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Abstract: In this manuscript we characterize the completeness of a normed space through the strong
lacunary (Nθ) and lacunary statistical convergence (Sθ) of series. A new characterization of weakly
unconditionally Cauchy series through Nθ and Sθ is obtained. We also relate the summability spaces
associated with these summabilities with the strong p-Cesàro convergence summability space.
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1. Introduction

Let X be a normed space, a sequence (xk) ⊂ X is said to be strongly 1-Cesàro summable (briefly,
|σ1|-summable) to L ∈ X if

lim
n→∞

1
n

n

∑
k=1
‖xk − L‖ = 0.

Hardy-Littlewood [1] and Fekete [2] introduced this type of summability, which is related
to the convergence of Fourier series (see [3,4]). The |σ1| summability along with the statistical
convergence [5] started a very striking theory with important applications [6–8]. Some years later,
the strong lacunary summability Nθ was presented by Freedman et al. [9] by introducing lacunary
sequences and showed that Nθ is a larger class of BK-spaces which had many of the characteristics of
|σ1|. Later on, Fridy [10,11] showed the concept of statistical lacunary summability and they related it
with the statistical convergence and the Nθ summability.

The characterization of a Banach space through different types of convergence has been dealt by
authors such as Kolk [12], Connor, Ganichev, and Kadets [13],. . .

Consider X a normed space and ∑ xi a series in X. In [14] the authors introduced the space of
convergence S(∑ xi) associated with the series ∑ xi, which is defined as the space of sequences (aj) in
`∞ such that ∑ aixi converges. They also proved that the necessary and sufficient condition for X to
be a complete space is that for every weakly unconditionally Cauchy series ∑ xi, the space S(∑ xi) is
complete. Recall that ∑ xi is a weakly unconditionally Cauchy (wuC) series if for every permutation π

of the set of natural numbers, the sequence (∑n
i=1 xπ(i)) is a weakly Cauchy sequence. We will also
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rely on a powerful known result that states that a series ∑ xi is wuC if and only if ∑ | f (xi)| < ∞ for all
f ∈ X∗ (see [15] for Diestel’s complete monograph about series in Banach spaces).

In [16,17] a Banach space is characterized by means of the strong p-Cesàro summability (wp) and
ideal-convergence. In this manuscript, the Nθ and Sθ summabilities are used along with the concept
of weakly unconditionally series to characterize a Banach space. In Section 2 we introduce these two
kinds of summabilities which are regular methods and we recall some properties. In Sections 3 and 4
we introduce the spaces SSθ

(∑i xi) and SNθ
(∑i xi) which will be used in Section 5 to characterize the

completeness of a space.

2. Preliminaries

In this section, we present the definition of Nθ and Sθ summabilities for Banach spaces and the
relations between them. First, we recall the concept of lacunary sequences.

Definition 1. A lacunary sequence is an increasing sequence of natural numbers θ = (kr) such that k0 = 0
and hr = kr − kr−1 tends to infinite as r → ∞. The intervals determined by θ will be denoted by Ir = (kr−1, kr],

the ratio
kr

kr−1
will be denoted by qr.

We now give the definition of strong lacunary summability for Banach spaces based on the one
given by Freedman for real-valued sequences [9].

Definition 2. Let X be a Banach space and θ = (kr) a lacunary sequence. A sequence x = (xk) in X is

lacunary strongly convergent or Nθ−summable to L ∈ X if lim
r→∞

1
hr

∑
k∈Ir

‖xk − L‖ = 0, and we write

Nθ-lim xk = L or xk →
Nθ

L.

Let Nθ be the space of all lacunary strongly convergent sequences,

Nθ =

{
(xk) ⊆ X : lim

r→∞

1
hr

∑
k∈Ir

‖xk − L‖ = 0 for some L

}
.

The space Nθ is a BK−space endowed with the norm ‖xk‖θ = sup
r

1
hr

∑
k∈Ir

‖xk‖.

In 1993, Fridy and Orhan [11] introduced a generalization of the statistical convergence,
the lacunary statistical convergence, using lacunary sequences. To accomplish this, they substituted
the set {k : k ≤ n} by the set {k : kr−1 < k ≤ kr}. We recall now the definition of θ−density of a subset
K ⊂ N.

Definition 3. Let θ = (kr) be a lacunary sequence. If K ⊂ N, the θ−density of K is denoted by dθ(K) =

lim
r

1
hr

card({k ∈ Ir : k ∈ K}), whenever this limit exists.

It is easy to show that this density is a finitely additive measure and we can define the concept of
lacunary statistically convergent sequences for Banach spaces.

Definition 4. Let X be a Banach space and θ = (kr) a lacunary sequence. A sequence x = (xk) is a lacunary
statistically convergent sequence to L ∈ X if given ε > 0,

dθ({k ∈ Ir : ‖xk − L‖ ≥ ε}) = 0,

or equivalently,
dθ({k ∈ Ir : ‖xk − L‖ < ε}) = 1,



Mathematics 2020, 8, 1066 3 of 10

we say that (xk) is Sθ-convergent and we write xk →
Sθ

L.

Theorem 1. Let X be a Banach space and (xk) a sequence in X. Notice that Sθ and Nθ are regular methods.

Proof.

1. If (xk)→ L, then (xk)→
Nθ

L.

Let ε > 0, then there exists k0 such that if k ≥ k0, then

‖xk − L‖ < ε.

Hence there exists r0 ∈ N with r0 ≥ k0 such that if r ≥ r0 we have

1
hr

∑
k∈Ir

‖xk − L‖ < 1
hr

∑
k∈Ir

ε =
hr

hr
ε = ε

which implies that lim
r→∞

1
hr

∑
k∈Ir

‖xk − L‖ = 0.

2. If (xk)→ L, then (xk)→
Sθ

L.

Simply observe that since (xk) → L, given ε > 0 there exists k0 such that for every k ≥ k0 we
get card({k ∈ Ir : ‖xk − L‖ ≥ ε}) = 0, which implies dθ({k ∈ Ir : ‖xk − L‖ ≥ ε}) = 0 for every
k ≥ k0.

The reverse is not true, as we will show in Example 1, in which we introduce an unbounded
sequence that is Nθ-summable and Example 2 where an unbounded Sθ convergent sequence
is presented.

Example 1. There exist unbounded sequences which are Nθ-summable.
Let θ = (kr) be the lacunary sequence with k0 = 0 and kr = 2r. Notice that

• h1 = k1 − k0 = 2 and hr = 2r−1 for every r ≥ 2.
• I1 = (k0, k1] = (0, 2] and Ir = (2r−1, 2r] for every r ≥ 2.

Consider the sequence defined by

xk =

{
0 if k 6= 2j for all j,

j− 1 if k = 2j for some j.

Notice that (xk) is unbounded and observe that

∑
k∈Ir

|xk − 0|

hr
=


0 if r = 1,

r− 1
2r−1 if r ≥ 2,

 −→r→∞
0,

which implies that xk →
Nθ

0.

Fridy and Orhan [10] showed that Nθ and Sθ are equivalent for real-valued bounded sequences.
This fact also holds for Banach spaces and we include the proof for the sake of completeness.

Theorem 2. Let X be a Banach space, (xk) a sequence in X and θ = (kr) a lacunary sequence. Then:



Mathematics 2020, 8, 1066 4 of 10

1. (xk)→
Nθ

L implies (xk)→
Sθ

L.

2. (xk) bounded and (xk)→
Sθ

L imply (xk)→
Nθ

L.

Proof. 1. If (xk)→
Nθ

L, then for every ε > 0,

∑
k∈Ir

‖xk − L‖ ≥ ∑
k∈Ir

‖xk−L‖≥ε

‖xk − L‖ ≥ ε card({k ∈ Ir : ‖xk − L‖ ≥ ε}),

which implies that (xk)→
Sθ

L.

2. Let us suppose that (xk) is bounded and (xk)→
Sθ

L. Since (xk) is bounded, there exists M > 0

such that ‖xk − L‖ ≤ M for every k ∈ N. Given ε > 0,

1
hr

∑
k∈Ir

‖xk − L‖ = 1
hr

∑
k∈Ir

‖xk−L‖≥ε

‖xk − L‖+ 1
hr

∑
k∈Ir

‖xk−L‖<ε

‖xk − L‖

≤ M
hr

card({k ∈ Ir : ‖xk − L‖ ≥ ε}) + ε,

so we deduce that (xk)→
Nθ

L.

Next, we give an example to illustrate that the hypothesis over the sequence to be bounded is
necessary and cannot be removed.

Example 2. There exist unbounded Sθ-convergent sequences to L which are not Nθ-summable to L.
Let θ = (kr) be the lacunary sequence with k0 = 0 and kr = 2r. Notice that

• h1 = k1 − k0 = 2 and hr = 2r−1 for every r ≥ 2.
• I1 = (k0, k1] = (0, 2] and Ir = (2r−1, 2r] for every r ≥ 2.

Consider the sequence defined by

xk =

{
0 if k 6= 2j for all j,
2j if k = 2j for some j.

Given ε > 0, it is easy to show that
card({k ∈ Ir : |xk − 0| ≥ ε})

hr
→ 0 as r → ∞, which implies that

(xk)→
Sθ

0. Also, notice that (xk) is an unbounded sequence. However,

∑
k∈Ir

|xk − 0|

hr
=


2
2
= 1 if r = 1,

2r

2r−1 = 2 if r ≥ 2,


−→
r→∞

2,

which implies that xk 9
Nθ

0.

We now give the definition of lacunary statistically Cauchy sequences in Banach spaces as a
generalization of the definition for real-valued sequences by Fridy and Orhan in [11].
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Definition 5. Let X be a Banach space and θ = (kr) a lacunary sequence. A sequence x = (xk) is a lacunary
statistically Cauchy sequence if there exists a subsequence xk′(r) of xk such that k′(r) ∈ Ir for every r ∈ N,
lim
r→∞

xk′(r) = L for some L ∈ X and for every ε > 0,

lim
r→∞

1
hr

card({k ∈ Ir : ‖xk − xk′(r)‖ ≥ ε}) = 0,

or equivalently,

lim
r→∞

1
hr

card({k ∈ Ir : ‖xk − xk′(r)‖ < ε}) = 1.

In this case, we say that (xk) is Sθ-Cauchy.

An important result in [11] is the Sθ-Cauchy Criterion and some of the next theorems in this work
rely on it. This result can also be obtained for sequences in Banach spaces, and we include the proof
for the sake of completeness.

Theorem 3. Let X be a Banach space. A sequence (xk) in X is Sθ-convergent if and only if it is Sθ-Cauchy.

Proof. Let (xk) be an Sθ-convergent sequence in X and for every k ∈ N, we define Kj = {k ∈ N :

‖xk − L‖ < 1/j}. Observe that Kj ⊇ Kj+1 and
card(Kj ∩ Ir)

hr
→ 1 as r → ∞.

Set m1 such that if r ≤ m1 then card(K1 ∩ Ir)/hr > 0, i.e., K1 ∩ Ir 6= ∅. Next, choose m2 > m1 such
that if r ≥ m2, then K2 ∩ Ir 6= ∅. Now, for each m1 ≤ r ≤ m2, we choose k′r ∈ Ir such that k′r ∈ Ir ∩ K1,
i.e., ‖xk′r − L‖ < 1. Inductively, we choose mp+1 > mp such that if r > mp+1, then Ir ∩ Kp+1 6= ∅. Thus,
for all r such that mp ≤ r < mp+1, we choose k′r ∈ Ir ∩ Kp, and we have ‖xk′r − L‖ < 1/p.

Therefore, we have a sequence k′r such that k′r ∈ Ir for every r ∈ N and limr→∞ xk′r = L. Finally,

1
hr

card({k ∈ Ir : ‖xk − xk′r‖ ≥ ε}) ≤ 1
hr

card({k ∈ Ir : ‖xk − L‖ ≥ ε/2})

+
1
hr

card({k ∈ Ir : ‖xk′r − L‖ ≥ ε/2}).

Since (xk)→
Sθ

L and limr→∞ xk′r = L we deduce that (xk) is Sθ- Cauchy.

Conversely, if (xk) is a Cauchy sequence, for every ε > 0,

card({k ∈ Ir : ‖xk − L‖}‖ ≥ ε}) ≤card({k ∈ Ir : ‖xk − xk′r‖ ≥ ε/2})
+ card({k ∈ Ir : ‖xk′r − L‖ ≥ ε/2}).

Since (xk) is Sθ-Cauchy and limr→∞ xk′r = L, we deduce that (xk)→
Sθ

L.

3. The Statistical Lacunary Summability Space

Let us consider X a real Banach space, ∑i xi a series in X and θ = (kr) a lacunary sequence.
We define

SSθ

(
∑

i
xi

)
=

{
(ai)i ∈ `∞ : ∑

i
aixi is Sθ-summable

}
endowed with the supremum norm. This space will be named as the space of Sθ-summability
associated with ∑i xi. We will characterize the completeness of the space SSθ

(
∑i xi

)
in Theorem 4,

but first we need a lemma.
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Lemma 1. Let X be a real Banach space and suppose that the series ∑ xi is not wuC. Then there exist f ∈ X∗

and a null sequence (ai)i ∈ c0 such that

∑
i

ai f (xi) = +∞

and
ai f (xi) ≥ 0.

Proof. Since ∑∞
i=1 | f (xi)| = +∞, there exists m1 such that ∑m1

i=1 | f (xi)| > 2 · 2.
We define ai =

1
2 if f (xi) ≥ 0 and ai = − 1

2 if f (xi) < 0 for i ∈ {1, 2, . . . , m1}.
This implies that ∑m1

i=1 ai f (xi) > 2 and ai f (xi) ≥ 0 if i ∈ {1, 2, . . . , m1}.
Let m2 > m1 be such that ∑m2

i=m1+1 | f (xi)| > 22 · 22.

We define ai = 1
22 if f (xi) ≥ 0 and ai = − 1

22 if f (xi) < 0 for i ∈ {m1 + 1, . . . , m2}.
Hence ∑m2

i=m1+1 ai f (xi) > 22 and ai f (xi) ≥ 0 if i ∈ {m1 + 1, . . . , m2}. So we have obtained a sequence
(ai)i ∈ c0 with the above properties.

Theorem 4. Let X be a real Banach space and θ = (kr) a lacunary sequence. The following are equivalent:

(1) The series ∑i xi is weakly unconditionally Cauchy (wuC).
(2) The space SSθ

(∑i xi) is complete.
(3) The space of all null sequences c0 is contained in SSθ

(∑i xi).

Proof. (1)⇒(2): Since ∑ xi is wuC, the following supremum is finite:

H = sup

{∥∥∥∥∥ n

∑
i=1

aixi

∥∥∥∥∥ : |ai| ≤ 1, 1 ≤ i ≤ n, n ∈ N
}

< +∞.

Let (am)m ⊂ SSθ
(∑i xi) such that lim

m
‖am − a0‖∞ = 0, with a0 ∈ `∞. We will show that a0 ∈

SSθ
(∑i xi). Let us suppose without any loss of generality that ‖a0‖∞ ≤ 1. Then, the partial sums S0

k =

∑k
i=1 a0

i xi satisfy ‖S0
k‖ ≤ H for every k ∈ N, i.e., the sequence (S0

k) is bounded. Then, a0 ∈ SSθ
(∑i xi) if

and only if (S0
k) is Sθ-summable to some L ∈ X. According to Theorem 3, (S0

k) is lacunary statistically
convergent to L ∈ X if and only if (S0

k) is a lacunary statistically Cauchy sequence.
Given ε > 0 and n ∈ N, we obtain statement (2) if we show that there exists a sub-sequence (Sk′(r))

such that k′(r) ∈ Ir for every r, lim
r→∞

Sk′(r) = L and

dθ

(
{k ∈ Ir : ||S0

k − S0
k′(r)|| < ε}

)
= 1.

Since am → a0 in `∞, there exists m0 > n such that ‖am − a0‖∞ <
ε

4H
for all m > m0, and since

Sm0
k is Sθ−Cauchy, there exists k′(r) ∈ Ir such that lim

r→∞
Sm0

k′(r) = L for some L and

dθ

({
k ∈ Ir : ‖Sm0

k − Sm0
k′(r)‖ <

ε

2

})
= 1.

Consider r ∈ N and fix k ∈ Ir such that

‖Sm0
k − Sm0

k′(r)‖ <
ε

2
. (1)

We will show that ‖S0
k − S0

k′(r)‖ < ε, and this will prove that

{
k ∈ Ir : ‖Sm0

k − Sm0
k′(r)‖ <

ε

2

}
⊂ {k ∈ Ir : ‖S0

k − S0
k′(r)‖ < ε}.

Since the first set has density 1, the second will also have density 1 and we will be done.
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Let us observe first that for every j ∈ N,∥∥∥∥∥ j

∑
i=1

4H
ε
(am

i − am0
i )xi

∥∥∥∥∥ ≤ H,

for every m > m0, therefore

∥∥S0
j − Sm0

j

∥∥ =

∥∥∥∥∥ j

∑
i=1

(a0
i − am0

i )xi

∥∥∥∥∥ ≤ ε

4
. (2)

Then, by applying the triangular inequality,∥∥S0
k − S0

k′(r)

∥∥ ≤ ∥∥S0
k − Sm0

k

∥∥+ ∥∥Sm0
k − Sm0

k′(r)

∥∥+ ∥∥Sm0
k′(r) − S0

k′(r)

∥∥
<

ε

4
+

ε

2
+

ε

4
= ε.

where the last inequality follows by applying (1) and (2), which yields the desired result.
(2)⇒ (3): Let us observe that if SSθ

(∑i xi) is complete, then it contains the space of eventually
zero sequences c00 and therefore the thesis comes, since the supremum norm completion of c00 is c0.

(3)⇒ (1): By way of contradiction, suppose that the series ∑ xi is not wuC. Therefore there exists

f ∈ X∗ such that
∞

∑
i=1
| f (xi)| = +∞. By Lemma 1 we can construct inductively a sequence (ai)i ∈ c0

such that

∑
i

ai f (xi) = +∞

and
ai f (xi) ≥ 0.

Now we will prove that the sequence Sk = ∑k
i=1 ai f (xi) is not Sθ-summable to any L ∈ R. By way

of contradiction, suppose that it is Sθ-summable to L ∈ R, then we have

1
hr

card({k ∈ Ir : |Sk − L| ≥ ε}) = 1
hr

kr

∑
k=kr−1
|Sk−L|≥ε

1 →
r→∞

0.

Since Sk is an increasing sequence and Sk → ∞, there exists k0 such that |Sk − L| ≥ ε for every
k ≥ k0. Let us suppose that kr > k0 for every r. Hence,

1
hr

kr

∑
k=kr−1
|Sk−L|≥ε

1 =
hr

hr
= 1 9

r→∞
0,

which is a contradiction. This implies that Sk is not Sθ-convergent and this is a contradiction with (3).

4. The Strong Lacunary Summability Space

Let X be a real Banach space, ∑i xi a series in X and θ = (kr) a lacunary sequence. We define

SNθ

(
∑

i
xi

)
=

{
(ai)i ∈ `∞ : ∑

i
aixi is Nθ-summable

}
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endowed with the supremum norm. This will be named as the space of Nθ-summability associated
with the series ∑i xi. We can now present a theorem very similar to that of Theorem 4 but for the case
of Nθ-summability. Indeed Theorem 5 characterizes the completeness of the space SNθ

(
∑i xi

)
.

Theorem 5. Let X be a real Banach space and θ = (kr) a lacunary sequence. The following are equivalent:

(1) The series ∑i xi is weakly unconditionally Cauchy (wuC).
(2) The space SNθ

(∑i xi) is complete.
(3) The space of all null sequences c0 is contained in SNθ

(∑i xi).

Proof. (1)⇒ (2): Since ∑ xi is wuC, the following supremum is finite

H = sup

{∥∥∥∥∥ n

∑
i=1

aixi

∥∥∥∥∥ : |ai| ≤ 1, 1 ≤ i ≤ n, n ∈ N
}

< +∞.

Let (am)m ⊂ SNθ
(∑i xi) such that lim

m
‖am − a0‖∞ = 0, with a0 ∈ `∞.

We will show that a0 ∈ SNθ
(∑i xi).

Without loss of generality we can suppose that ‖a0‖∞ ≤ 1. Therefore the partial sums S0
k =

∑k
i=1 a0

i xi satisfy ‖S0
k‖ ≤ H for every k ∈ N, i.e., the sequence (S0

k) is bounded. Hence a0 ∈ SNθ
(∑i xi)

if and only if (S0
k) is Nθ-summable to some L ∈ X. Since (S0

k) is bounded, it is sufficient to show that
(Sk) is Sθ-convergent, thanks to to Fridy and Orhan’s Theorem ([10], Theorem 2.1) (see Theorem 2).
The result follows analogously as in Theorem 4.

(2)⇒ (3): It is sufficient to notice that SSθ
(∑i xi) is a complete space and it contains the space of

eventually zero sequences c00, so it contains the completion of c00 with respect to the supremum norm,
hence it contains c0.

(3)⇒ (1): By way of contradiction, suppose that the series ∑ xi is not wuC. Therefore there exists

f ∈ X∗ such that
∞

∑
i=1
| f (xi)| = +∞. By Lemma 1 we can construct inductively a sequence (ai)i ∈ c0

such that ∑i ai f (xi) = +∞ and ai f (xi) ≥ 0.
The sequence Sk = ∑k

i=1 ai f (xi) is not Nθ-summable to any L ∈ R.
As Sk → ∞, for every A > 0, there exists k0 such that |Sk| > A if k ≥ k0. Then we have

1
hr

∑
k∈Ir

|Sk| >
hr A
hr

= A.

Hence Sk is not Nθ-summable to any L ∈ R, otherwise

∞← 1
hr

∑
k∈Ir

|Sk| ≤ |L|+
1
hr

∑
k∈Ir

|Sk − L| → |L|

We can conclude that Sk is not Nθ-convergent, a contradiction with (3).

5. Characterizations of the Completeness of a Banach Space

A Banach space X can be characterized by the completeness of the space SNθ
(∑k xk) for every

wuC series ∑k xk, as we will show next.

Theorem 6. Let X be a normed real vector space. Then X is complete if and only if SNθ
(∑k xk) is a complete

space for every weakly unconditionally Cauchy series (wuC) ∑k xk.

Proof. Thanks to Theorem 4, the condition is necessary.
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Now suppose that X is not complete, hence there exists a series ∑ xk in X such that ‖xk‖ ≤
1

k2k
and ∑ xk = x∗∗ ∈ X∗∗ \ X.

We will provide a wuC series ∑k yk such that SNθ
(∑k yk) is not complete, a contradiction.

Set SN =
N

∑
k=1

xk. As X∗∗ is a Banach space endowed with the dual topology, sup
‖y∗‖≤1

|y∗(SN)−

x∗∗(y∗)| tends to 0 as N → ∞, i.e.,

lim
N→+∞

y∗(SN) = lim
N→+∞

N

∑
k=1

y∗(xk) = x∗∗(y∗), for every ‖y∗‖ ≤ 1. (3)

Put yk = kxk and let us observe that ‖yk‖ < 1
2k . Therefore ∑ yk is absolutely convergent, thus it is

unconditionally convergent and weakly unconditionally Cauchy.

We claim that the series ∑
k

1
k

yk is not Nθ-summable in X.

By way of contradiction suppose that SN = ∑N
k=1

1
k yk is Nθ-summable in X, i.e., there exists L in

X such that lim
r→∞

1
hr

∑
k∈Ir

‖Sk − L‖ = 0. This implies that

lim
r→+∞

1
hr

∑
k∈Ir

y∗(Sk) = y∗(L), for every ‖y∗‖ ≤ 1. (4)

From Equations (3) and (4), the uniqueness of the limit and since Nθ is a regular method, we have
x∗∗(y∗) = y∗(L) for every ‖y∗‖ ≤ 1, so we obtain x∗∗ = L ∈ X, a contradiction. Hence SN = ∑N

k=1
1
k yk

is not Nθ-summable to any L ∈ X.
Finally, let us observe that since ∑k yk is a weakly unconditionally Cauchy series and SN =

∑N
k=1

1
k yk is not Nθ-summable, we have ( 1

k ) /∈ SNθ
(∑k yk) and this means that c0 * SNθ

(∑k yk) which
is a contradiction with Theorem 5(3), so the proof is complete.

By a similar argument and taking into account Theorem 2, we have also the characterization for
the Sθ-summability:

Theorem 7. Let X be a normed real vector space. Then X is complete if and only if SSθ
(∑i xi) is a complete

space for every weakly unconditionally Cauchy series (wuC) ∑i xi.

Let 0 < p < +∞, the sequence (xn) is said to be strongly p-Cesàro or wp-summable if there is
L ∈ X such that

lim
n

1
n

n

∑
i=1
‖xi − L‖p = 0;

in this case we will write (xk)→wp
L and L = wp − limn xn. Let ∑ xi be a series in a real Banach space X,

let us define

Swp

(
∑

i
xi

)
=

{
(ai)i ∈ `∞ : ∑

i
aixi is wp-summable

}
endowed with the supremum norm. We refer to [16] for other properties of the space Swp(∑i xi).

Finally, from Theorem 6, Theorem 7 and ([16], Theorem 3.5), we derive the following corollary.

Corollary 1. Let X be a normed real vector space and p ≥ 1. The following are equivalent:

1. X is complete.
2. SNθ

(∑k xk) is complete for every weakly unconditionally Cauchy series (wuC) ∑k xk.
3. SSθ

(∑k xk) is complete for every weakly unconditionally Cauchy series (wuC) ∑k xk.
4. Swp(∑k xk) is complete for every weakly unconditionally Cauchy series (wuC) ∑k xk.
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