
mathematics

Article

Comparison of Entropy and Dictionary Based Text
Compression in English, German, French, Italian,
Czech, Hungarian, Finnish, and Croatian

Matea Ignatoski 1 , Jonatan Lerga 1,2,* , Ljubiša Stanković 3 and Miloš Daković 3
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Abstract: The rapid growth in the amount of data in the digital world leads to the need for
data compression, and so forth, reducing the number of bits needed to represent a text file, an
image, audio, or video content. Compressing data saves storage capacity and speeds up data
transmission. In this paper, we focus on the text compression and provide a comparison of algorithms
(in particular, entropy-based arithmetic and dictionary-based Lempel–Ziv–Welch (LZW) methods)
for text compression in different languages (Croatian, Finnish, Hungarian, Czech, Italian, French,
German, and English). The main goal is to answer a question: ”How does the language of a text
affect the compression ratio?” The results indicated that the compression ratio is affected by the
size of the language alphabet, and size or type of the text. For example, The European Green
Deal was compressed by 75.79%, 76.17%, 77.33%, 76.84%, 73.25%, 74.63%, 75.14%, and 74.51%
using the LZW algorithm, and by 72.54%, 71.47%, 72.87%, 73.43%, 69.62%, 69.94%, 72.42% and 72%
using the arithmetic algorithm for the English, German, French, Italian, Czech, Hungarian, Finnish,
and Croatian versions, respectively.

Keywords: arithmetic; Lempel–Ziv–Welch (LZW); text compression; encoding; English; German;
French; Italian; Czech; Hungarian; Finnish; Croatian

1. Introduction

We live in a digital age. One of the main characteristics of this age is the ability of individuals to
exchange information freely. Daily, dozens of billions of digital messages are exchanged, photos are
taken, articles are written, and so forth. These activities produce data that must be stored or transmitted.
As data size increases, the cost of data storage and transmission time increases. To prevent these
problems, we need to compress the data [1–4]. Data compression is the process of reducing the
quantity of data used to represent a text file, an image, audio, or video content. There are two
categories of data compression methods—lossy and lossless [5,6]. Lossy compression methods reduce
the file size by removing some of the file’s original data [7,8]. The resulting file cannot be completely
reconstructed. Lossy compression methods are generally used for compressing file types where
data loss is not noticeable, such as video, audio, and image files. On the other hand, lossless data
compression methods also reduce file size, but they also preserve file content, so there is no data loss
when data is uncompressed. Of course, text files must be compressed using lossless data compression
methods [9–12].
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In this paper, we focus on text file compression, and therefore we study lossless compression
methods. There are a few commonly used lossless compression methods such as Shannon-Fano
Coding, Huffman Coding, Lempel–Ziv–Welch (LZW) Algorithm, and Arithmetic Coding [13–17].
The optimal compression method depends on many factors, including the text length and amount
of repeating characters. Previous work has focused on the analysis of the compression of texts in
languages whose scripts are less represented in computing. [18–21]. Kattan and Poli developed an
algorithm that identifies best combination of compression algorithms for each text [22]. Grabowski and
Swacha developed a dictionary based algorithm for language independent text compression [23].
Nunes et al. developed a grammar compression algorithm based on induced suffix sorting [24].

In this paper, the main question that will be answered is—”How does the language of a text
affect the compression ratio?” We have collected and compared texts of various types such as stories,
books, legal documents, business reports, short articles and user manuals. Some of the texts were
collected only in English and Croatian, and others were collected in Croatian, Czech, Italian, French,
German, English, Hungarian and Finnish. We limited research to languages based on Latin script due
to the required number of bits to encode a single character. The algorithms we used for compression
are Arithmetic Coding, as a representative of entropy encoding methods and LZW Algorithm, as a
representative of dictionary-based encoding methods. LZW algorithm is used in Unix file compression
utility compress.

The rest of the paper is organized as follows—we present a discussion of algorithms in Section 2
before presenting experimental results in Section 3, followed by a discussion Section 4. Finally, we
draw our conclusions in Section 5.

2. Methods

2.1. Arithmetic Coding

Arithmetic coding is a lossless data compression method that encodes data composed of
characters and converts it to a decimal number greater than or equal to zero and less than one.
The compression performance depends on the probability distribution of each character in the text
alphabet. The occurrence of infrequent characters significantly extends encoded data [4,25–27].

Entropy encoding is a type of lossless compression method which is based on coding frequently
occurring characters with few bits and rarely occurring characters with more bits [28–30]. As in the
most entropy encoding methods, the first step is creating a probability dictionary. This is done by
counting the number of occurrences of each character and dividing it by the total number of characters
in the text. The next step is assigning each character in the text alphabet a subinterval in the range [0, 1)
in proportion to its probability. When all characters have been assigned subintervals, the algorithm
can start executing. In this step, a character that is not used in the text can be selected as the “end of
text” character.

As can be seen from the given pseudocode in Algorithm 1 and in Figure 1, in the beginning,
interval bounds are [0, 1). The algorithm calculates new interval bounds for each character in the text.
Once the algorithm reads the last character, which was determined previously, the algorithm stops.
The encoded word can be any number from the resulting interval. It is recommended to take the final
lower boundary of the resulting interval as the encoded word. Instead of using a distinctive character
to determine the end of the text, the length of the text can be used to determine when the algorithm
has to stop executing.
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Algorithm 1: Arithmetic Coding Algorithm

l ← 0;
h← 1 ;
xi ← f irst input character ;
while xi not endO f Message do

l ← l + (h− l) ∗ li ;
h← l + (h− l) ∗ hi ;
xi ← xi+1 ;

end
encodedMessage← (l)2

Figure 1. Arithmetic encoding the word AABCA.

Finally, the encoded text needs to be converted into binary code. The length of the binary
code depends on the Shannon information value, which quantifies the amount of information in a
message [31]. One can calculate the Shannon information using the following formula:

I(x1x2x3...xn) = −log2(p(x1) ∗ p(x2) ∗ p(x3) ∗ ... ∗ p(xn)) = −
n

∑
i=1

log2(p(xi)). (1)

First, the probabilities of each character in the text need to be multiplied, and then the binary
logarithm of a product is calculated. The length of the binary code is one integer larger than the result
of the previous calculation. Once the text is converted to binary, it is ready to be transmitted or stored.

For decoding text (pseudocode of the arithmetic decoding algorithm is given in Algorithm 2), a
subinterval dictionary made in the first step of the algorithm is used. Decoding begins with converting
binary code to a decimal number. In the next step, the algorithm finds a subinterval where encoded
text fits, and then it concatenates a subinterval key to the decoded message. The next step is to calculate
a new value of the encoded text and repeat the subinterval search. There are two conditions on which
the algorithm exits: either when it decodes an ”end of text” distinctive character or after a preset
number of repetitions. It depends which information the decoder has, ”end of text” character or length
of text.
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Algorithm 2: Arithmetic Decoding Algorithm

l ← (encodedMessage)10;
decodedMessage← “” ;
while xi not endO f Message do

f ind xi, l ∈ I(xi) ;
decodedMessage← decodedMessage + xi ;

l ← l−li
hi−li

;

end

2.2. Lempel–Ziv–Welch Algorithm

The Lempel–Ziv–Welch (LZW) Algorithm (pseudocode of which is given in Algorithm 3) is a
dictionary-based lossless data compression method. Unlike Arithmetic Coding, for LZW compression,
there is no need to know the probability distribution of each character in the text alphabet. This allows
compression to be done while the message is being received. The main idea behind compression is to
encode character strings that frequently appear in the text with their index in the dictionary. The first
256 words of the dictionary are assigned to extended ASCII table characters [13,32,33].

Algorithm 3: LZW Coding Algorithm

w← f irst input character;
while x not endOfMessage do

x ← next input character ;
if wx not in dictionary : then

dictionary[w] append to encoded word ;
add wx to dictionary ;
w← x ;

else
w← wx

end
end

The pseudocode and Figure 2 present the steps of the algorithm. Two main values are stored
in the algorithm, the word w, and current character x. In the beginning, the word w is the first text
character. In each iteration, the algorithm reads a text character x and checks if there is a wx key in
the dictionary. If wx is in the dictionary, w takes a value of wx, and the algorithm continues with the
execution. In the other case, the corresponding value of w in the dictionary is added to the encoded
word, whereafter the dictionary is upgraded with wx key and w takes a value of x. The algorithm
stops when the end of file character is read.
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Figure 2. Lempel–Ziv–Welch (LZW) encoding of the word SAMOUPRAVNOPRAVNI

The LZW algorithm achieves the excellent compression ratio when compressing long text files
that contain repeated strings [32].

The LZW Decoding Algorithm (pseudocode of which is given in Algorithm 4) creates the
dictionary the same way as it is created for encoding. The first 256 words of the dictionary are
assigned to extended ASCII table characters as well. The algorithm reads each code in the encoded
word, writes its value from the dictionary to a decoded word, and upgrades a dictionary.

Algorithm 4: LZW Decoding Algorithm

decodedMessage← “”;
foreach code in encodedWord do

w← dictionary[code];
decodedMessage← decodedMessage + w;
x ← f irst character in dictionary[nextCode];
add to dictionary wx;

end

3. Results

The representative test data are prose texts, two legal texts and two user manuals. Because some
of the test alphabets consist of non-ASCII characters, each character is stored using 16 binary bits.
The output of the LZW Coding Algorithm is a sequence of integers; each of them is stored using 16
binary bits as well. The size of data compressed using the Arithmetic Algorithm in binary bits is equal
to Shannon’s information Equation (1) of the original data. The compression results are shown in the
Figures 3–5. Data compressed using the LZW Coding Algorithm varies from 20% to 45% of its original
size. Text data compressed using Arithmetic Coding is ∼30% of its original size.

3.1. Literary Text Compression

We present results for three prose texts of different lengths—a short story The Little Match Girl by
Hans Christian Andersen, novella The Decameron, Tenth Day, Fifth Tale by Giovanni Boccaccio and
novella The Metamorphosis by Franz Kafka (shown in Figures 3–5, respectively).
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Figure 3. Encoding The Little Match Girl.

Figure 4. Encoding The Decameron Tale.

Figure 5. Encoding The Metamorphosis.
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3.2. Legal Text Compression

As legal text compression, we present compression results for The European Green Deal and
Charter of Fundamental Rights of the European Union given in Figures 6 and 7, respectively.

Figure 6. Encoding The European Green Deal.

Figure 7. Encoding Charter of Fundamental Rights of the European Union.

3.3. User Manual Compression

We present compression results for Samsung Q6F Smart TV user manual and Candy CMG 2071M
Microwave Oven user manual shown in Figures 8 and 9, respectively.
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Figure 8. Encoding Samsung Q6F Smart TV user manual.

Figure 9. Encoding Candy CMG 2071M Microwave Oven user manual.

4. Discussion

Both compression algorithms (arithmetic and LZW) have proven effective. The compression ratio
varies depending on the text language. The Italian, French, and English alphabets consist of 26 letters.
The Croatian alphabet consists of 30 letters, 3 of which are composed of two characters from the rest of
the alphabet. Therefore, the Croatian alphabet may be considered to consists of 27 different characters.
The Finnish alphabet consist of 29 letters. The German alphabet consists of 30 letters. The Czech
alphabet consists of 42 letters or 41 different characters. The Hungarian alphabet consists of 44 letters
or 35 different characters.

Figures 3–9 present the compression results. In terms of the percentage of text size reduction,
the compression results are as follows. Arithmetic compression results for Croatian, Czech, Italian,
French, German, English, Hungarian, and Finnish translations of The Little Match Girl are as follows:
72.39%, 70.14%, 73.54%, 72.87%, 72.19%, 73.34%, 70.94%, and 73.83% respectively. The compression
results for Croatian, Czech, Italian, French, German, English, and Hungarian versions of The
Decameron Tale translations are as follows: 72.69%, 70.28%, 73.29%, 72.83%, 72.4%, 73.08%, and 71.15%.
The results for arithmetic compression of The Metamorphosis are 72.78%, 63.87%, 73.01%, 72.97%,
71.87%, 73.33%, and 71.1% for the listed languages. Arithmetic compression results for The European
Green Deal translations are as follows: 72%, 69.62%, 73.43%, 72.87%, 71.47%, 72.54%, 69.94%,
and 72.42% for the Croatian, Czech, Italian, French, German, English, Hungarian, and Finnish
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respectively. Finally, compression results for Charter of Fundamental Rights of the European Union
are 70.79%, 68.53%, 72.21%, 71.58%, 70.7%, 71.55%, 69.35%, and 71.99%. Arithmetic compression
results for Samsung Q6F Smart TV user manual are as follows: 70.47%, 68.23%, 71.69%, 70.77%, 70.32%,
70.84%, 68.86%, and 71.09% respectively. Finally, the compression results for Candy CMG 2071M
Microwave Oven user manual translations are as follows: 69.59%, 68.45%, 71.31%, 70.31%, 70.01%,
70.59%, 68.22%, and 70.86% for the Croatian, Czech, Italian, French, German English, Hungarian,
and Finnish respectively.

The compression of texts in Italian, French, English and Finnish achieved the best compression
ratio. The compression ratio of Croatian and German texts is close to the compression ratio of texts in
languages with smaller alphabets. Compressing texts in Czech and Hungarian stands out the most.
Czech versions of The Little Match Girl, The Decameron Tale, The Metamorphosis and Charter of
Fundamental Rights of the European Union compression is >2% lower than compression of the same
texts in different languages with fewer letters in the alphabet. Figure 10 shows arithmetic compression
results. Compression ratio change compared to English is shown in Figure 11.

The number of different characters impacts compression performance. More different characters
in alphabet increase the number of subintervals in Arithmetic Coding and extend the encoded
message accordingly.

Figure 10. Arithmetic compression results.

The Little Match Girl is 4–6 thousand characters long text, depending on the text language, which
makes it the shortest of three prose texts that are shown in this paper. The LZW compression results for
compressing this text are 57.11%, 52.96%, 57.85%, 59.43%, 60.21%, 60.62%, 55.67%, and 59.46% for the
Croatian, Czech, Italian, French, German, English, Hungarian, and Finnish respectively. These results
show that LZW compression is not ideal for shorter texts. The Decameron Tale is approximately twice
as long as The Little Match Girl, and the results of compressed Tale are as follows 62.35%, 59.21%,
64.02%, 64.16%, 64.31%, 64.62%, and 61.41% for the Croatian, Czech, Italian, French, German, English,
and Hungarian, respectively. The Metamorphosis is up to 130 thousand characters long. Results of LZW
compression of The Metamorphosis are 74.22%, 71.46%, 75.03%, 76.63%, 75.76%, 76.83%, and 73.78% for
the Croatian, Czech, Italian, French, German English, and Hungarian, respectively. We can conclude
that LZW compression is affected more by the text length than the arithmetic coding. The LZW
compression results for Croatian, Czech, Italian, French, German, English, Hungarian, and Finnish
translations of The European Green Deal are as follows: 74.51%, 73.25%, 76.84%, 77.33%, 76.17%,
75.79%, 74.63%, and 75.14%, respectively. The compression results for Charter of Fundamental Rights
of the European Union translations are as follows: 69.32%, 66.9%, 71.8%, 71.35%, 70.9%, 71.3%, 68.85%,
and 70.75% for the listed languages. The LZW compression results for Croatian, Czech, Italian, French,
German, English, Hungarian, and Finnish translations of Samsung Q6F Smart TV user manual are
as follows: 69.93%, 67.8%, 71.8%, 71.12%, 70.92%, 69.76%, 68.38%, and 70.1%, respectively. Finally,
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the compression results for Candy CMG 2071M Microwave Oven user manual translations are as
follows: 66.71%, 64.22%, 68.62%, 67.55%, 67.66%, 66.69%, 64.69%, and 66%, respectively for the for
Croatian, Czech, Italian, French, German, English, Hungarian, and Finnish.

Figure 11. Compression ratio change compared to English—Arithmetic compression (positive percentages
signify larger compressed file size when compared to English).

Figure 12 shows LZW compression results. Compression ratio change compared to English is
shown in Figure 13.

Figure 12. LZW compression results.
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Figure 13. Compression ratio change compared to English—LZW compression (positive percentages
signify larger compressed file size when compared to English).

Figure 14 shows the compression rate for different lengths of text. Generally, as text length
increases, the compression ratio of the LZW algorithm increases. In our test texts, the exception is
the compression ratio of Charter of Fundamental Rights of the European Union which compression
achieves better results than compression of, longer text, Smart TV user manual. The reason for
this irregularity is the repetition of the word ’Article’. As stated in Section 2, LZW compression is
based on encoding character strings that frequently appear in the text. Arithmetic encoding achieves
significantly better compression ratio for compressing texts up to 20,000 characters, the LZW algorithm
achieves better compression ratio for compressing texts longer than 100,000 characters.

Figure 14. LZW compression results—text length dependence.
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In addition to the size of the alphabet and text length, the LZW compression also affects the form
of the word. We corroborate this by comparing Croatian and English grammar. Croatian grammar is
more complex than English grammar. In Croatian grammar, the form of the word depends on the tense,
case, and position in the sentence; English grammar also changes the form of the word but in far fewer
cases. The LZW compression is based on encoding repeating strings. Because of these differences in
grammar, English texts achieve a better compression ratio than their Croatian equivalents. In Figure 15
there are several values from the end of the LZW dictionary. It is shown that encoded strings in English
are longer and contain more complete words.

Figure 15. Example from LZW dictionaries in English and Croatian.

5. Conclusions

Data compression is the process of reducing the number of bits needed to represent data.
Compressing data both reduces the need for storage hardware and speeds up file transfer.

Choosing the right compression algorithm is not a simple task because the performance of each
algorithm depends on the text type, length of data, and other text characteristics. Arithmetic Coding
achieves a significant compression ratio regardless of the length of the text, but algorithm performance
decreases as text length increases. Time and space complexity are crucial parts of any algorithm,
and that makes the algorithm not suitable for universal use.

The LZW Algorithm achieves excellent compression ratio when compressing long text files that
contain repetitive strings. The algorithm takes a short time to execute and uses minimal resources.

The main question posed in this paper is—“How does the language of a text affect the compression
ratio?” and, as it can be seen from results, the answer is positive—there are some differences in
compression ratios between texts in different languages and different types of texts. When choosing a
compression algorithm, it is important to determine which algorithm achieves the best compression
ratio for each language and/or type of text.
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