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Abstract: In this current work, we introduce the finite variable additive functional equation and we
derive its solution. In fact, we investigate the Hyers—Ulam stability results for the finite variable
additive functional equation in fuzzy normed space by two different approaches of direct and fixed
point methods.
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1. Introduction and Preliminaries

Sometimes in modeling solved problems there can be a degree of uncertainty in the limitations
used within the model or a few capacities can be vague. Because of such capabilities, we are interested
to keep in mind the regard of functional equations within the fuzzy placing. In 1965, the knowledge
of fuzzy sets developed first with the aid of Zadeh [1], which is an effective tool set for modelling
indecision and elusiveness in numerous issues springing up inside the field of technology. For the past
four decades, the fuzzy principle has become a very lively area of studies and plenty of developments
have been made within the concept of fuzzy sets to find the fuzzy analogues of the classical set theory.
Functional equations are also used to establish the distance formula in non-Euclidean geometries.
Other applications include non-Euclidean geometry, which are also related to problems in mechanics,
and one related also to non-Euclidean theory of relativity.

In 1940, Ulam [2] raised the subsequent query. Under what conditions does there exist an additive
mapping close to an approximate expansion mapping? The case of approximate additive function
capacities got explained by Hyers [3] under certain suppositions.

One of the most famous functional equations is the additive functional equation

flx+y) =)+ fy) @

In 1821, it was first solved by A.L. Cauchy in the class of continuous real-valued functions. It is
often called Cauchy additive functional equation in honor of A.L. Cauchy. The theory of additive
functional equations is frequently applied to the development of theories of other functional equations.
Moreover, the properties of additive functional equations are powerful tools in almost every field
of natural and social sciences. Every solution of the additive functional Equation (1) is called an
additive function.
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In 1978, a generalized model of the concept of Hyers for approximate linear mapping was given
via Rassias [4]. Some mathematicians have been attracted by the end result of Rassias. The stability
idea that was proposed and researched via Rassias is known as the Hyers-Ulam-Rassias stability.

Over recent years, the stability issues of numerous functional equations were significantly
investigated through a number of authors (c.f. [5-22] and references therein). Katsaras [23] described a
fuzzy norm on a vector space to build a fuzzy vector topological structure on the space. Few mathematicians
have depicted fuzzy norms on a vector space from different points of view [24-26].

Especially, Bag and Samanta [27], following Cheng and Mordeson [28], proposed a fuzzy norm
such that the corresponding fuzzy metric is of the Kramosil and Michalek kind [29]. They set up a
decomposition theorem of a fuzzy norm into a group of crisp norms and researched a few properties
of fuzzy normed spaces [30]. Moreover, the following works help us to develop this paper such
as [31-42].

We utilize the notions of fuzzy normed spaces given in [27,43,44] to explore a fuzzy version of the
generalized Hyers—Ulam stability for the finite variable additive functional equation

1 1
Y ¥ (—va—l— Y. vb> =(-2)) ¥ () )
a=1 b=1;b%#a a=1

where [ is a positive integer with [ > 3 by two different approaches of direct method and fixed point method.

This paper is organized as follows: In Section 2, authors obtain the general solution for (2).
In Section 3, authors investigate the stability results for (2) in fuzzy normed spaces by means of direct
method. In Section 4, authors investigate the stability results for (2) in fuzzy normed spaces by means
of fixed point method. Finally, we examine the nonstability for (2) by a counter example.

Definition 1 ([27,43]). Let E be a real vector space. A function Ny, : E x R — [0,1] is called a fuzzy norm on
Eifforalla,b € Eandall p,q € R,

(N1) Nu(a,q) =0 forg <0

(N: )a—Ozﬁ‘Nn(aq)—lforallq>0

(N3) Nn(aa,q) = Nn(a, ;) if a # 0;

(Ny) Nn(a+b pta)= mm{Nn(cZ p)Nu(b,q)};

(N5) Ny(a,-) is a non-decreasing function of R and limy, ;e Ny (a,q) = 1;
(Ng) fora # 0, Ny(a,-) is continuous on R.

The pair (E, Ny,) is called a fuzzy normed vector space.
We will utilize the subsequent essential result in fixed point theory.

Theorem 1 ([45]). Let (E,d) be a generalized complete metric space and A : E — E be a strictly contractive
function with the Lipschitz constant L < 1. Suppose that for a given element a € E there exists a positive integer
k such that d(A¥1a, Aka) < 4oc0. Then

(i) the sequence {A"a} !> converges to a fixed point b € E of A;
(ii) bis the uniqueﬁxed point of A in theset Y = {x € E: d(AFa,x) < +o0};
(iii) d(x,b) < 1rd(x, Ax) forallx € Y.
2. General Solution
In this section, we obtain the general solution for the finite variable additive functional Equation (2).

Theorem 2. Let E and F be real vector spaces. The mapping ¥ : E — F fulfils (2) for all vy,v3,- -+ ,v; € E,
then Y is additive.
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Proof. Suppose that the mapping ¥ : E — F fulfils (2) for all v;,vp,---,v; € E. Considering
v =0, =---=1v; =0 in (2), we obtain ¥(0) = 0. Now, replacing (v,0,---,0) in (2), we attain
¥ (—v) = —¥(v) forall v € E. Therefore, ¥ is odd. Switching (v,v,0, - - - ,0) in (2), we reach

¥ (20) = 2% (v) 3)
for all v € E. Substituting v by 2v in (3), we get
¥ (2%0) = 22¥(v) (4)
for all v € E. Interchanging v by 2v in (4),we reach
¥ (230) = 23¥(0) ®)
forall v € E. From (3), (4) and (5), we can conclude for a positive integer /, we have
¥ (2'v) = 2'¥(v) (6)

for all v € E. Similarly, replacing v by 7 in (6), we get

¥ (%) — Ly @)

for all v € E. Substituting (v1,vy,- -+ ,v;) by (1,0,0,---,0) in (2) and utilizing the oddness of ¥ and (6),

we reach
Y(u+o0)="u)+Y¥) (8)

for all u,v € E. Therefore, ¥ is additive. [

Remark 1. Let F be a linear space and ¥ : E — F be a function fulfils (2). Then the upcoming two claims hold:

(1) ¥(r*v) = r*¥(v) forall v € R,r € Q, k integers.
(2) ¥(v) =vY¥(1) forall v € Rif ¥ is continuous.

In upcoming sections, let us take E, (Z, N,,) and (F, Np) as linear space, fuzzy normed space and
fuzzy Banach space, respectively. We define a function ¥ from E to F by

1 1 1
D‘I’(Ul,vz,--~,vl):2‘-}’<—va+ Y 0b>—(l—2)2‘{’(va)
a=1 b=1;b#a a=1
for all 01,02, ,0] € E.

3. Result and Discussion: Direct Method

In this section, we investigate the stability results for (2) in fuzzy normed spaces by means of
direct method.

Theorem 3. Let ¢ : E! — Z be a mapping with ¢ > 0 and ¢ < 2
N)’l (4) (27)/20/0/ e /O) /lx) Z Nl’l (94) (U/U/O/' o ,O),DC) (9)
forallv € Eand all & > 0, and

Lim Ny (¢ (2"v1,2"vy,---,2"0)),2"a) =1 (10)

r—-+oo
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forallvy,vy,- -+ ,v; € Eand all & > 0. Suppose an odd mapping ¥ : E — F fulfils
Ny (DY (v1,02, -+, 01) ;&) = Ny (¢ (01,02, -+, 01) , t)

forall vy,vp,- -+ ,v; € Xand all « > 0. Then the limit

Ar(0) = N, — tim T2
exists for every v in E and Ay : E — F is the unique additive mapping such that
Ny (¥(0) = A1(v),&) = N (¢(0,0,0,---,0), (I = 2)a(2 —¢))
forallv € Eandall « > 0.
Proof. Switching (v1,vp,- - ,v;) by (v,9,0,---,0) in (11), we obtain
Ny ((I=2)¥(20) = 2(1 = 2)¥(v), &) = Ny (¢(2,2,0,---,0),a)

forall v € E and all « > 0. From (14), we attain

N (T(zzv) IRy - 2)) = Nrlplon b 00

for all v € E and all & > 0. Interchanging v by 2'v in (15), we reach
¥(2'""1o) I & I ol
= Ty, ——— | > 2!y, 2,0, - -
Nb< > (2'0), 375 | 2 N (¢(2'0,2'0,0,- -+ ,0), )

forallv € E and all « > 0. Utilizing (9) and N3 in (17), we get

\IJ(zH-l.U) \Ii(zlv) P N
N ( 2(1+1) B 2l 7 o(l+1) (l _ 2) > Ny (4)(7]/ 0,0, ;O), Ql)

forallv € E, a > 0. Setting & by ¢'a in (17), we attain

\F(21+1U) ‘P(ZZU) QltX
Nb ( 2(l+1) N ol 2(l+l) (l _ 2) > Ny ((P(U, 0,0, - /0)/0‘)

forallv € E and all « > 0. It follows from that

w Y(21) ¥ (2o
N 2(+1) 2/

and from (18) and (19), we get

¥(2!0) -1 ola .11 YU)y) ¥ (2o) ola
Nb( 5 —T(U),ijom) meuj:l{Nb T Ty F 2207

> Nu (¢(,0,0,--+,0),4)

forall v € E and all &« > 0. Switching v by 2"v in (20) and utilizing (9), N3, we get

(‘Y(Z(ZJFH)Z)) qj(znZ)) I+n—1 Q]DC
b

2(l+n) - on 7 = 2(]'+1)(l - 2)> > Ny ((P(U, 0,0,--- ,0),04)

40f 14

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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44

forallv € E, « > 0and all [, n > 0. Replacing « by T in (21), we get

j=n 2(]*1)(172)

14

" l4n—1 of
Ljzn 20+ (1-2)

(22)

N y(+my) ¥ (2m)
b\ ol o

/a> an (P(U/U/O/"'/O)

foreveryv € E,a > 0and each [,n > 0. As, 0 < ¢ < 2 with ;:8 (%)] < 400, the Cauchy criterion for

¥(2v)
2l

convergence and N5 towards that { } is a Cauchy sequence in (F, Nj) is a fuzzy Banach space,

{T(;lv) } converges to a point A1 (v) € F. Define the mapping A, : E — F by
B . Y (2v)
A(v) =Ny - rEToo 2"

forall v € E. Since ¥ and A; are odd. Taking n = 0 and passing the limit [ — +o0 in (22) with utilizing
Ng, we obtain
Ny (¥(0) = A1(0), &) = Nu (¢(0,9,0,---,0), (I =2)a(2 - 0))

forallv € E,a > 0. Next, to show that A is additive. Switching (v, vy, - - -, v;) by (201,270, - -+, 2"0))
in (11), we have

1
N <2rD‘I’ (2"v1,2"vy, - - ,2701),1x> > Ny (¢ (201,200, -+ ,2"0;),2"a)

for all v1,vy,- -+ ,v; € E and all « > 0. Since

rEI—Poo Ny (¢p(2701,270p, -+ ,270),2"0) = 1.
Hence A; fulfils (2). Therefore, A; : E — F is an additive mapping. Now, to claim that the
uniqueness of A, consider A; is another additive function which maps from E to F and fulfilling (2)
and (13). Hence,

Ny (A1(v) — Ay(v),a) =N, <A1(2%r0) - Az(;rv)’a)
> min {Nb (Al(zzrrv) B ‘I’(ZZ:D), 1;6) N, (‘1’(22:0) 3 Az(zzrrv), ;) }
> Ny <¢(2rv, 29,0, - - ,0), 27(1 — 2);(2 _ Q))
> (9lo0,---,0, Z0=22-0))

forallv € E,a > 0. We know that, lim,_, | « % = +o00, we get

2(1-2)a2-0) _
20’ ) -t

lim N, (4)(0, 0,0,---,0),

r—-+o0

Thus, N, (A1(v) — Az(v),a) = 1forallv € E and all « > 0. Hence, A;(v) = A,(v). Therefore, A1(v) is
unique. This completes the proof. O
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Theorem 4. Let ¢ : E! — Z be a mapping with ¢ > 0and ¢ > 2

v 1
N, (4, (E’E’O" . ,0) ,,X) > N, (Q<p(v,v,0,- o ,0),&) (23)
forallv € Eand all & > 0, and
. 01 U (4] 44 o
dim N0 (550 3) ) =1 29

forallvy,vy,- -+ ,v; € Eand all & > 0. Suppose an odd mapping Y : E — F fulfils
Nb (D‘IJ (01102/ te Ivl>/a> Z Nn (47 (U]/UZ/' o ,Ul),ﬂ() (25)
forall vy,vy,- -+ ,v; € Eand all & > 0. Then the limit

A1(0) = Ny— lim 2'¥ (%) (26)
exists for all v € E and the mapping A, : E — F is the unique additive mapping such that

Ny (¥(0) = A1(v), &) = Nu (¢(0,0,0,---,0), (I = 2)a(e - 2)) 27)
forallv € Eand all & > 0.
Proof. Interchanging (v1,vp,---,v;) by (v,9,0,---,0) in (25), we obtain

Ny (I —=2)¥(20) —2(1 —2)¥(v), ) > Ny (¢(v,0,0,---,0),a) (28)

forall v € E and all &« > 0. From (28), we reach

N, (‘P(Zv) —2¥(0), = 2)> > Ny (¢(0,0,0,- - ,0),) (29)

forallv € E and all « > 0. Switching v by 7 in (29), we get

v b v v
N (%00 2% (3), ) 2 0 (5 5000.0) o) 0
forall v € E and all « > 0. Again, replacing v by 5 in (30), we obtain
v v o« v o
% (¥ (7) -2 () ) 2 e Gfno 0 )

forall v € E and all &« > 0. From (31) and (23) that

r TN 50+1) v 2" > . r+1
Np (2 ¥ (o) -2y (2<r+1)) o)z M (¢(00,0,--,0),0 ") (32)
forallv € E and all « > 0. The remaining part of the proof is similar to the proof of Theorem 3. [J

Corollary 1. Suppose an odd function ¥ : E — F fulfils the inequality

Ny(DY¥(v1,v2, -+ ,01),&) > Ny (19,&),
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forallvy,vy,- -+ ,v; € Eand all « > 0 where O is a real constant with & > 0, then there exists a unique additive
mapping A1 : E — F such that

Np(¥(v) — A1(v), ) > N, (8,12 —1|(I = 2)a)

forallv € Eandall o > 0.

Proof. Let us define ¢(v1,vy,- -+ ,v;) = 9, then the proof is raised from Theorems 3 and 4 by taking
0o=2". O

Corollary 2. Suppose an odd function ¥ : E — F fulfils the inequality
Ny(D¥ (01,02, - ,07), &) > Nn( Z o 1%, )

forall vy,vy,- -+ ,v; € Eand all « > 0, where € and B are real constants with B € (0,1) U (1, 400), then there
exists a unique additive mapping Ay : E — F such that

Np(¥(v) — A1(v), &) > Nu(2¢][0|1P, |2 = 2P| (1 - 2)a)

forallv € Eandall o > 0.

Proof. Let us define ¢(vq,vo,- -+ ,v;) =€ ;-:1 v |8, then the proof is raised from Theorems 3 and 4
by taking o = 2. O

Corollary 3. Suppose an odd function ¥ : E — F fulfils the inequality
Np(DY (01,02, 01),) > Ny e 2 oyl + m lojll”, ),

forall vy,vy,--- ,v; € Eand all « > 0 where €, 9, B and vy are real constants with 1B,17y € (0,1) U (1, +o0),
then there exists a unique additive mapping A1 : E — F such that

Np(¥(0) — A1(0), &) = Nu(2¢0]|"P, |2 — 2'P|(1 — 2)a)

forallv € Eandall « > 0.

Proof. Let us define ¢(v1,0vp,- -+ ,v;) = €Z§':1 ||vj||lﬁ + 19H§-:1 [0]|7, then the proof is raised from
Theorems 3 and 4 by taking ¢ = 2/f. [

Corollary 4. Suppose an odd function ¥ : E — F fulfils the inequality
1
Ny (D¥ (01,0, ,01), &) = Na (9] T lloy]", ),
j=1
forall vy,vy,- -+ ,v; € Eandall & > 0, where ¢ and -y are real constants with 0 < ly # 1, then ¥ is additive.
Proof. Let us define ¢(vq, v, -+ ,v;) = 191—[5»:1 ||Uj |7, then the proof is raised from Theorems 3 and 4. [J

4. Result and Discussion: Fixed Point Method

In this section, we investigate the stability results for (2) in fuzzy normed spaces by means of
fixed point method.
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First, we define ¢, as a constant such that

{2 if a=0
Ga = .
if a=1

N—=

and we consider A = {¢1 : E — F: ¢1(0) =0}.
Theorem 5. Let ¥ : E — F be an odd mapping for which there exists a function ¢ : E! — Z with condition

lim Ny (¢(6501,6402, + ,Ga01),Gott) = 1 (33)

r—4o0
forall vy,vy,- - ,v; € Eandall & > 0, and fulfilling
Nb(DT(Ul/UZ/ e /Ul)/ IX) > Nn(()i)(leUZ/ e /Ul)/ DC) (34)

forall v1,vy,--+ ,v; € Eand all « > 0. Let p(v) = (}—)47 (%, 2,0, ,O) forall v € E. If there exist
L =L, € (0,1) such that

1
N ot ) = N (Lp(o) ) )
a
forallv € E and all x > 0, then there exist a unique additive function Ay : E — F fulfilling
Llfa
Ni((2) = A1(0)) 2 Ny (£ (o)) G

forallv € Eand all « > 0.

Proof. Let u be the generalized metric on A:

w1, 92) = inf{w € (0, +00) : Ny(f91(v) — 92(v),&) = Nu(wp(v), ), },

forallv € E and all « > 0 and we take, as usual, inf® = +co. A similar argument provided in
([46], Lemma 2.1) shows that (A, jt) is a complete generalized metric space. Define ®, : A — A by
P,91(v) = giﬂq)l(gav) forall v € E. Let @1, ¢ in A be given such that y(¢1, ¢2) < €. Then

Ny (¢1(v) — @2(v), ) > Ny (ep(v), )

forallv € E and all « > 0, whence

Ny (@01(0) — Daga(0),a) > Ny (%(gma)

Ca

forall v € E and all « > 0. It follows from (4) that

Np(Pag1(v) = Pag2(v),&) > Nu(eLp(v), «)

forall v € E and all « > 0. Hence, we have u(®,¢1, ®;¢2) < €L. This shows u(®,¢1, Pa¢2) <
Lu(e1, ¢2), i.e., @, is strictly contractive mapping on A with the Lipschitz constant L. Interchanging
(v1,v9,- -+ ,v1) by (v,0,0,---,0) in (34) , we get

N, (1= 2)¥(20) — 2(1 — 2)¥(v),) > N, (¢(v,0,0,---,0),a) (37)
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forall v € E and all « > 0. Utilizing (4) and (N3) when a = 0, it follows from (37) that

> Nu(Lp(v), &)

for all v € E and all « > 0. Therefore,
u(d¥,¥) < L=L'"" (38)

Switching v through 5 in (37) (i.e., when a = 1) and using N3, we have

v 1 ()
_ Z > ~Z20...
Ny (¥(0)=2¥ (5).0) = Ny <(z ¢ (55/0.++,0) ,oc>
= Nu(Lp(v), )

forall v € E and all « > 0. Therefore,

(™Y, %) <1=_L"" (39)
Then from (38) and (39), we conclude u(®,¥,¥) < L1177 < +00. Now from Theorem 1, implies that
there exists a fixed point A; of ®, in A such that

(i) ®aA1 = Arand limy, oo u(PY, A1) =0;

(ii) Aj is the unique fixed point of ® inthe set E = {¢1 € A: d(¥, ¢1) < +o0};
(iii) p(¥, A1) < (¥, @,%).
Letting p(®L¥, A1) = €4, we get N (PL¥ (v) — A1(v), &) > Ny(erp(v), ) forallv € E and all w > 0.
Since lim;_, 1« €, = 0, we infer

for all v € E. Switching (v1, v, - - - ,v;) by (¢hv1,6hv2, - -+, ¢hvy) in (34), we obtain

1
N, (grm@zvl,gzvz, - ,gzvo,a) > Nu(@(co1, 6Lon, - con) cla),
a

forall# > 0 and all v1,vy,- - - ,v; € E. Utilizing the similar argument as in the proof of Theorem 3,
we can prove the function A; : E — F is additive. Since u(®,¥,¥) < L'7¢, it follows from (iii) that
u(¥,Ar) < % which means (36). Next, we show the uniqueness of A;; consider another additive
function A, which fulfils (36). Since A1(2"v) = 2"A1(v) and Ay (2"v) = 2"A,(v) for all v € E and all
r € N, we have

Np(A1(v) — As(v),a) = N, <A1 (2'v) Az(zrv),zx)

27 27
. A1(20)  ¥(2'v) w Y(2'v)  Ay(2"v) &
zmm{Nh< v o )N T T
L= 2w
> o), 22

By (33), we have

, L= 2«
rETooNn <1 - LP(2 Z))'2> =1

Consequently, Ny (A1 (v) — Az(v),a) = 1forallv € Eand all & > 0. So A;(v) = Ay(v) forallv € E,
which ends the proof. O
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Corollary 5. Suppose that an odd function ¥ : E — F fulfils the inequality

N, (8,a),

Ny (DY (01,05, ,v;),) > { Ny (0 X}
!

0 (TT o + St i) ).

(40)

forall vy, vy, -+ ,v; € Eand « > 0, where ¢ and B are constants along with & > 0, then there exists a mapping
A1 : E — F is the unique additive such that

Ny (9,2 =1]|(I —2)a),
Np (¥(0) — A1(v), &) > { Ny (20]0]|8, |2 — 28| (1 — 2)a) ; BA1,
Ny (19”0”15, 12— 2P| (1 - Z)a); B#1,

forallv € Eandall o > 0.
Proof. Considering

0,

4)(01102/"'101)2 192[:
)

& (T [lo* + 2 [l )

forall vy,vy,- - ,v; € E. Then

Nn(ﬂlgza)/

Nu (¢ (chor,6hoa,+,6hor) ,6ha) = { Na azéluvjlﬁ,gélfﬁ”
) (1-1

N (8 (T [log P + 20y gl ) 6 ~P7a)

—1 as r— 4oo,

«).

=4—1 as r— 4o,

—1 as r — Hoo.

Thus (33) holds but we have

1 Vv
o) = gy (320 0)
has the property
1
Ny (gp(gw),zx) > N, (Lp(v),a), v€E, a>0.
a

forallv € E and all « > 0. Hence

~ (o (350+.0).0-24)
{Nn% Ioll?, ( l—z>a),

Bllol?, (1 - 2)a).

Ny (p(v), )
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So,

Ny (;P(Qﬂ’):“) =Ny ngflp(v) oc,);

From the following cases for the conditions of ¢,.
Case (i) L=} for p=0ifa =0

-1
Ny (¥(v) — A1(v),a) > Ny <132_1p(v),tx> =Ny (9,(I -2)a).

1
Case (ii) L = (%) forp=0ifa=1

N, (¥(0) — A1 (0),) > Ny <112p(v),¢x) — Ny (8,2~ D)a).

Case (iii) L = 2f~1forp < 1ifa =0

B—1
Ny (¥(0) — A1 (v),a) > N, <1E2ﬁ1p(v),a) =N, (219”0“!3, (2—2P)(1 - Z)a) .

Case (iv) L = 2P for g > 1ifa =1

Np (¥(0) — A (0),a) > N, (1_121,3p<v>,a) = Nu (28]0], (2° ~2)(1 - 2)a).

Case (v) L = 2/f-1 for B < %ifzz =0

161
N, (¥(v) — A1(v),a) > Ny (12_2w1p(v),vc> = N, (219||y||1/5, (2-2B)(1 - 2)0() .

Case (vi) L =2 for p > }ifa =1

N, (¥(0) — A1 (0),) > Ny (Hlllﬁp(v),zx> = Ny (26[0l1%, (2% ~2)(1~2)a)

Hence the proof is completed. [

5. Counter Example

Next, we show the upcoming counter example changed by the well-known counter example of
Gajda [47] to (2):

Example 1. Let T : E — F defined by:

© Iy
=570
1=0

where

U(v)_{gv, “1<ov<1 @)

{, otherwise,
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where { is a constant, then T : E — F fulfils the inequality
l
|T(v1,02,- -+, o) < (1= 1)8§< \Uj|) , (42)
j=1

forall v1,vy,--- ,v; € E, but there does not arise an additive function A1 : E — F along with a constant 6
such that

¥ (0) = A1 (v)] < d[o| (43)
forallv € E.

Proof. Itis easy to notice that ¥ is bounded by 27 on E. If 25-:1 |vj| > % or 0, then the left side of (42)

is less than (I — 1) 2, and thus (42) is true. At once, assume that 0 < 25:1 vj| < % Then there exists
an integer m such that

1 ! 1
_ T < ) _ -
o(m+2) = ]; lvj| < o(m+1)” (44)

So that 2"|v| < %,2m|vz| < %/...,zm\v” < %and 2oy, 2, - 2l € (~1,1) for all
1=0,1,2,---,m—1.So,forl =0,1,--- ,m—1

l l
ZU<21 <—0a+ Y. Ub)) —(l—2)20<21(va)):0.
a=1 b=1;b#a a=1

By the definition of ¥, we obtain

to q . ) .
|T(vlleI' . Ivl)| S Z E|0’(2]7)1,2102,. . ,2]01)‘

It follows from (44) that

!
[T(vr, 02, o) < (1-1)8¢ (Zvﬂ)/ (45)
j=1

forall vy, vp,---,v; € E. Thus Y satisfies (42) for all v1,v2,-- - ,v; € E. We propose that there arises
an additive mapping A; : E — F along with a constant § > 0 fulfilling (43). As ¥ is bounded and
continuous for every v in E, A; is bounded on any open interval containing the origin and continuous
at the origin. By Remark 1, A} must have the form A;(v) = av for all v € E. Thus we have

¥ ()] < (6 +a]) [o]
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for all v € E. However, we can select a non-negative integer m and m{ > § + |a|. If v € (O, 27,,%1),
then 2/v € (0,1) foralll =0,1,--- ,m — 1 and for this v, we obtain

+o0 1 m—1 !
¥ = L O00 = T ECY —to> G o

which is contradictory. O

6. Conclusions

We have introduced the finite variable additive functional Equation (2) and have obtained the
general solution of the finite variable additive functional Equation (2) in fuzzy normed spaces by
means of direct method and fixed point method. Furthermore, we discussed the counter example for
the non-stability to the finite variable additive functional Equation (2).
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