
mathematics

Article

Spatiotemporal Pattern Formation in a Prey-Predator
System: The Case Study of Short-Term Interactions
Between Diatom Microalgae and Microcrustaceans

Yuri V. Tyutyunov 1,* , Anna D. Zagrebneva 2 and Andrey I. Azovsky 3,4

1 Southern Scientific Centre of the Russian Academy of Sciences (SSC RAS), Chekhov Street, 41,
Rostov-on-Don 344006, Russia

2 Faculty of IT Systems and Technologies, Don State Technical University (DSTU), Gagarin Square, 1,
Rostov-on-Don 344000, Russia; anna.zagrebneva@gmail.com

3 Faculty of Biology, Lomonosov Moscow State University (MSU), Leninskie Gory, 1-12,
Moscow 119991, Russia; aiazovsky@mail.ru

4 Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskiy Prospekt, 36,
Moscow 117218, Russia

* Correspondence: yuri.tyutyunov@yandex.ru

Received: 16 May 2020; Accepted: 23 June 2020; Published: 1 July 2020
����������
�������

Abstract: A simple mathematical model capable of reproducing formation of small-scale spatial
structures in prey–predator system is presented. The migration activity of predators is assumed
to be determined by the degree of their satiation. The hungrier individual predators migrate more
frequently, randomly changing their spatial position. It has previously been demonstrated that such
an individual response to local feeding conditions leads to prey–taxis and emergence of complex
spatiotemporal dynamics at population level, including periodic, quasi-periodic and chaotic regimes.
The proposed taxis–diffusion–reaction model is applied to describe the trophic interactions in system
consisting of benthic diatom microalgae and harpacticoid copepods. The analytical condition for the
oscillatory instability of the homogeneous stationary state of species coexistence is given. The model
parameters are identified on the basis of field observation data and knowledge on the species ecology
in order to explain micro-scale spatial patterns of these organisms, which still remain obscure, and to
reproduce in numerical simulations characteristic size and the expected lifetime of density patches.

Keywords: taxis-diffusion-reaction; Patlak-Keller-Segel model; indirect prey-taxis; cross-diffusion;
chaos; pattern formation

1. Introduction

In nature, spatial distribution of benthic copepod crustaceans (order Harpacticoida) is highly
heterogeneous, varying over a wide range of spatial and temporal scales. Field-surveys data provide
evidence for the dependence of relatively stable patterns observed at spatial scales of kilometers and
larger on inhomogeneities of physical-chemical factors. The causes of smaller-scale patchiness varying
from centimeters to several meters are less clear [1–6]. It is reasonable to assume that the prevailing
mechanism causing the small-scale spatial heterogeneity of harpacticoid population density is related
to species biology and behavior [1,2].

Mathematical modelling can help to reveal the key factors that lead to emergence of consumer
patches. In particular, it is important to understand whether the realistic spatiotemporal dynamics
could be reproduced in the model with feasible parameter values and simulation scenarios. A discrete
cellular automata-based simulation model of the microalgae–harpacticoid system was recently
presented in [7]. In the present work, in order to describe the observed small-scale dynamic patterns
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of copepod crustacean population we use an alternative approach based on a continuous spatial
prey–predator model accounting for indirect prey–taxis, that was suggested earlier in [8]. The model is
a taxis–diffusion–reaction system of partial differential equations (PDEs), describing the prey–taxis with
the Patlak–Keller–Segel (PKS) flux of harpacticoid population density [9,10]. Rigorous substantiation
of using the PKS-flux expression for abundant animals performing sporadic stick-slip replacements
of individuals being locally stimulated by an external factor is given in [11]. Mathematical models
of this type are of theoretical and practical importance in various fields of science, including biology,
medicine and biophysics (see [12] and references therein).

2. Mathematical Model

We consider the following prey–predator model describing spatiotemporal dynamics of
diatom–harpacticoid trophic system within a closed rectangular habitat Ω = [0, Lx]×

[
0, Ly

]
:

∂R
∂t

= rR
(

1− R
K

)
− aRN + δR∆R; (1)

∂N
∂t

= −∇· (χ(S)N∇S− µ(S)∇N) ; (2)

∂S
∂t

= εaR− ηS, (3)

with zero-flux boundary conditions

(n · ∇R)
∣∣∣
(x,y)∈∂Ω

= (n · ∇N)
∣∣∣
(x,y)∈∂Ω

= (n · ∇S)
∣∣∣
(x,y)∈∂Ω

= 0, (4)

and non-negative initial distributions

R
∣∣
t=t0

= ϕR, N
∣∣
t=t0

= ϕN , S
∣∣
t=t0

= ϕS. (5)

Here variables R ≡ R(x, y, t) and N ≡ N(x, y, t) are the densities of prey (resource – microalgae) and
predator (consumer – harpacticoids) population respectively; S ≡ S(x, y, t) is the degree of satiety of
the consumer, which is determined by the mean amount of food in the gut of a copepod hypothetically
situated in spatial position x =(x, y) at time t. Parameters of model (1)–(4) are as follows: r is the
reproduction rate and K is the carrying capacity for the prey population; a is the searching efficiency,
i.e., the area searched by individual predator per unit of time; χ(S) is the taxis coefficient; ε is the
assimilation efficiency coefficient, i.e., εaR is the amount of food ingested per unit of time by an
individual predator; η is the digestion coefficient, i.e., ηS is the amount of food digested per unit of
time; δR and µ(S) are the diffusion coefficients of prey and predator densities.

Since the density of microalgae of preferred size is often limited compared to the harpacticoid
requirement [3], the predator trophic function is approximated by the Lotka — Volterra function aR,
as typical of many crustaceans [13] including harpacticoids [14]. The model includes no terms for
predator birth and death, because the demographic processes in the predator population are far
slower than in the prey population, so the total abundance of predators can reasonably be considered
a constant.

Movements of predator density in (2) is modeled with the Patlak–Keller–Segel flux expression
J = χ(S)N∇S− µ(S)∇N that includes both taxis and diffusion terms [9,10]. In [11] for the case study
of copepod movements we have proved applicability of the PKS-flux model to sporadically migrating
organisms. The model is based on an assumption that there are two phases of individual movements
of animals: (i) the act of migration (in the case of harpacticoid copepods this is a coming out of the
bottom sediment into the water column); (ii) horizontal displacement. The sequence of events of
the first phase is the simplest Poisson process with variable frequency. The distance of individual
displacement at the second phase is described by a random quantity obeying the normal distribution
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with zero mean. According to our earlier study [11], the diffusion coefficient µ(S) is related with the
taxis coefficient χ(S) and frequency of copepod egress into water f (S) as follows:

µ(S) = l̄2τ f (S)/2; χ(S) = −dµ(S)/dS, (6)

where l̄2 is the average squared value of individual replacement within time τ.
Being qualitatively equivalent to the diffusion and taxis coefficients of the classical PKS model

of bacterial chemotaxis [9,10], functions (6) depend on the level of satiety S. Note that individuals
don’t sense the stimulus gradient. The flux expression in (2) is deduced from the hypothesis that
individuals migrate randomly. The taxis response of the predator organisms to spatial variations of
stimulus appears here due to the satiety-dependent migration activity of individuals. For positive
taxis the frequency function f (S) should be decreasing. The deduction details can be found in [11].

The dimensions and meanings of variables and parameters of the model (1)–(5) describing
dynamics of a diatom–harpacticoid trophic system are presented in Tables 1 and 2 respectively.

Table 1. Dimension of variables in model (1)–(5).

Variable Meaning Dimension Units

x, y Spatial coordinates cm

t Time min
R(x, y, t) Density of diatom microalgae population algal cells

cm2

N(x, y, t) Density of harpacticoid population ind.
cm2

S(x, y, t) Satiety of harpacticoid algal cells
ind.cm2

Table 2. Dimension of parameters in model (1)–(5).

Parameter Meaning Dimension Units

r Reproduction rate of algal population 1
min

K Carrying capacity of algal population algal cells
cm2

a Searching efficiency of individual copepod cm2

min·ind.
ε Assimilation coefficient of algal cells –
η Digestion rate of algal cells 1

min

δR Diffusion coefficient of algal population cm2

min

µ(S) Diffusion coefficient of harpacticoid population cm2

min
τ Minimum temporal resolution of the model min
l2 Mean squared length of individual replacement within τ cm2

min

f (S) Frequency of copepod egress into water 1
min

χ(S) Taxis coefficient of harpacticoid population cm2ind.
(algal cells)·min

Owing to boundary conditions (4) the spatially averaged over the domain Ω density of the
consumer population 〈N〉 def

= 1
|Ω|
∫

Ω Ndx is time-costant, being in fact the model parameter in (1)–(5),

defined by the function ϕN (x, y) appearing in initial conditions (5): 〈N〉 = const = 1
|Ω|
∫

Ω ϕNdx.
In order to reduce the number of parameters, the model (1)–(5) can be equivalently represented in

a dimensionless form by using dimensionless variables and parameters shown in Table 3.
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Table 3. Dimensionless variables and parameters of model (7)–(11).

Variables Parameters Initial Conditions

x̃ = x
Lx

, ỹ =
y
Lx

δ̃R = δR
rL2

x
ϕ̃R =

ϕR
K

t̃ = rt µ̃
(
S̃
)
= µ

(
εaKS̃

r

)
1

rL2
x

ϕ̃N =
αϕN

r

R̃ = R
K χ̃

(
S̃
)
= χ

(
εaKS̃

r

)
εaK
r2 L2

x
ϕ̃S =

rϕS
εaK

Ñ = aN
r η̃ =

η
r

S̃ = rS
εaK L̃ =

Ly
Lx

The dimensionless model is represented by PDE system

∂R̃
∂t̃

= R̃
(
1− R̃

)
− R̃Ñ + δ̃R∆R̃; (7)

∂Ñ
∂t̃

= −∇·
(
χ̃(S̃)Ñ∇S̃− µ̃(S̃)∇Ñ

)
; (8)

∂S̃
∂t̃

= R̃− η̃S̃, (9)

with zero-flux boundary conditions

(
n · ∇R̃

) ∣∣∣∣
(x̃,ỹ)∈∂Ω̃

=
(
n · ∇Ñ

) ∣∣∣∣
(x̃,ỹ)∈∂Ω̃

=
(
n · ∇S̃

) ∣∣∣∣
(x̃,ỹ)∈∂Ω̃

= 0, (10)

and non-negative initial distributions

R̃
∣∣∣
t̃=t̃0

= ϕ̃R; Ñ
∣∣∣
t̃=t̃0

= ϕ̃N ; S̃
∣∣∣
t̃=t̃0

= ϕ̃S, (11)

where Ω̃ = [0, 1]×
[
0, L̃
]
. Hereinafter we will drop the tildes for notational convenience.

The boundary-initial problem (7)–(11) has two spatially-homogeneous stationary solutions:

(R1, N1, S1) = (0, 〈N〉, 0) ; (R2, N2, S2) =

(
1− 〈N〉, 〈N〉, 1− 〈N〉

η

)
(12)

that correspond to equilibria of the non-spatial system describing local kinetics of spatial model (7)–(11).
The first homogeneous stationary solution in (12) corresponds to situation when microalgae population
is completely devoured by copepods. The second one represents the equilibrium coexistence of species.

Paper [8] presents the results of an analytical study of the stability of (R2, N2, S2) with respect
to small spatially-heterogeneous perturbations. It has been shown that the homogeneous stationary
regime of species coexistence in model (7)–(11) remains stable while

T2

(
k2

mp, 〈N〉, δR, µ (S2) , χ (S2) , η
)
= k6

mpδRµ (S2) (δR + µ (S2)) +

+k4
mp

(
η (µ (S2) + δR)

2 + µ (S2) R2 (µ (S2) + 2R2)
)
+

+k2
mp

(
(R2 + η)2 µ (S2) + δRη (η + 2R2)− R2〈N〉χ (S2)

)
+ (R2 + η) R2η > 0

(13)

for all wavenumbers kmp defined as

k2
mp = π2

(
m2 +

p2

L2

)
(m, p = 0,±1,±2, . . .) . (14)
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The wavenumbers kmp correspond to two-dimensional modes of a Fourier expansion of small
spatially-heterogeneous perturbation of stationary state (R2, N2, S2), which, in order to satisfy the
boundary conditions (10), have the following form:

r(x, y, t) = ∑
m,p

rmp cos (πmx) · cos
(πpy

L

)
· eλmpt;

n(x, y, t) = ∑
m,p

nmp cos (πmx) · cos
(πpy

L

)
· eλmpt;

s(x, y, t) = ∑
m,p

smp cos (πmx) · cos
(πpy

L

)
· eλmpt.

Violation of stability condition (13) for some wavenumber kmp causes emergence of complex
spatially-heterogeneous dynamics due to the Hopf bifurcation of the homogeneous solution
(R2, N2, S2) [8]. It is worth noting that spatially-heterogeneous dynamics cannot emerge in system
(7)–(10) if the predator does not exhibit prey–taxis activity. Indeed, in order to violate inequality
(13), the value of the prey–taxis coefficient at the coexisting stationary state χ (S2) should be higher
than some critical threshold which, as it is seen from expression for T2, theoretically exists for any
admissible values of the model parameters (though in the nature, movement ability of a consumer
can be restricted by the energy cost of movements). Example of critical curves computed for various
spatial modes (m, p) according to stability condition (13) is given in Appendix A (see Figure A1).

According to Equation (6), both the diffusion coefficient µ (S) and the taxis coefficient χ (S)
depend on the frequency of copepod egress into water, f (S). Function f (S) represents the local
dependence of the frequency on the copepod satiety S (x) (migration stimulus in system (7)–(9)) at
spatial position (x, y). What could the form of this function be?

For all we know, there are no observations that directly link the individual satiation of a copepod
with its motility. Though there are indirect data suggesting that the frequency of copepod’s relocation
jumps diminishes with increase of the food concentration [15]. Field experiments (e.g., [16] and
[Azovsky, unpublished data]) also show that presence of the microalgae culture in the sediment
noticeably delays vertical migration of harpacticoids: copepods leave sediment depleted of food
several times more intensively than that with food objects.

Based on these indirect observations, we can corroborate the fundamental assumption
about the frequency of copepod egress into water: function f (S) is decreasing with S.
Hungry consumers–harpacticoids with a small amount of food in their guts, more frequently leave the
sediment and then move horizontally. Vice versa, food-replete harpacticoids almost constantly stay
in the sediment to feed. With the help of individual-based and continuous models for sporadically
migrating organisms it was demonstrated in [11] that such feeding behavior causes aggregation of
the consumers in favorable locations of higher copepod satiety S, which plays the role of migration
stimulus in model (7)–(11). For both individual-based and continuous models in [11] the frequency
function was taken as f (S) = k1e−k2S, where k1 and k2 are positive constants. However, the numerical
simulations show that qualitatively the same dynamics can be obtained with other positive decreasing
functions f (S) approaching zero at infinity. Here we consider the following dependence of the
frequency of copepod egress into water from the satiety of harpacticoid stomach S:

f (S) = k1/
(

1 + k2S2
)

, (15)

where k1 and k2 are positive constants. Thus, the diffusion and taxis coefficients of harpacticod
population are respectively

µ(S) =
l̄2τk1

2 (1 + k2S2)
and χ(S) =

l̄2τk1k2S

(1 + k2S2)
2 . (16)
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The purpose of this paper is to test whether the model (7)–(11) with frequency function
(15) is capable to qualitatively reproduce the observed small-scale dynamic patterns of diatom
and harpacticoid populations. If so, this could confirm that simple behavioral reaction, i.e., the
consumer’s individual migration activity driven by local nutritional conditions, is enough to explain
the spatiotemporal patterns observed in natural prey–predator systems.

3. Numerical Study

3.1. Numerical Approximation

For numerical integration of the dimensionless continuous model (7)–(11) over the rectangular
habitat domain Ω = [0, 1] × [0, L] the following scheme was applied. We use a regular spatial
grid {

(
xi, yj

)
=
(
ihx, jhy, i = 0, . . . , Mx, j = 0, . . . , My

)
} with step hx = 1/Mx on axis X and step

hx = 1/My on axis Y. Let Ri,j(t) = R
(
xi, yj, t

)
, Ni,j(t) = N

(
xi, yj, t

)
and Si,j(t) = S

(
xi, yj, t

)
denote respectively the densities of prey (microalgae), predator (harpactiod) and stomach satiety
of harpacticoid in each node of the spatial grid. The approximation of system (7)–(9) in internal nodes
of the grid

(
i = 1, . . . , Mx − 1, j = 1, . . . , My − 1

)
is the following system of ODEs:

dRi,j

dt
= Ri,j

(
1− Ri,j − Ni,j

)
+

+ δR

(
Ri+1,j − 2Ri,j + Ri−1,j

h2
x

+
Ri,j+1 − 2Ri,j + Ri,j−1

h2
y

)
;

(17)

dNi,j

dt
= − 1

hx

(
ax

i+1,j
Si+1,j − Si,j

hx
+ ax

i,j
Si,j − Si−1,j

hx

)
+

+
1
hx

(
bx

i+1,j
Ni+1,j − Ni,j

hx
+ bx

i,j
Ni,j − Ni−1,j

hx

)
−

− 1
hy

(
ay

i,j+1
Si,j+1 − Si,j

hy
+ ay

i,j
Si,j − Si,j−1

hy

)
+

+
1
hy

(
by

i,j+1
Ni,j+1 − Ni,j

hy
+ by

i,j
Ni,j − Ni,j−1

hy

)
;

(18)

dSi,j

dt
= Ri,j − ηSi,j, (19)

where coefficients ax
i.j, ay

i.j and bx
i.j, by

i.j take the following values:

ax
i,j =

{
χ
(
Si−1,j

)
Ni−1,j, Si−1,j < Si,j,

χ
(
Si,j
)

Ni,j, Si−1,j > Si,j;
(20)

ay
i,j =

{
χ
(
Si,j−1

)
Ni,j−1, Si,j−1 < Si,j,

χ
(
Si,j
)

Ni,j, Si,j−1 > Si,j;
(21)

and

bx
i,j =

{
µ
(
Si−1,j

)
, Ni−1,j < Ni,j,

µ
(
Si,j
)

, Ni−1,j > Ni,j;
(22)

by
i,j =

{
µ
(
Si,j−1

)
, Ni,j−1 < Ni,j,

µ
(
Si,j
)

, Ni,j−1 > Ni,j.
(23)

On the boundaries, system (7)–(11) was approximated with the central differences, introducing
dummy nodes and taking into account boundary conditions (10).
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Approximation (17)–(23) is an upstream finite difference scheme built according to standard
approaches [17,18]. As proved in [19], (i) this scheme saves the conservancy property of the initial
continuous model (7)–(11) (i.e., the total abundance of predators in the system is kept constant); (ii) the
equilibria (12) are also equilibria of (17)–(23); (iii) the stability condition analytically obtained in [11] for
the non-trivial stationary homogeneous regime of model (7)–(11) holds true with high accuracy for the
discretized model (17)–(23). Paper [19] presents examples of spatially-heterogeneous dynamic regimes
obtained by simulation with the discretized approximation to the dimensionless model (7)–(11) for
small supercritical values of bifurcation parameters and various sizes of spatial domain Ω.

Spatial grid built with Mx and My regular nodes along X and Y axes respectively, results in
a high-dimensional system of 3× Mx × My ordinary differential equations (ODEs), which is then
integrated by the Runge — Kutta method of the fifth order RKF45 improved by Richardson, with
precision control and automatic time-step selection [20]. The minimum number of nodes taken in the
simulations was Mx = My = 100, producing a system of 3× 100× 100 = 30,000 ODEs. The accuracy
of spatial discretization was checked on doubled grid. The integration method is realized in C++ on a
High-Performance Computing Cluster “Blokhin”; visualization of solutions was obtained with the
MATLAB development environment.

3.2. Simulations

In order to compare simulated pattern with these akin to observed in nature, we shall first choose
realistic values of the model parameters. We do this basing on the following knowledge about the
modelled species.

The diatom microalgae cells replicate 1–3 times per day, thus r ∈ [0.0006, 0.0015]. The average
amount of the diatoms is 0.1–5 × 106 cells per cm2, i.e., 〈R〉 def

= 1
|Ω|
∫

Ω Rdx ∈ [0.1, 5] × 106.
The maximum possible density of microalgae can be 5–10 times higher than the average level,
i.e., K ∈ [2.5, 50] × 106. The average harpacticoid density is 20–50 ind. per cm2, thus 〈N〉 def

=
1
|Ω|
∫

Ω Ndx ∈ [20, 50]. The average number of algal cells per a copepod gut is 150–800 cells, i.e.,

〈S〉 def
= 1
|Ω|
∫

Ω Sdx ∈ [150, 800]. The maximum ration of the harpacticoid copepod come to 10–15 cells

per minute, i.e., max (εaR) 6 15. The mean squared length of individual copepod replacement l2 is
estimated as 25 cm2 per minute with temporal resolution of the model τ equal to 1 minute. The size of
a typical patch of harpacticoid aggregation varies from 0.5–1 cm2 to several square meters, though
patches of several square decimeters in size are prevailing. The expected lifetime of a patch is estimated
as several days.

The above-mentioned observations help choosing feasible values of the other parameters based
on simulation outcomes. In particular, coefficients of the frequency function (15) were assign as
k1 = 0.0066 and k2 = 1.4057× 10−4. Taking into account the ranges of variables and expressions for
the non-trivial stationary homogeneous regime (R2, N2, S2) in (12), one gets additional restrictions for
the model calibration:

K
(

1− a〈N〉
r

)
∈
[
0.1, 5× 106

]
and

εaK
η

(
1− a〈N〉

r

)
∈ [150, 800] .

Figures 1 and 2 represent stabilized numerical solution of model (1)–(4), (16) for spatial domain
Ω = [0, 200 cm]× [0, 200 cm] obtained with parameters presented in Table 4, where both dimensional
and dimensionless parameters converted according to conversion formulas in Table 3 are given.

Initially diatom population was distributed randomly. Namely, for the corresponding
dimensionless system (7)–(10), initial conditions (11) are determined by function ϕR = R2 + 0.001 · ξ,
where ξ is a random value uniformly distributed over [−1, 1]. Initial spatial distribution of the
harpacticoid copepod population was taken homogeneous, ϕN = 〈N〉, with equal amount of the
available food at each spatial position, i.e., ϕS = S2. Here R2 and S2 are the values of the dimensionless
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variables at homogeneous stationary solution (12). The discrete approximation of the model (17)–(23)
was built with regular spatial grid with Mx = My = 150 (system of 67,000 ODEs).

Table 4. Values of the model parameters used in simulations.

Parameter Dimensional Model (1)–(4), (16) Dimensionless Model (7)–(10), (16)

r 0.001 1
Lx 200 1
Ly 200 1
K 1× 107 1
a 4.5× 10−5 1
ε 7.4089× 10−4 1
η 1.667× 10−4 0.1667
δR 10−3 2.5× 10−5

〈N〉 20 0.9

Figure 1. Snapshots of spatial distributions of diatom microalgae R
(
cells · cm−2), harpacticoid

copepods N
(
ind · cm−2), and satiety of individual harpacticoid S

(
algal cells · ind−1 · cm−2

)
at the

indicated moments of time, computed with model (1)–(6) for domain Ω = 200 cm× 200 cm.

The simulated pattern represents dynamic mosaics of patches arising and disappearing in a few
days. Temporally emerging aggregations of the harpacticoid copepods move towards areas of higher
values of the trophotaxis stimulus S, locally depleting the microalgae population. The shapes and
sizes of simulated patches of the copepods vary widely in time and in space from small temporal
formations of a few square centimeters to large aggregations covering several square decimeters.
The average density of copepods in the simulated aggregations exceeds 30 individuals per square
centimeter. The spatial pattern evolves rapidly in time, changing radically and unpredictably. Basing on
observations on the microalgae population distribution in Figure 1, only a rough guess can be
made regarding spatial location of aggregations of copepod in the future. Spatiotemporal plot in
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Figure 2, presenting dynamics of the model variables at section y = 50 cm of the considered domain
Ω = [0, 200 cm]× [0, 200 cm], helps revealing that patch of harpacticoid density emerges during period
varying from 3 to 7 days after formation of a patch of diatom microalgae. However, a short increase of
algal density does not immediately cause forming the copepod patch in that location. The changes in
distribution of the trophotaxis stimulus S start before the changes in spatial pattern of the consumer
density N. To be effectively attractive for the migrating consumer, favorable conditions should last
during some period specific for the harpacticoid copepods.

Figure 2. Spatiotemporal dynamics of variables R, N, S at section y = 50 cm of domain Ω.

Figure 3 presents projection of the model trajectory onto the plane (〈R〉, 〈S〉) of the above-defined
spatially averaged density of microalgae and individual satiety of harpacticoid. The trajectory
demonstrates chaotic oscillations that correspond to stabilized dynamics of the model.

Noteworthily, point (R2, S2) representing in Figure 3 spatially homogeneous solution
(R2, N2, S2) =

(
106, 20, 200

)
, is situated noticeably to the left and below of the domain occupied

by the migration-model trajectory. In other words, this stationary homogeneous state which is stable
without prey–taxis, corresponds to the situation of overgrazing (permanently low abundance of prey
tightly controlled by permanently hungry predator). Due to their spatial feeding behavior, harpacticoid
copepods increase both individual consumption and density of microalgae population, by maintaining
spatially-heterogeneous dynamics of the ecosystem. We have also computed the Fourier transform of
the average prey density 〈R〉 and built the projection onto the phase plane (〈R〉, 〈S〉) of the Poincaré
section defined by the hyperplane N (50, 50, t) = 〈N〉. The results of these computations shown in
Figure 4 provide additional evidences of complexity of the simulated dynamics. In particular, Figure 4a
shows a broad banded amplitude spectrum over a large frequency span what is a typical indication
of chaos (compare this spectrum with plot obtained for clearly periodic dynamics in Figure A3).
The cloud-like Poincaré map in Figure 4b, which does not consist of either a finite set of points or a
closed orbit, presents another sign of chaotic behaviour of the model (see, e.g., [21]). Additionally,
the Fourier analysis reveals presence of a periodic component in simulated oscillation; there is a peak
amplitude at frequency 0.1188 day−1 which corresponds to dominating period of 8.42 days.
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Figure 3. Phase trajectory of model (1)–(6), (15) in the plane of spatially averaged values (〈R〉, 〈S〉).
Parameters are given in Table 4. Point (R2, S2) depicts the unstable stationary homogeneous state.

(a) (b)

Figure 4. (a) The Fourier spectrum of the average prey density 〈R〉. (b) Projection onto the phase plane
(〈R〉, 〈S〉) of the Poincaré map defined by the hyperplane N (50, 50, t) = 〈N〉.

4. Discussion and Conclusions

System (1)–(6) describes a spatial prey–predator model with slowly diffusive (almost immobile,
as compared with predator) prey (microalgae) and actively-mobile predator (copepods). In the model
presented here (hereinafter referred to as TZA model), predator’s migrations are explicitly formalized
as indirect (or equivalently, inertial) prey–taxis stimulated by the degree of starvation, which leads
to the Patlak–Keller–Segel flux of the predator population density [8,11]. As shown in [22–29], in the
frameworks of the taxis–diffusion–reaction systems this approach enables us to account for the inertial
delay in the consumer’s response to varying distribution of the prey. Recently, another model of the
same biological system has been presented in [7] (hereinafter referred to as SA model). The main
differences of these two models are following:
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1. The TZA model is continuous in both space and time, while the cellular automata-based SA model
is spatially discrete;

2. Migration process is continuous in TZA but periodic (semidiurnal) in SA model, imitating the
tidal rhythm;

3. in TZA, the environment is spatially homogenous, while both cases (homogeneous and
heterogeneous environment for prey) are considered in SA model;

4. In both models, the predator migrations are simulated as random walk; the distances of movement
are unrestricted (normally distributed) in TZA, while restricted (either equiprobably distributed in
a fixed neighborhood of a starting point or partly directed by a taxis) in SA model;

5. Functional response of predator is the Lotka–Voltera (linear) in TZA but the Holling type III
(sigmoid) in SA model;

6. The relationship between the frequency of predator migrations and their degree of starvation
(stimulus-response function) is described by inverse parabolic function (15) in TZA but by S-shaped
function in SA model.

Despite these differences in approaches applied, the two models yield principally similar results,
both producing complex spatiotemporal dynamics of the studied biological system. In simulations
under biologically realistic values of parameters, both models demonstrate plausible features of the
modelled distribution of prey and predator populations. In particular, the spatial scale of patchiness
(i.e., characteristic sizes of patches) is similar in both models and corresponds to that observed in
nature. This spatial pattern changes more slowly in SA model, because of the semidiurnal periodicity
of migrations, in contrast to continuous migrations assumed in TZA model. Thus, both models
rather adequately reproduce the micro-scale spatial pattern observed in natural populations of diatom
microalgae and harpacticoid copepods. It is significant to note that such chaotic behavior is intrinsic
property of the system and emerges in both models without any additional assumptions, such as
environmental heterogeneity, barriers for dispersal, non-local interactions or external disturbing forces.

The simple mechanism implied, namely, the increasing migration frequency as local response
of individual predator on its starvation, is sufficient to generate the complex spatiotemporal
behavior. Moreover, both SA and TZA models show that spatially-heterogeneous regimes appearing
with starvation-dependent migrations, as compared with stationary homogeneous regime without
prey–taxis, provide the significant advantage for both predator (increasing its food consumption
rate) and prey (increasing its average abundance). Thus, this implied mechanism is evolutionary
advantageous strategy, which allows prey and predator to coexist safely and avoid the collapse of
total overgrazing, and therefore increases the efficiency of the whole system. The effect of increased
viability of trophic system due to the active predator’s movements was earlier revealed for spatial
prey–predator models with the indirect (inertial) prey–taxis [22,23,27,30].

The proposed model of indirect prey–taxis (1)–(6), (15) qualitatively reproduces micro-scale
spatial pattern observed in natural diatom-harpacticoid trophic system. In particular, the model with
parameters fitted on the basis of field observations and current knowledge about ecology of the studied
species, enables the simulation of spatiotemporal chaotic dynamics with plausible characteristic size
and expected lifetime of the copepod density patches.

The cause of spatial heterogeneities in the model is the behavioral response of harpacticoid
copepods (predators) on distribution of diatom microalgae (prey). Migration activity of individual
harpacticoid depends on its satiety. Food-replete harpacticoides prefer to stay in their feeding
areas, very rarely coming out of the bottom sediment. The frequency of individual relocation-jumps
increases with starvation, causing the repeated horizontal migrations of a hungry copepod within
the water column, what gives the consumer a chance to reach a more suitable location. As shown
in [11], such individual behavior of copepods leads to prey–taxis observed at the level of population.
The prey–taxis term is explicitly included into the balance equation of predator population density
of system (1)–(3). Dense aggregations of harpacticoids and at the same time, temporal refuges for
diatoms in locations where copepods are virtually absent emerge in the system due to prey–taxis
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movements. This complex dynamics helps harpacticoids to overcome shortage of food by increasing
both individual consumption and total abundance of the diatom population.

In conclusion, we shall emphasize that the predator’s Equation (2) includes no terms for birth
and death of the harpacticoid populations because these demographic processes are much slower
than growth of the microalgal population and than spatial spread of the species densities. Under this
assumption, stationary homogeneous state (R2, N2, S2) of model (1)–(6) remains stable in the absence
of prey–taxis term in (2) (see also [8]). Thus, the model (1)–(6) can be viewed as the minimal
model capable of explaining and reproducing qualitatively realistic spatiotemporal dynamics of
the microalgae–harpacticoid system, which emerges solely due to spatial behavior of harpacticoid
copepods. Accounting for indirect prey–taxis in prey–predator models allows us to study such feeding
behaviour as an evolutionary advantageous strategy of migrating consumers.
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Abbreviations

The following abbreviations are used in this manuscript:

PKS Patlak — Keller — Segel
PDE Partial differential equation
ODE Ordinary differential equation
TZA Tyutyunov — Zagrebneva — Azovsky
SA Smirnova — Azovsky

Appendix A. Additional Results of Linear Analysis and Numerical Simulations

Figure A1 presents critical curves for the Hopf instability of the spatially homogeneous stationary
state (R2, N2, S2) on the plane of parameters 〈N〉 and η, following inequality (13).

The linear analysis reveals that at point A, which corresponds to the set of parameter values used
in simulations, there are many excited modes, including modes of quite high order. For illustrative
purposes, only some of the critical curves in Figure A1 are marked with the mode numbers (thick
lines), while most of the curves are not marked (thin lines). Point A is situated inside the instability
domain of (R2, N2, S2), being quite far from its boundaries, what also suggests an explanation of
the developed complexity and chaotisation of simulated spatiotemporal dynamics. The boundary
is assembled of small pieces of different critical curves of various modes, including modes of high
spatial orders. Alternatively, at small supercriticality, an emerging spatially-heterogeneous dynamics
is determined by a single excited mode. Figure A2 shows snapshots of distributions of the model
variables, computed with parameters corresponding to point B in Figure A1. Point B lies close to
critical curve of mode (2, 4), the only excited mode determining spatial pattern of the emerging wave
dynamics. Phase trajectory and Fourier spectrum plot of the heterogeneous periodic dynamics are
presented in Figure A3.
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Figure A1. Critical curves on the plane (〈N〉, η) computed for various spatial modes (m, p) according
to stability condition (13) for dimensionless model (7)–(10), (16) with parameter values given in Table 4.
Each curve is a boundary between domains of stability (I) and instability (II) for a given mode.

Figure A2. Snapshots of spatial distributions of the model variables for spatially-heterogeneous
periodic dynamics emerging with excitation of mode (2, 4) (point B in Figure A1).
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(a) (b)

Figure A3. (a) Phase trajectory of model (7)–(10), (16) in the plane of spatially averaged values
(〈R〉, 〈S〉). (b) The Fourier spectrum of the average prey density 〈R〉. Parameters correspond to
excitation of mode (2, 4) (point B in Figure A1).
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