

σ2[g(X)] = E[m2
g(X)],

for every increasing function g, even if g(0) 6= 0, and where

mg(t) =
1

F(t)

∫ ∞

t
g′(x)F(x)dx, t > 0.
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The next example gives an application of (16) that involves the minimum of a random sample,
which may be viewed as the lifetime of the series system.

Example 5. Let X1:m = min{X1, . . . , Xm} denote the minimum of a random sample of continuous
non-negative random variables X1, . . . , Xm having the CDF F(x). Denote by F1:m(x) = P(X1:m > x) =

[F(x)]m, x ≥ 0, the survival function of X1:m. Hence, by setting ψ(t) = F(t), and thus φ(t) = f (t), from (7)
we obtain, for t > 0,

mψ(X1:m)(t) =
1

F1:m(t)

∫ ∞

t
f (x)F1:m(x)dx

=
1

[F(t)]m

∫ ∞

t
f (x)[F(x)]m dx =

F(t)
m + 1

.

Thanks to Equation (6) and Theorem 3, thus the variance of the probability integral transformation F(X1:m) can
be obtained as

σ2[F(X1:m)] = m
∫ ∞

0
f (x)[F(x)]m−1

[
F(x)

m + 1

]2

dx

=
m

(m + 1)2(m + 2)
.

In the reminder of this section, we obtain some useful bounds to σ2[ψ(X)] and σ[ψ(X)]. In the
following theorem, by making use of the above results, we first investigate the impact of the
transformation ψ(x) on the variance of the random lifetime X.

Theorem 4. Suppose that X ∈ S(R+), with E[ψ2(X)] < ∞. If φ(x) ≥ 1 (0 ≤ φ(x) ≤ 1) for all x ≥ 0, then

σ2[ψ(X)] ≥ (≤) σ2(X).

Proof. The desired result is easily obtained by recalling (6), (7), and (16).

We are now able to give an upper bound for the standard deviation of ψ(X) given by the
cumulative weight function evaluated at the mean value of X under suitable conditions.

Theorem 5. Let us suppose that X is NWUE (NBUE). If ψ(t) is convex (concave) on [0, ∞), with E[ψ2(X)] <

∞, then
σ[ψ(X)] ≥ (≤)ψ(E[X]).

Proof. Thanks to Lemma 2 and Theorem 3, the proof can be simply obtained by relations (16)
and (10).

Recall that Rao et al. [23] (see Rao [24], too) proposed the cumulative residual entropy (CRE) of a
non-negative random variable X by

E(X) = −
∫ ∞

0
F(x) log F(x)dx =

∫ ∞

0
F(x)Λ(x)dx.

Another useful representation is in terms of (5) as follows:

E(X) = E[m(X)] =
∫ ∞

0
m(x) f (x)dx. (20)

Leser [25] applied the CRE for measuring the elasticity of life expectancy in life tables in the
hypothesis of a proportional change of mortality. Several properties of CRE as well as its dynamic
version are widely discussed in Asadi and Zohrevand [22], Navarro et al. [26], and references therein.
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The cumulative residual entropy was successfully applied for measuring uncertainty of lifetime of
systems by Toomaj et al. [27]. Now, we show a bound involving the standard deviation of cumulative
weighted random variable and the cumulative residual entropy.

Theorem 6. Let ψ(x) be an increasing convex and differentiable function, such that E[ψ2(X)] < ∞. Then,

σ[ψ(X)] ≥ ψ(E(X)).

Proof. Due to Equations (16) and (11), we obtain

σ2[ψ(X)] =
∫ ∞

0
m2

ψ(x) f (x)dx ≥
∫ ∞

0
[ψ(m(x))]2 f (x)dx.

Hence, by applying twice Jensen’s inequality, for g(x) = x2 and ψ(x), we have

σ2[ψ(X)] ≥
[∫ ∞

0
ψ(m(x)) f (x)dx

]2

≥
[

ψ

(∫ ∞

0
m(x) f (x)dx

)]2
= ψ2(E(X)),

where the last inequality is obtained by recalling (20).

As an example, by taking ψ(x) = x2, Theorem 5 implies

σ(X2) ≥ [E(X)]2,

provided that X is NWUE, with E[X4] < ∞. Moreover, Theorem 6 yields

σ(X2) ≥ [E(X)]2.

For instance, if X is exponential with parameter 1, then σ(X2) = 2
√

5 > [E(X)]2 = [E(X)]2 = 1.

3. Weighted Generalized Cumulative Residual Entropy

In this section, we develop suitable connections between the transformed GCRE, the epoch times
of a NHPP, and the WMRL function. Specifically, consider a NHPP having intensity function λ(x),
x ≥ 0. Henceforward, we denote its epoch times of by 0 ≡ X0 ≤ X1 ≤ X2 ≤ · · · where X1 is
distributed identically as X. Moreover, let Tn = Xn − Xn−1, n ∈ N, be the length of the n-th interepoch
interval (or interoccurrence time). Denoting by Fn+1(x) the survival function of Xn+1, n ∈ N0, one has

Fn+1(x) = F(x)
n

∑
k=0

Λk(x)
k!

, x ≥ 0, (21)

where Λ(x)=
∫ x

0 λ(t)dt is the cumulative hazard function of X, so that the PDF of Xn+1 is

fn+1(x) = f (x)
Λn(x)

n!
, x ≥ 0. (22)

We recall that the GCRE of order n of X is obtained by taking φ(x) = 1 in (3) and satisfies the
following relation (see Psarrakos and Navarro [8]):

En(X) =
1
n!

∫ ∞

0
Λn(x)F(x)dx = E[Xn+1 − Xn], (23)



Mathematics 2020, 8, 1072 11 of 27

for all n ∈ N0. Let us now provide a suitable extension of En(X). For any increasing non-negative and
differentiable cumulative weight function ψ defined as in (4), we can introduce

Eψ,n(X) = E[ψ(Xn+1)− ψ(Xn)] = E
[ ∫ Xn+1

Xn
φ(x)dx

]
, (24)

for n ∈ N0. From (21) and (22), we thus obtain

Eψ,n(X) =
∫ ∞

0
φ(x)[Fn+1(x)− Fn(x)]dx

=
∫ ∞

0
φ(x)

Λn(x)
n!

F(x)dx = E
[

φ(Xn+1)

λ(Xn+1)

]
, (25)

for n ∈ N0. Hence, the function Eψ,n(X) can be identified with the WGCRE introduced in (3).
This measure extends the GCRE through a suitable ψ. For example, if we take ψ(t) = t, then the
WGCRE coincides with the GCRE (see Psarrakos and Navarro [8], Psarrakos and Toomaj [28], and
Toomaj and Di Crescenzo [13]). Moreover, if we take ψ(t) = t2

2 , it concurs with the weighted GCRE
introduced by Kayal [9]. We note that Eψ,n(X) can be viewed as the area between φ(x)Fn+1(x) and
φ(x)Fn(x). Based on the proof of Proposition 2.1 of Toomaj and Di Crescenzo [13], in fact, (25) is
equivalent to the GCRE of a cumulative weighted random variable ψ(X), i.e., Eψ,n(X) = En(ψ(X)) for
all n ∈ N0.

In what follows, we provide another expression for the WGCRE in terms of the expectation of the
WMRL function, defined in (7), evaluated at Xn.

Theorem 7. For X ∈ S(R+), one has

Eψ,n(X) = E[mψ(Xn)], n ∈ N, (26)

where mψ(x) is defined in (7).

Proof. For n ∈ N, we have

∫ t

0

Λn−1(x)
(n− 1)!

λ(x)dx =
Λn(t)

n!
, t ≥ 0,

From this, Equation (25) and using Fubini’s theorem, since F(t) is the survival function of X,
we obtain

Eψ,n(X) =
∫ ∞

0
φ(t)

Λn(t)
n!

F(t)dt

=
∫ ∞

0

∫ t

0

Λn−1(x)
(n− 1)!

λ(x)φ(t)F(t)dx dt,

=
∫ ∞

0

Λn−1(x)
(n− 1)!

λ(x)
∫ ∞

x
φ(t)F(t)dt dx

=
∫ ∞

0
mψ(x)

Λn−1(x)
(n− 1)!

f (x)dx,

where the last equality is obtained from (7). Hence, Equation (26) now follows by recalling (22).

Remark 5. We point out that another weighted GCRE can be defined as follows:

Eψ
n (X) = E[ψ(Tn+1)] = E[ψ(Xn+1 − Xn)]

=
∫ ∞

0 φ(x)FTn+1(x)dx, n ∈ N.
(27)
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We recall that the survival function of the interepoch interval Tn+1 is given by (see e.g., Theorem 4.1 of
Nakagawa [29], page 96)

FTn+1(x) =
∫ ∞

0
λ(t)

[Λ(t)]n−1

(n− 1)!
F(x + t)dt, n ∈ N.

Hence, from (27) by Fubini’s theorem for n ∈ N, we get

Eψ
n (X) =

∫ ∞

0

[Λ(x)]n−1

(n− 1)!
f (x)mψ(x)dx = E[mψ(Xn)],

where, for t ≥ 0,

mψ(t) := E[ψ(X− t)|X > t] =
1

F(t)

∫ ∞

t
φ(x− t)F(x)dx. (28)

Moreover, if ψ(x) is increasing convex (concave) on (0, ∞), using similar arguments of Lemma 2, one can
conclude that, for n ∈ N,

Eψ,n(X) = E[ψ(Xn+1)− ψ(Xn)] ≥ (≤) E[ψ(Xn+1 − Xn)]

= Eψ
n (X).

In this paper, we just focus on Eψ,n(X) since it has some meaningful properties about its connection with
the variance of a transformed random variable.

Thus far, a lot of criteria in terms of the survival function uncertainty have been introduced in the
literature; however, less attention was paid on its concept. In this case, we provide a counterexample
that, for instance, the weighted GCRE is suitable for measuring uncertainty of square of a random
variable X2.

Example 6. Let X ∈ S(R+) have Weibull survival function F(x) = e−xα
, x ≥ 0, α > 0. Letting Ek,n = Eψ,n

with ψ(t) = tk, k ∈ N, and taking into account (25), after some algebraic manipulations, we get

Ek,n(X) =
k

n!α
Γ
(

n +
k
α

)
, n ∈ N.

Note that, for k = 2, E2,n(X) = 2Ew
n (X), where Ew

n (X) is known as the weighted GCRE studied in [9].
Moreover, the direct computation implies that

E[Xk] = Γ
(

k
α
+ 1
)

, k ∈ N,

so that

σ(Xk) = {E[X2k]− (E[Xk])2}1/2

=

{
Γ
(

2k
α

+ 1
)
−
[

Γ
(

k
α
+ 1
)]2

}1/2

.

It is clear that Ek,n(X) can be written in terms of σ(Xk), as

Ek,n(X) = rn

( k
α

)
σ(Xk), k, n ∈ N, (29)
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where

rn(β) :=
β Γ(β + n)

n!
{

Γ(2β + 1)− [Γ(β + 1)]2
}1/2 .

Note that, if α = k, then rn(1) = 1, and thus, from (29), one has

Ek,n(X) = σ(Xk), k, n ∈ N. (30)

It is worth pointing out that, if X has a Weibull distribution with shape parameter k and scale parameter 1,
then Xk is exponentially distributed. Hence, equality (30) is not surprising. Generally, closed forms for rn(β)

are not feasible, and thus we are enforced to go through numerical computations. Indeed, in Figure 1, we display
rn(β) with respect to β, and for some choices of n.

0 5 10 15
β

1

2

3

4

5
rn(β)

Figure 1. The function rn(β) of the Weibull distribution for n = 1, 2, 3, 4 from bottom to top near β = 5.

Remark 6. We note that, for any non-negative increasing function ψ as given in (4), the differential entropy of
ψ(X) can be expressed as (see e.g., Equation (7) of Ebrahimi et al. [30]):

H[ψ(X)] = H(X) +E
[

log d
dX ψ(X)

]
= H(X) +E[log φ(X)].

(31)

Thus, from Theorem 2.9 of Tahmasebi [7], one can get

Eψ,n(X) ≥ 1
n!

exp{C?
n H[ψ(X)]},

where C?
n = exp (

∫ 1
0 log(u[− log u]n)du), n ∈ N.

We are now able to prove a monotonicity result that involves the GCRE given in (23). We recall
that, if X ≤st Y, (the term ≤st stands for the usual stochastic order), then

E[h(X)] ≤ E[h(Y)], (32)

for all increasing functions h(·), cf. Shaked and Shanthikumar [31].

Theorem 8. If the cumulative weight function ψ(x) is increasing convex (concave) on (0, ∞),
then Eψ,n(X)/En(X) is increasing (decreasing) in n ∈ N.
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Proof. From (26), one has

Eψ,n(X)

En(X)
=

E[mψ(Xn)]

En(X)
=
∫ ∞

0

mψ(x)
m(x)

m(x) fn(x)
En(X)

dx

= E[Ψ(Zn)],
(33)

where

Ψ(t) :=
mψ(t)
m(t)

=

∫ ∞
t φ(x)F(x)dx∫ ∞

t F(x)dx
, t > 0,

is easily seen to be increasing (decreasing) in t > 0, since ψ(t) is increasing convex (concave) on (0, ∞).
Moreover, for all n ∈ N, the random variable Zn has the following PDF:

fZn(x) =
m(x) fn(x)
En(X)

, x > 0.

Indeed, the latter is a bona fide density, since the function (23) satisfies the relation (cf. [13])

En(X) = E[m(Xn)], n ∈ N. (34)

Moreover, by Equation (22), it holds that, for x > 0,

fZn+1(x)
fZn(x)

=
En(X)

En+1(X)

fn+1(x)
fn(x)

=
En(X)

En+1(X)

Λ(x)
n + 1

.

Thus, since the latter ratio is increasing in x > 0, we have Zn ≤lr Zn+1 where ≤lr stands for the
likelihood ratio order; see [31] for details. Consequently, one has Zn ≤st Zn+1, and thus E[Ψ(Zn)] is
increasing (decreasing) in n ∈ N, since Ψ(t) is increasing in t > 0 under the given assumptions on ψ(x)
by recalling (32). The thesis then follows from (33).

We next give some results on Eψ,n(X). The following theorem is stated under the same conditions
of Lemma 2.

Theorem 9. Let us suppose that X is NWUE (NBUE). If ψ(t) is convex (concave) on [0, ∞), then

Eψ,n(X) ≥ (≤)ψ(E[X]), n ∈ N.

Proof. The proof can be obtained simply from relations (10) and (26).

Remark 7. We point out that the preceding theorem is sharp, i.e., the equality holds if ψ(t) = t and X has the
exponential distribution.

Another useful theorem is given below concerning a connection between the weighted GCRE and
the generalized cumulative residual entropy.

Theorem 10. If ψ(x) is increasing convex (concave) on [0, ∞), then

Eψ,n(X) ≥ (≤)ψ(En(X)),

for all n ∈ N.
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Proof. Recalling (11), from the assumptions on ψ one has mψ(t) ≥ (≤)ψ(m(t)), t > 0. By this,
due to (26), it holds that

Eψ,n(X) =
∫ ∞

0
mψ(x) fn(x)dx

≥ (≤)
∫ ∞

0
ψ(m(x)) fn(x)dx

≥ (≤) ψ

(∫ ∞

0
m(x) fn(x)dx

)
= ψ(En(X)),

the last inequality following by Jensen’s inequality, since ψ is a convex (concave) function, and the last
equality being due to (34).

We are now able to provide a recurrence relation for Eψ,n(X).

Theorem 11. Under the assumption of Theorem 7, we have

Eψ,n(X) = Eψ,n−1(X) +
1

(n− 1)!
E[hψ,n(X)], n ∈ N, (35)

where
hψ,n(u) :=

∫ u

0
m′ψ(x)Λn−1(x)dx, n ∈ N.

Proof. By virtue of Equations (22), (25), and (26), and mψ(x)λ(x) = φ(x) + m′ψ(x), one has

Eψ,n(X) =
∫ ∞

0
mψ(x)λ(x)F(x)

Λn−1(x)
(n− 1)!

dx

= Eψ,n−1(X) +
∫ ∞

0
m′ψ(x)F(x)

Λn−1(x)
(n− 1)!

dx,

for all n ∈ N. Using Fubini’s theorem, we obtain

∫ ∞

0
m′ψ(x)F(x)

Λn−1(x)
(n− 1)!

dx

=
∫ ∞

0
m′ψ(x)

∫ ∞

x
f (u)

Λn−1(x)
(n− 1)!

du dx

=
∫ ∞

0
f (u)

∫ u

0
m′ψ(x)

Λn−1(x)
(n− 1)!

dx du.

The thesis thus follows.

Note that, when X is IWMRL (DWMRL), since m′ψ(x) ≥ (≤) 0, we have the following immediate
consequence from Equation (35):

Eψ,n(X) ≥ (≤) Eψ,n−1(X),

for all n ∈ N. Here, we obtain an upper bound for the WGCRE in terms of the variance of the
transformed random variable ψ(X), if existing. The proof is omitted, being analogous to that of
Theorem 8 of [13].

Theorem 12. For X ∈ S(R+) with finite σ[ψ(X)], the WGCRE function Eψ,n(X) satisfies

Eψ,n(X) ≤
√
[2(n− 1)]!
(n− 1)!

σ[ψ(X)], (36)

for all n ∈ N.
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In the next theorem, we provide two different probabilistic meanings for the WGCRE. In fact,
we deal with a suitable mean and with the covariance of the transformation of the n-th epoch time and
the random variable Λ(Xn).

Theorem 13. For all n ∈ N, it holds that

(i)
1
n
E
[

φ(Xn)Λ(Xn)

λ(Xn)

]
= Eψ,n(X);

(ii)
1
n

Cov[ψ(Xn), Λ(Xn)] = Eψ,n(X).

Proof. (i) Recalling (22), we have

1
n
E
[

φ(Xn)Λ(Xn)

λ(Xn)

]
=

1
n

∫ ∞

0

φ(x)Λ(x)
λ(x)

fn(x)dt

=
∫ ∞

0
φ(x)

Λn(x)
n!

F(x)dx,

this giving the desired result due to (25).
(ii) By the definition, we have

Cov[ψ(Xn), Λ(Xn)] = E[ψ(Xn)Λ(Xn)]−E[ψ(Xn)]E[Λ(Xn)].

Since Λ(Xn) = − log F(Xn), one has P(Λ(Xn) ≤ x) = 1 − Fn(F−1
(e−x)), so that, from

Equation (21), we get Λ(Xn) ∼ Gamma(n, 1), and thus E[Λ(Xn)] = n. Moreover, from (22), one
can easily obtain

E[ψ(Xn)Λ(Xn)] =
∫ ∞

0
ψ(x)Λ(x) fn(x)dx

= n
∫ ∞

0
ψ(x)

Λn(x)
n!

f (x)dx

= nE[ψ(Xn+1)],

and thus

Cov[ψ(Xn), Λ(Xn)] = n {E[ψ(Xn+1)]−E[ψ(Xn)]}
= n Eψ,n(X),

due to (24). The proof is thus complete.

4. Ordering Results

Hereafter, we discuss various ordering results of variance and WGCRE. First, we recall some
stochastic orders.

Let X, Y ∈ S(R+), with survival functions F(t) and G(t), and mean residual life functions mX(t)
and mY(t), respectively. The following conditions define useful stochastic orders:
– hazard rate order (X ≤hr Y):

G(t)/F(t) is increasing in t > 0;

– mean residual lifetime order (X ≤mrl Y):∫ ∞

t
G(x)dx

/ ∫ ∞

t
F(x)dx is increasing in t > 0;



Mathematics 2020, 8, 1072 17 of 27

– dispersive order (X ≤disp Y):

G−1(F(t))− t is increasing in t > 0,

where, for u ∈ [0, 1], G−1(u) = inf{x ∈ R+ : G(x) ≥ u} denotes the left-continuous quantile function
of G(x).

Now, we define a new stochastic order that involves the weighted mean residual life function.

Definition 2. For a given non-negative weight function φ(·), let X, Y ∈ S(R+) have weighted mean residual
life functions mψ(X)(t) and mψ(Y)(t), respectively. Then, X is smaller than Y in the weighted mean residual

lifetime with respect to the weight function φ(x), denoted by X ≤φ
wmrl Y, if mψ(X)(t) ≤ mψ(Y)(t), for all t ≥ 0.

The next theorem provides equivalent statements for the above defined stochastic order.

Theorem 14. For X, Y ∈ S(R+) and any non-negative weight function φ(·), the following statements
are equivalent:

(i) X ≤φ
wmrl Y;

(ii)
∫ ∞

t φ(x)G(x)dx∫ ∞
t φ(x)F(x)dx

is increasing in t > 0;
(iii) E[ψ(X)|X > t] ≤ E[ψ(Y)|Y > t] for all t > 0.

Proof. In this case, for t > 0, we have

d
dt

∫ ∞
t φ(x)G(x)dx∫ ∞
t φ(x)F(x)dx

=
φ(t)

∫ ∞
t φ(x)

[
G(x)F(t)− G(t)F(x)

]
dx[∫ ∞

t φ(x)F(x)dx
]2 .

Recalling (7) and after some calculations, one has X ≤φ
wmrl Y if and only if∫ ∞

t φ(x)
[
G(x)F(t)− G(t)F(x)

]
dx ≥ 0 for all t > 0. This proves the equivalence between (i) and (ii).

Finally, the equivalence of statements (i) and (iii) is clear.

Recall that the limiting distribution of the excess time (or the forward recurrence time) in a renewal
process (or in shock models) gives the so-called equilibrium distribution. Let {Xn}n∈N be a sequence of
independent and non-negative random variables describing the interarrivals between shocks. Suppose
further that such random variables have identical distribution F(t), with finite mean µ. Moreover,
X1 has a possible different distribution F1(t) with finite mean µ1. Both distribution functions F1(t)
and F(t) are not degenerate at t = 0, and F1(0) = F(0) = 0. For Sn = ∑n

i=1 Xi, n ∈ N, and S0 ≡ 0,
let N(t) = max{n : Sn ≤ t} represent the number of renewals during (0, t]. Hence, the expected
number of renewals in (0, t] can be obtained as

M(t) = E[N(t)] =
∫ t

0
[1 + M0(t− u)]dF1(u),

where M0(t) is the renewal function of an ordinary renewal process with distribution F, i.e., M0(t) =
∑n

k=1 F(k)(t), where F(k) is the k-fold Stieltjes convolution of F. Let γ(t) be the excess time in a stochastic
process or residual lifetime in reliability theory at time t, that is, γ(t) = SN(t)+1 − t. By the elementary
renewal theorem, the distribution of the equilibrium random variable X̃ is known as

F̃(x) = lim
t→∞

P[γ(t) ≤ x] =
1
µ

∫ x

0
F(u)du, x > 0.

For further details, see, e.g., Nakagawa [29].
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The MRL order is characterized via the hazard rate order as (cf. Hu et al. [32])

X ≤mrl Y ⇐⇒ X̃ ≤hr Ỹ. (37)

Weighted distributions are adopted in many problems to model different sampling rules; see, e.g.,
Misagh and Yari [3] and Nanda and Jain [33] and references therein. For a given X ∈ S(R+) with PDF
f , and a non-negative real function w, let

f w(x) =
w(x) f (x)
E[w(X)]

, x > 0, (38)

be the PDF of the related weighted random variable Xw, provided that E[w(X)] is positive and finite.
Note that the equilibrium random variable X̃ is the weighted random variable obtained from X and
w(x) = 1/λ(x), where λ is the failure rate function of X. Denote by X̃φ and Ỹφ the weighted versions
of X̃ and Ỹ, respectively; they have PDFs

f̃φ(x) =
φ(x)F(x)
E[ψ(X)]

, and g̃φ(x) =
φ(x)G(x)
E[ψ(Y)] , (39)

for x > 0. Let λX̃φ
(t) = f̃φ(t)∫ ∞

t f̃φ(x)dx
and λỸφ

(t) = g̃φ(t)∫ ∞
t g̃φ(x)dx

denote the hazard rate functions of X̃φ and

Ỹφ, respectively. Now, to compare X̃φ and Ỹφ by the hazard rate order, we have

X̃φ ≤hr Ỹφ ⇐⇒
f̃φ(t)∫ ∞

t f̃φ(x)dx
≥

g̃φ(t)∫ ∞
t g̃φ(x)dx

for all t ≥ 0,

which is equivalent to

X̃φ ≤hr Ỹφ ⇐⇒
∫ ∞

t φ(x)F(x)dx
F(t)

≤
∫ ∞

t φ(x)G(x)dx

G(t)
for all t ≥ 0,

due to (39). From the above results, the weighted mean residual lifetime order is related to the hazard
rate order as

X ≤φ
wmrl Y ⇐⇒ X̃φ ≤hr Ỹφ.

By assuming that φ(x) weight function, then (see e.g., Kayid et al. [34] for details)

X̃ ≤hr Ỹ =⇒ X̃φ ≤hr Ỹφ. (40)

It is worthwhile to mention that the choice φ(x) = x in (40) motivated Kayid et al. [34] to define
the combination mean residual life function (CMRL). Furthermore, they proposed the CMRL order by
assuming φ(x) = x in Definition 2. If ψ(x) is an increasing convex function, from (37) and (40), we get

X ≤mrl Y =⇒ X ≤φ
wmrl Y. (41)

By making use of Proposition 2.3 of Nanda and Jain [33], for any increasing cumulative weight
function ψ(·), it holds that

X ≤hr Y =⇒ X ≤φ
wmrl Y. (42)

The next theorem shows an ordering result based on the dispersive order. We first consider the
following remark.
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Remark 8. Consider two cumulative weighted random variables ψ(X) and ψ(Y) with cumulative distribution
functions H and Q, respectively. On the other hand, assume that ψ(Xn) and ψ(Yn) have cumulative distribution
functions Hn and Qn, respectively. We note that the distribution function of ψ(Xn) , n ∈ N0, can be written as

Hn(x) = 1− (1− H(x))
n−1

∑
k=0

(− log(1− H(x)))k

k!
= 1− gn(1− H(x)) = g?n(H(x)), x ≥ 0,

where

gn(x) = x
n−1

∑
k=0

(− log x)k

k!
, g?n(x) = 1− gn(1− x), x ≥ 0,

are increasing functions. The same results also hold for the random variable ψ(Yn). Now, for all x, we have

Q−1
n Hn(x) = (g?n(Q))−1g?n(H(x)) = Q−1(g?n)

−1g?n(H(x)) = Q−1H(x).

Theorem 15. Let Xn and Yn be the epoch times of two nonhomogeneous Poisson processes associated with X
and Y, respectively. If ψ(X) ≤disp ψ(Y), then for all n ∈ N

ψ(Xn+1)− ψ(Xn) ≤st ψ(Yn+1)− ψ(Yn). (43)

Proof. Let us consider two cumulative weighted random variables ψ(X) and ψ(Y) with cumulative
distribution functions H and Q, respectively. On the other hand, assume that ψ(Xn) and ψ(Yn)

have cumulative distribution functions Hn and Qn, respectively. Note that ψ(X) ≤disp ψ(Y) implies
ψ(Xn) ≤disp ψ(Yn) by noting that Q−1H = Q−1

n Hn for all n ∈ N, as shown in Remark 8. Now, we have

ψ(Xn)
d
= H−1Q(ψ(Yn)), n ∈ N, (44)

where d
= means equality in distribution and H−1Q is an increasing function. One clearly has Yn ≤

Yn+1, n ∈ N, almost surely and, since ψ(·) is increasing, ψ(Yn) ≤ ψ(Yn+1), n ∈ N, almost surely. From
this and by noting that ψ(Xn) ≤disp ψ(Yn), using Equation (3.B.15) in Shaked and Shanthikumar [31]
we obtain that the following relation holds almost surely:

H−1Q(ψ(Yn+1))− H−1Q(ψ(Yn)) ≤ ψ(Yn+1)− ψ(Yn),

for n ∈ N. This implies, by recalling (44), the validity of (43). The proof is thus complete.

Remark 9. With reference to Theorem 15, we note that X and Y are independent and hence so also Xn and
Yn. However, (Xn+1, Xn) and (Yn+1, Yn) have the same copula since two random vectors of record values,
possessing the same set of parameters with possibly different distributions, have the same copula (cf. Belzunce
et al. [35]). Since the copula is invariant under strictly increasing transformations ψ(·), we conclude that
(ψ(Xn+1), ψ(Xn)) and (ψ(Yn+1), ψ(Yn)) have the same copula. Hence, for an increasing function H−1Q,

we get (ψ(Xn+1), ψ(Xn))
d
= (H−1Q(ψ(Yn+1)), H−1Q(ψ(Yn))), where we can write ψ(Xn+1)− ψ(Xn)

d
=

H−1Q(ψ(Yn+1))− H−1Q(ψ(Yn)) using Theorem 2.4.3 of Nelsen [36]. From this note, one has an alternative
way to prove Theorem 15 by considering H−1Q = ϕ in Equation (3.B.15) of Shaked and Shanthikumar [31].

By making use of Theorem 15, we can prove the following result, which allows for comparing
WGCRE and variance of weighted cumulative of two random variables under the dispersive ordering.

Theorem 16. Let us assume that X ≤disp Y. Then,

(i) If ψ(·) is convex, then σ[ψ(X)] ≤ σ[ψ(Y)] and Eψ,n(X) ≤ Eψ,n(Y) for all n ∈ N.
(ii) If ψ(·) is concave, then σ[ψ(X)] ≥ σ[ψ(Y)] and Eψ,n(X) ≥ Eψ,n(Y) for all n ∈ N.
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Proof. (i) Let X ≤disp Y. Since ψ(·) is a convex function, from Theorem 3.B.10 in Shaked and
Shanthikumar [31], it holds that ψ(X) ≤disp ψ(Y) which yields that σ2[ψ(X)] ≤ σ2[ψ(Y)]. On the
other hand, due to Theorem 15, one has relation (43). Recalling (24), we have the stated result.
The case (ii) is similar.

In the following theorem, we show that, if X and Y are ordered in the weighted mean
residual lifetime, then their corresponding variance and WGCRE will be ordered too, under suitable
assumptions on the distributions of X or Y.

Theorem 17. Let X, Y ∈ S(R+), with weighted mean residual life functions mψ(X)(x) and mψ(Y)(x),
respectively, and such that X ≤st Y. Then,

(i) If X ≤φ
wmrl Y and either X or Y is IWMRL, then σ2[ψ(X)] ≤ σ2[ψ(Y)] and Eψ,n(X) ≤ Eψ,n(Y), for all

n ∈ N.
(ii) If X ≥φ

wmrl Y and either X or Y is DWMRL, then σ2[ψ(X)] ≥ σ2[ψ(Y)] and Eψ,n(X) ≥ Eψ,n(Y), for all
n ∈ N.

Proof. Let Y be IWMRL. From (16), we get

σ2[ψ(X)] = E[m2
ψ(X)(X)] ≤ E[m2

ψ(Y)(X)]

≤ E[m2
ψ(Y)(Y)] = σ2[ψ(Y)].

The first inequality follows from the hypothesis X ≤φ
wmrl Y while the last inequality is obtained

due to (32). Let Xn and Yn denote the n-th successive epoch times of two non-homogeneous Poisson
processes with PDFs fn(x) and gn(x), respectively. Then, X ≤st Y implies Xn ≤st Yn for all n ∈ N.
From this and recalling (26), for all n ∈ N, we obtain

Eψ,n(X) = E[mψ(X)(Xn)] ≤ E[mψ(Y)(Xn)]

≤ E[mψ(Y)(Yn)] = Eψ,n(Y).

The first inequality comes from the assumption X ≤φ
wmrl Y while the last inequality derives

from (32) by noting that Xn ≤st Yn. Now, let X be IWMRL. Then, we similarly have

σ2[ψ(X)] = E[m2
ψ(X)(X)] ≤ E[m2

ψ(X)(Y)]

≤ E[m2
ψ(Y)(Y)] = σ2[ψ(Y)],

and analogously

Eψ,n(X) = E[mψ(X)(Xn)] ≤ E[mψ(X)(Yn)]

≤ E[mψ(Y)(Yn)] = Eψ,n(Y).

which the results stated in (i) follow. The proof of (ii) is similar.

The next theorem leads to the same results under slightly different assumptions. The proof is
similar and then is omitted.

Theorem 18. Let X, Y ∈ S(R+) have weighted mean residual life functions mψ(X)(t) and mψ(Y)(t),
respectively. If X ≤hr Y, and X or Y is IWMRL, then

(i) σ2[ψ(X)] ≤ σ2[ψ(Y)].
(ii) Eψ,n(X) ≤ Eψ,n(Y), for all n ∈ N.
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The following corollary is concerned with the mean residual lifetime order. It immediately follows
from (41).

Corollary 1. Let X, Y ∈ S(R+), with mean residual life functions mX(x) and mY(x), such that X ≤st Y,
and assuming that ψ(x) is an increasing convex function. Then,

(i) If X ≤mrl Y and either X or Y is IWMRL, then σ2[ψ(X)] ≤ σ2[ψ(Y)] and Eψ,n(X) ≤ Eψ,n(Y), for all
n ∈ N.

(ii) If X ≥mrl Y and either X or Y is DWMRL, then σ2[ψ(X)] ≥ σ2[ψ(Y)] and Eψ,n(X) ≥ Eψ,n(Y), for all
n ∈ N.

5. Connection with the Excess Wealth Transform

In several applied contexts, numerous variability quantities such as variance, standard deviation
and some other dispersion measures are widely used since their comparisons are based only on
summary statistics. Notwithstanding, they are often noninformative being their comparisons based
only on single numbers. Additionally, the standard deviations of some distributions may not exist
or, in some situations, they may not be the appropriate quantities to compare. Therefore, transforms
and stochastic orders for comparing their variabilities have been defined and widely investigated in
the literature; for a comprehensive discussion, see Shaked and Shanthikumar [31]. One such order is
the excess wealth order (or right spread order) as a measure of spread. For a non-negative random
variable X with cumulative distribution function F, the left continuous inverse (quantile function) is
given by

F−1(p) = inf{x ∈ R+ : F(x) ≥ p}, p ∈ (0, 1).

Moreover, if X has finite mean, then the excess wealth transform (or right spread function),
for p ∈ (0, 1) is

WX(p) = E[(X− F−1(p))+] =
∫ ∞

F−1(p) F(x)dx

=
∫ 1

p (F−1(q)− F−1(p))dq,
(45)

where, as usual, (Z)+ represents the positive part of Z, i.e., (Z)+ = Z if Z ≥ 0, and (Z)+ = 0 otherwise.
It is worth to mentioning that X does not need to be non-negative for the validity of (45), but it just
needs to have a finite mean. In addition, the excess wealth transform and the mean residual life
function are related by

mX(F−1(p)) =
WX(p)
1− p

, 0 < p < 1. (46)

Fernández-Ponce et al. [37] obtained an expression for the variance of X in terms of the quantity
given in Equation (46) as

σ2(X) =
∫ 1

0
[mX(F−1(p))]2 dp.

Hereafter, we obtain expressions for the variance of cumulative weighted random variable and
weighted GCRE in terms of transformed excess wealth function. For X ∈ S(R+) with CDF F(x),
assume that ψ is given in (4). We define the transformed (or weighted) excess wealth function of X as

Wψ(X)(p) = E[(ψ(X)− ψ(F−1(p)))+]
=
∫ ∞

F−1(p) φ(x)F(x)dx

=
∫ 1

p
[
ψ(F−1(q))− ψ(F−1(p))

]
dq,

(47)

for all p ∈ (0, 1). When ψ(t) = t, then (47) coincides with (45). This function, due to (46), satisfies the
following relation:

mψ(X)(F−1(p)) =
Wψ(X)(p)

1− p
, 0 < p < 1. (48)
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The following theorem gives expressions for both the variance of a transformed random variable
and the weighted GCRE in terms of mψ(X)(F−1(p)) given in (48). The proof is omitted, since it can be
easily derived from Theorems 3 and 7.

Theorem 19. If X ∈ S(R+) has CDF F, then

(i) σ2[ψ(X)] =
∫ 1

0

[
mψ(X)(F−1(p))

]2
dp,

(ii) Eψ,n(X) =
1

(n− 1)!

∫ 1

0
mψ(X)(F−1(p))[− log(1− p)]n−1 dp, for all n ∈ N.

Let X and Y be absolutely continuous nonnegative random variables with CDFs F and G,
respectively. Then, X is said to be smaller than Y in the excess wealth order, denoted as X ≤ew Y,
when WX(p) ≤ WY(p) for all p ∈ (0, 1). We recall that the excess wealth order is preserved under
monotone convex transformations. In other words, if X ≤ew Y, then h(X) ≤ew h(Y) for all increasing
convex function h(x). Using this property, from Theorem 19, we immediately obtain the following
theorem. We omit the proof, being straightforward.

Theorem 20. Let X, Y ∈ S(R+), such that X ≤ew Y. If ψ(x) is increasing convex, then

(i) σ2[ψ(X)] ≤ σ2[ψ(Y)];
(ii) Eψ,n(X) ≤ Eψ,n(Y), for all n ∈ N.

Proof. Since ψ(x) is an increasing convex function, the assumption X ≤ew Y implies ψ(X) ≤ew ψ(Y).
This means that mψ(X)(F−1(p)) ≤ mψ(Y)(F−1(p)) for all p ∈ (0, 1). Upon using Theorem 19, the results
are obtained.

6. Applications to System Reliability

This section is devoted to discuss various relevant applications of the weighted mean residual
lifetime order in survival analysis and reliability theory.

6.1. Application to Shock Models

Assume that a one-unit system is able to withstand a random number of shocks. As customary,
the shocks are governed by a non-homogeneous Poisson process. We assume independence between
the number of shocks and the interarrival (or successive) times of shocks. Moreover, N ∈ S(N) denotes
the random number of shocks survived by the system, with discrete survival function P(k) = P(N > k),
k ∈ N0. If Xj denotes the interarrival time between the (j− 1)-th and j-th shocks, then T = ∑N

j=1 Xj
gives the lifetime of the system. Furthermore, let the renewal process describing the number of shocks
have cumulative intensity function Λ(t) = − log F(t), t ≥ 0. Then, T has survival function

FT(t) =
∞

∑
k=0

P(k)
Λk(t)

k!
F(t), t > 0. (49)

Relation (49) also holds for a repairable system which is discussed by Chahkandi et al. [38].
The following theorem gives sufficient conditions for ordering of weighted mean residual lifetime
of two systems. Let Ni ∈ S(N) have survival function Pi(k), i = 1, 2. We recall that N1 ≤hr N2 if
P2(k)/P1(k) is increasing in k ∈ N0.

Theorem 21. Let T1 and T2 be the random lifetimes of devices subject to shocks governed by a non-homogeneous
Poisson process having cumulative intensity function Λ(t). Let N1 and N2 be respectively the number of
survived shocks of the devices. If N1 ≤hr N2, then T1 ≤

φ
wmrl T2.
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Proof. Let us set, for all t > 0,

g(i, t) =
∞

∑
k=0

Pi(k)
∫ ∞

t
φ(x)

Λk(x)
k!

F(x)dx, i = 1, 2.

To prove T1 ≤
φ
wmrl T2, we need to show that g(2, t)/g(1, t) is increasing in t, due to Theorem 14,

or equivalently g(i, t) is TP2 in (i, t) ∈ {1, 2} ×R+. By assumption N1 ≤hr N2, which means that Pi(k)
is TP2 in (i, k) ∈ {1, 2} ×N0. Moreover, the function

∫ ∞

t
φ(x)

Λk(x)
k!

F(x)dx =
∫ ∞

0
φ(x)

Λk(x)
k!

F(x)I[x≥t] dx,

is TP2 in (t, k) ∈ R+ ×N0 due to the general composition theorem of Karlin [16], since φ(x)Λk(x)
k! F(x)

is TP2 in (x, k) ∈ R+ ×N0 and the indicator function I[x≥t] is TP2 in (x, t) ∈ R+ ×R+. Thus, again,
the general composition theorem provides that g(i, t) is TP2 in (i, t) ∈ {1, 2} ×R+, which completes
the proof.

Remark 10. A-Hameed and Proschan [39] investigated some aging properties of the shock model (49).
They proved that, if the parent distribution function F(x) is IFR (DFR) and N is discrete DMRL (IMRL),
then the system with lifetime T is DMRL (IMRL). In the present case, the following similar results hold, due to
Theorem 2.
(i) Let φ(x) be decreasing in x. If X is IFR and N is discrete DMRL, then T is DWMRL.
(ii) Let φ(x) be increasing in x. If X is DFR and N is discrete IMRL, then T is IWMRL.

Using the above results, we can now compare the variance and WGCRE of two systems under
different shocks.

Theorem 22. Under the same assumptions of Theorem 21, let X be DFR and φ(x) be increasing in x. If N1 ≤hr
N2 and either N1 or N2 is discrete IMRL, then σ2[ψ(T1)] ≤ σ2[ψ(T2)] and Eψ,n(T1) ≤ Eψ,n(T2), for all
n ∈ N.

Proof. Let N1 be discrete IMRL. Since X is DFR and φ(x) is increasing, point (ii) of Remark 10
implies that T1 is IWMRL. On the other hand, N1 ≤hr N2 gives T1 ≤

φ
wmrl T2 due to Theorem 21.

Moreover, N1 ≤hr N2 yields N1 ≤st N2 which ensures that T1 ≤st T2, (see e.g., Theorem 4.2 of
Chahkandi et al. [38]). Thus, from Theorem 17, we have the results. When N2 is discrete IMRL, the
proof is similar.

In the special case in which the interarrival times are independent and identically exponentially
distributed, one clearly has that Λk(t) = (λt)k on the right-hand-side of the survival function (49).

Let us consider the cumulative weight function ψ(x) = xr, or weight function φ(x) = rxr−1,
for all r ∈ N.

Theorem 23. Let T1 and T2 be the random lifetimes of two devices subject to shocks governed by a homogeneous
Poisson having intensity λ, and let Ni, i = 1, 2, be the random number of shocks survived by the i-th device,
with Pi(k) = P(N > k), k ∈ N0. If, for r ∈ N, one has that

∑∞
j=k+r−1 (

j
r−1)P2(j− r + 1)

∑∞
j=k+r−1 (

j
r−1)P1(j− r + 1)

is increasing in k ∈ N, (50)

then T1 ≤
φ
wmrl T2, for the cumulative weight function ψ(x) = xr.
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Proof. It is known that the survival function of Ti, i = 1, 2, is given by

HTi (x) =
∞

∑
k=0

Pi(k)
e−λx(λx)k

k!
, x ≥ 0. (51)

Let us consider the following well-known relation

∫ ∞

t
e−λx λk+1xk

k!
dx =

k

∑
j=0

e−λt (λt)j

j!
, k ∈ N0,

for all t > 0. Recalling (51) and using the aforementioned equation, after some manipulations, we get,
for r ∈ N and i = 1, 2,

∫ ∞

t
rxr−1HTi (x)dx =

∫ ∞

t
rxr−1

∞

∑
k=0

Pi(k)
e−λx(λx)k

k!
dx

=
r!
λr

∞

∑
k=0

Pi(k)
(

r + k− 1
k

) ∫ ∞

t
e−λx λk+rxk+r−1

(k + r− 1)!
dx

=
r!
λr

∞

∑
k=0

Pi(k)
(

r + k− 1
k

) k+r−1

∑
j=0

e−λt (λt)j

j!

=
r!
λr

∞

∑
k=0

e−λt (λt)k

k!

∞

∑
j=k+r−1

(
j

r− 1

)
Pi(j− r + 1).

Since e−λt(λt)k/k! is TP2 in (k, t) ∈ N×R+, and recalling relation (50), the general composition
theorem of Karlin [16] implies that

∫ ∞
t rxr−1HTi (x)dx is TP2 in (i, t) ∈ {1, 2} ×R+. This is equivalent

to state that T1 ≤
φ
wmrl T2 for ψ(x) = xr.

The case concerning the weight function φ(x) = x is considered in Theorem 4.1 of Kayid and
Izadkhah [34]. From Theorem 23, we immediately obtain the following result.

Theorem 24. Under the conditions of Theorem 23, if N1 ≤st N2, and either N1 or N2 is IMRL, then σ2(Tr
1) ≤

σ2(Tr
2) and Er,n(T1) ≤ Er,n(T2), for all n, r ∈ N.

Proof. Let N1 be discrete IMRL. Since φ(x) = rxr−1 is increasing in x for all r ∈ N, then N1 is IWMRL
due to Remark 10. Moreover, recalling Theorem 23, it holds that T1 ≤

φ
wmrl T2. Use of Theorem 17 thus

completes the proof. When N2 is discrete IMRL, the proof is similar.

6.2. Application to Random Minima

Now, we consider an application to random minima. Let us consider a sequence of random
variables X1, X2, . . . which is independent of a discrete non-negative random variable N. The minimum
extreme order statistics is defined by

X1:N = min{X1, X2, . . . , XN}.

As is well known, it can be viewed as the random lifetime of a series system consisting of a
random number of components with i.i.d. lifetimes X1, X2, . . . , XN . In case of life testing, if a random
censoring is pursued, the completely observed data make a sample of random size N. For each
i = 1, 2, let X1:Ni denote the minimum order statistic among X1, X2, . . . , XNi , where Ni is a positive
integer-valued random variable which is independent from {Xn}. For the concept of likelihood ratio
order in the discrete case, see Shaked and Shanthikumar [31].
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Theorem 25. Let φ(x) be increasing in x. If N1 ≤lr N2 and X is DFR, then Var[ψ(X1:N1)] ≥ Var[ψ(X1:N2)]

and Eψ,n(X1:N1) ≥ Eψ,n(X1:N2) for all n ∈ N.

Proof. From Theorem 2.4 of Shaked and Wong [40], we have X1:N1 ≥lr X1:N2 which implies that
X1:N1 ≥hr X1:N2 . On the other hand, since X is DFR, then either X1:N1 or X1:N2 is DFR due to Shaked [41]
and thus it is IMRL. Because φ(x) is increasing in x, due to Theorem 2, then X1:N1 or X1:N2 is IWMRL.
Thus, Theorem 18 completes the proof.

7. Conclusions

An eligible measure of uncertainty in some practical situations in neurobiology and reliability is
the weighted shift-dependent measure as pointed out by [2]. Objects in a scale and translation-invariant
manner can be recognized by the human visual system. However, this important feature using
biologically realistic networks is a challenge. Thus, the weighted entropy can be used in such
situations [3]. Thus, the differential entropy is one such pioneer measure. Accordingly, the weighted
generalized cumulative residual entropy is also introduced. Various papers investigated some
properties of the mentioned measure. Such properties however are not exhaustive and hence we
tried to continue this line of research with a different point of view. Indeed, we first considered
the cumulative weight function which can be related to a weighted random variable. For instance,
when the weight function is the hazard rate function, then we have the cumulative hazard function
as a special case. By using this function, we defined the weighted mean residual life function which
was successfully applied to provide expressions for the variance of transformed random variable and
WGCRE. We remark that the variance of transformed random variable and WGCRE can be used as
dispersion measures and uncertainties. Indeed, by virtue of Theorem 7, the WGCRE is a suitable
alternative to the standard deviation of a transformed random variable when the latter is not existing.
This motivated us to study both measures at the same time. Moreover, the new expressions obtained
in this paper enabled us to provide several results including bounds, stochastic comparisons based on
various stochastic orders, and specifically their connections with the transformed excess wealth order.
In fact, the latter result seems to be novel for the WGCRE in the sense that it is connected with the
excess wealth transform being a well-known concept in survival analysis, reliability theory, risk theory,
actuarial science, and other applied areas. We finally illustrated various applications of the given
results by comparing variance of transformed random lifetime and WGCRE of two shock models and
of random minima.

Several results obtained in this paper involve integrals of the form
∫ ∞

t φ(x)F(x)dx, as for the
WMRL function introduced in (7). However, as pointed out in Remark 5 for the weighted GCRE,
other developments can be performed by considering the form

∫ ∞
t φ(x− t)F(x)dx. In other terms,

the two approaches allow for dealing with different expectations as E[ψ(X) − ψ(t)|X > t] and
E[ψ(X− t)|X > t]. Indeed, in the second case, a suitable choice of the function ψ addresses toward
distributional results based on the Weyl fractional-order integral operator (see, for instance, Pakes and
Navarro [42]). In particular, when ψ(x) = xα/α, α > 0, Equation (28) yields

mψ(t) =
E[Xα]

α

Fα
(t)

F(t)
, t ≥ 0,

where F(t) is the survival function of X, and Fα
(t) is the survival function of the fractional equilibrium

distribution of X, which plays a relevant role in the fractional probabilistic Taylor’s and mean value
theorems (see Di Crescenzo and Meoli [43]). Hence, in analogy with the given results, future
investigations can be based on expectations of the form E[ψ(X − t)|X > t] and can be related to
notions of fractional calculus.
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