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Abstract: This paper is concerned with the nonlinear stability and instability of the two-dimensional
(2D) Boussinesq-MHD equations around the equilibrium state (Z = 0, B = 0, 8 = 6y(y)) with the
temperature-dependent fluid viscosity, thermal diffusivity and electrical conductivity in a channel.
We prove that if a; > a_, and %K(Qo(y)) < 0or0 < %K(Go(y)) < Bo, with Bg > 0 small
enough constant, and then this equilibrium state is nonlinearly asymptotically stable, and if a4 <a_,
this equilibrium state is nonlinearly unstable. Here, a4 and a_ are the values of the equilibrium

temperature 6y(y) on the upper and lower boundary.
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1. Introduction

1.1. Background

In this paper, we consider the Boussinesq equations for Magnetohydrodynamics (MHD)
convection in a channel (

940 +u - V6o —div(x(0)V6)) = 0,

ot +u - Vu —div(u(0)Vu) + VII = gbep + B- VB,

9B+ u-VB—V+(y(6)V+:-B)=B-Vu, (1)
divu =0, divB=0,

(0,1, B)|t=0 = (6o, uo, Bo).

Here, e; = (0,1), V! = (—0,,91), the domain O = R x (—/,¢) with the constant 0 < ¢ < co. The
unknowns are the temperature 6, the velocity field u = (11, u»), the magnetic field B = (By, By), and the
pressure I1. This system can be used to model the large scale cosmic magnetic fields that are maintained
by hydromagnetic dynamos. Physically, the first equation of (1) means that the temperature provides the
convective drive of the system. The second equation describes the conservation law of the momentum
with the effect of the buoyancy force gfle;. The third equation shows that the electromagnetic field is
governed by the Maxwell equation. Here, we denote o (6) by the electrical conductivity, 3(6) the fluid
viscosity, and x(6) the thermal diffusivity. Additionally, assume that they are positive and smooth in 6

c < u(0),7(0),x(0) <C, )

Mathematics 2020, 8, 1049; d0i:10.3390 / math8071049 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-2747-8560
http://dx.doi.org/10.3390/math8071049
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 1049 2 of 23

with ¢ and C two positive constants.

We may refer to [1-3] and the references therein to learn more about physics details and numerical
simulations. Hereafter, we will use the system as the Boussinesq-MHD system, MHD-Boussinesq, or
BMHD for short.

When the fluid is not affected by the temperature, the system (1) reduces to the MHD system.
Many physicists and mathematicians considered this model. For example, Duvaut and Lions [4]
established the local well-posedness in H*(R?) with s > d, and got global existence of small solutions.
Sermange and Temam [5] studied these solutions” properties and proved that the two-dimensional
(2D) local strong solution is global and unique. Recently, many authors studied the global regularity of
the MHD system with partial dissipation (see, e.g., [6-9]).

When the fluid is not affected by the magnetic field, the system (1) becomes the classical Boussinesq
system. Many authors studied the Cauchy problem of the 2D Boussinesq system in the presence of full
viscosity. Cannon and Dibenedetto [10] and Wang and Zhang [11] proved the global well-posedness
for the full viscosity and smooth initial data case. Lately, many works are devoted to studying the
Boussinesq system with partial constant viscosity. For example, the global well-posedness of the system
in the absence of diffusion has been independently proven by Chae [12] and Hou and Li [13], and
Chae [12] also studied the case = 0. The global well-posedness of the system in the critical spaces in
the absence of diffusion has been established by Abidi and Hmidi [14], and the global well-posedness
of the system in the critical spaces in the case y = 0 has been proved by Hmidi and Keraani [15]. For
the bounded domain case, the global well-posedness for the system in the absence of diffusion has been
proved by Lai, Pan and Zhao [16]. Lately, the well-posedness of global strong solutions for the system
in the presence of temperature-dependent diffusion with large initial data in Sobolev spaces has been
shown by Li and Xu [17].

For the three-dimensional (3D) Boussinesq and MHD system, the existence of global weak solution
for L2 initial data and the well-posedness for global small smooth data for the Cauchy problem of the
Boussinesq system has been proved by Danchin and Paicu [18]. The global well-posedness for the
Cauchy problem of the 3D axisymmetric Boussinesq system in the absence of swirl has been shown
by Hmidi and Rousset [19,20]. The partial regularity of the weak solutions for the 3D Boussinesq
system has been studied by Fang, Liu, and Qian [21]. For the 3D MHD equations, the well-posedness of
global axially symmetric solutions in the presence of full fluid viscosity and magnetic diffusion has
been studied by Lei [22]. The partial regularity of the weak solutions for the 3D MHD system has
been established by Cao and Wu [23], He and Xin [24,25], and Kang and Lee [26]. The well-posedness
of global small solution has been proven by Cai and Lei [27] and He, Xu and Yu [28]. For the 3D
MHD system in the presence of a nonlinear damping term, the existence of global weak solutions and
well-posedness of global smooth solutions for large initial data has been recently proven by Titi and
Trabelsi [29].

For the full BMHD system, Bian et al. [30-32] and Yu and Pei [33] studied the global existence and
uniqueness of the solution to the 2D BMHD system without smallness assumptions on the initial data.
For the 3D case, Larios-Pei [34] proved the local well-posedness in the Sobolev space H®. Zhai and
Chen [35] considered the Cauchy problem for BMHD system in Besov space. Bian et al. [36,37] proved
the global well-posedness result for the axisymmetric BMHD system without magnetic diffusion and
heat convection, and global well-posedness result for the BMHD system with a nonlinear damping
term, the constant fluid viscosity, and the constant electrical conductivity. Li [38] obtained the global
weak solution for the inviscid BMHD system with the constant thermal diffusivity and constant
electrical conductivity. However, it is not known whether nonlinear stability and instability for the
full system (1) holds with the fluid viscosity, electrical conductivity, as well as thermal diffusivity
dependent on temperature around the equilibrium state (6,7, B) = (6(y),0,0). In this paper, we will
give the precise answers to the above question for the full system (1).
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1.2. Steady State and Main Results

For notational simplicity, we denote the gravity unit ¢ = 1. In this paper, we assume the
boundary conditions

ulga =0, Oly—s¢=ax, B-nfga =0, (VX B) xn|yn =0. ®)

Let 6y(y) be a smooth function on [—/,¢]. Then the functions (6,%,B) = (6o(y),0,0) define a
equilibrium state to (1), provided

d d
VI = 6y(y)ea, dy K(GOQ/))@QOQ/) =0,

which gives that ITy = I'lp(y) and

d - d My
@HO =6o(y), @90@) =

for some constant .
Integrating the above equation about the temperature, it follows from the condition (2) and the
boundary conditions (3) that
ay >a_ & my >0,

and in this case, we set mg = 1 for notational simplicity. Similarly, one has
ay <a- & my<0,

and, for this case, we set my = —1 for notational simplicity.
Now, define the perturbation to be

c=0—-0y, u=u—u, b=B—B=B, p=11-TI,
which satisfies the system:

010 +u- Vo —div(x(6p + o) Vo) — 9y (x(6p + a)%@o)) + uz%eo(y) =0,
o+ u-Vu —div(u(6p +0)Vu) +Vp =0e; +b - Vb,
0tb+u-Vb—V+(y(0g+0)VE-b)=b-Vu,

divu =0, divb = 0.

(4)

From the physical point of view, the sign of f—yeo(y) that appears in the equation for
the temperature o is critical (cf. [39]). For the case %Go(y) < 0, the situation is unstable.

While, for the case d—dyGO (y) > 0 in the fluid with homogeneous thermal diffusivity, the density

decreases with height and the heavier fluid is below lighter fluid. This is the situation of stable

stratification, and the quantity NV (y) def %90 (y) is called the buoyancy or Brunt-Vaiiséra frequency

(stratification-parameter) [39,40].

The situation for the case % 6o(y) < 0is closely related to the Rayleigh-Taylor instability according
to the well-known Boussinesq approximation, where the temperature difference is directly proportional
to the density difference between the bottom and top of the layer of fluid. The Rayleigh-Taylor
instability appears when a heavy fluid is on top of a light one. The linear instability for the
incompressible fluid was first established by Rayleigh in 1883 [41] and Chandrasekhar in 1981 [42].
Grenier [43] gave some examples of nonlinearly unstable solutions of Euler equations and proved
an instability result for Prandtl equations. Recently, Hwang and Guo [44] obtained the nonlinear
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Rayleigh—Taylor instability for the inviscid incompressible fluid. Guo and Tice [45,46] proved the
linear Rayleigh-Taylor instability for inviscid and viscous compressible fluids by introducing a new
variational method. Later on, using the new variational method, many authors considered the effects
of magnetic field in the fluid equations, see Jiang-Jiang [47-49].

This paper is concerned with the nonlinear stability and instability for the full BMHD system
with the temperature-dependent fluid viscosity, thermal diffusivity, and electrical conductivity. Our
results are as follows.

Theorem 1. Assume that the function 6y (y) € C*([—/, ¢]) satisfies the boundary condition 6y(y = +/£) = ay.,
and the three functions x, y and -y satisfy (2). Subsequently, we have

(i) If ay < a_, then the equilibrium state (69 (y), 0, 0) in (1) is nonlinearly unstable, which is, there exists
g0 > 0, such that, for any small 6 > 0, there exists a family of classical solutions (8°,u’, B®) to (1), such that

165 = 60ll 122y + | (48, BY) |l 22y < 6

but for T’ = O(|In4}),
sup {[[6° —60ll2(q) + (4, B)[l12(00} > €0-
0<t<T?

(ii) Ifay > a_, and %K(Go(y)) <0or0< %K(Go(y)) < Bo, with By > 0 small enough constant,
then the equilibrium state (6y(y),0,0) in (1) is nonlinearly asymptotically stable, that is, there exists 5y > 0,
such that, for any 6 € (0,6), if

1(65 — 60, u, B) |20y < &

then (63, ud, BS) generates a global unique solution (6°,u’, B®) to the system (1). Moreover, it holds

; 1 6 nd —
Am 1(6° — 6o, u®, B®) || 22y = O- )
Remark 1. For the case ay = a_, the equilibirum state (6o(y),0,0) is stable. In fact, ifay = a_, then my = 0,
that is, 8y = C, we set 6y = 1, which do not change the result in our analysis. Thus, our perturbation problem
can be reformulated in the following:

oic+u-Vo—V - (k(c+1)Vo) =0,
or+u-Vu—V - (u(c+1)Vu)+ Vp =0e, +b- Vb,
b +u-Vb—Vt(y(c+1)VL-b) =b-Vu,
V-u=0,V-b=0,

(6)

wherec =0 —1, u =u, b =B, p = I1— Iy is the perturbation.
From (6), repeating the process of stability in Section 6, we only need to control [, ce;udxdy. Note that

t
dxdy+ [ [ x(e+1)|Vodsdyds = [ ofdxdy.
/Q xdy OQK(U )| Vol dxdyds |, Codaxdy
By the assumption in (ii) of Theorem 1 and Poincare inequality for a strip, we know that
lolla <&, [ luslPdxdy < ¢ [ [0, Py
o) Q
Hence, choose & small enough, [, ceyudxdy can be controlled by [¢ p(o + 1)|Vu|*dxdy.

Remark 2. Our result also holds for the incompressible 3-D BMHD system.

Notations: The space H}. is defined as H}. = {u € H' : divu = 0} and this rule of definition is
applied to the sapce H”! with m > 0. We define L{°(H') by ||u||L?c(H1) = supys<; [[1(5) | g1 (-
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The remainder of the paper is organized, as follows. In Section 2, we construct the growing
solutions to the linearized Boussinesq-MHD system for the case 2 < a_. With these precise growth rate
A, we construct an approximation solution with higher order growing modes in Section 3. In Section 4,
after obtaining the crucial estimates of the linearized system, we present nonlinear energy estimates
of the original perturbed equations for the case a1 < a_. In Section 5, we will prove Theorem 1,
which concludes the nonlinear instability and stability. Finally, in Section 6, we give the conlusions of
this paper.

2. Variational Method for the Case a4 < a_

In this section, we prove that, if 2, < a_, then there exists a smooth linear growing mode of the
forms (8) with the eigenvalue A > 0.
We first linearize (4) around c =0, u =b=0,p =0as

0t0 + 1 %00(]/) —div(x(6) Vo) = ay(a%;c(eo)),
orut — div(p(6o)Vu) + Vp = oey,

9tb — V+(v(60)V*E-b) =0,

divu =0, divb = 0.

@)

We want to find a dominate eigenvalue of the linearized equations (7), with its corresponding growing
normal mode, which takes the form:

u=d(x,y)e, o =o(x,y)et, b=b(x,y)e", p=plx,y)e", ®)

where (7(x,y),i(x,y),b(x,y), Vi(x,y)) € H' x H}. x Hl. x L?(Q), and satisfies the boundary
condition (3) in the sense of the trace.

When a, < a_, thatis, ;—yGO(y) = K@i), plugging (8) into (7) we can easily get the following

equivalent system.
Lemma 1. When ay < a_. Assume (8), then (7) takes the form of

Aii +Vp— V- (u(6)Vii) = Ges,

Ak (00)F — iia — x(80)V - (x(80) V&) = x(80)dy (7 Lx(6p)),
Ab— V4 (y(6p)VE-b) =0,

V-i=0,V-b=0.

We define

2
henh [ [zmrz+a2;<(90);y2(;<(90))]dxdy

- [ |10V 260 Ve 3 (e0) V- B2y,

~ - 7y def . 7 ~
J@,,5) % [ (a2 + B+ x(00)|?)dxdy.

It is easy to check that I; (7,1, b) and J;(, i1, b) are well define on the space H! x H., x H.. .

Define the admissible set

A% ((#,1,5) € H' x Hyy x Hyy : J1(6,8,5) = 1 with tlag = 0, &lay = 0, b-nfpn = 0}

We know that I (7, i, E) has a upper bound on the set .A. We are now in a position to prove that
there exists a growing mode of (8) with the eigenvalue A > 0.
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Lemma 2. Assume that the equilibrium temperature profile 6 = 0y(y) satisfies d%@g(y) = 1

A d:efsup(alﬁlg)eA 1,(G,1,D), then it holds that

(a) (7, 1, E) achieves its supremum on the admissible set A,

(b) Let (&g, ilo, by) € A be a maximizer, then there exists a Po, such that (&y, ilo, bo, Po, \) solves the
Sturm-Liouville problem

Aidlg + Vo — V- (u(00) Vilg) = doea,
AK(Go)ﬁ'O — g — K(Qo)v . (K(Go)Vﬁ'o) = K(Qo)ay(ﬁ'od%li((eo)),

- - ©)
Abg = V- (7(60)V* - bo) =0,
V-iig =0, V'E(]:O,
with the boundary condition
(V X Eo) X n|aQ =0. (10)

Moreover, we have (5, iy, by, fo) € H' x H2, x H2, x H'and A > 0.

Proof. (a) We first choose a maximizing sequence (&, fiy, by) € A of the variational problem

such that

J1(Fn, i, by) =1 and  L(Fy, iy, by) = A as n— +oo,

which implies that {11 (Gy, iln, by) }nez is bounded. It follows from this and Holder’s inequality that
/Q [1(680) Vi1 2 + 12 (00) |V * + 7(60) [V - B[] dxdy

o 2 .
_ /Q [Zanunz+0,21K(90)d—y2(1<(90))}dxdy—Il(an,un,bn)

S C]l (&n/ iy, bn) - Il (ﬁn/ iy, bn) S C.

Hence, {(y, i, En)}neN is uniformly bounded in H! x H;iv X H{}iv,

function (&, 7y, by) € A and subsequence of {(, 11y, by) Y pen (we still write {(&,, iy, by) }nen for
notational simplicity), such that (7, ii,, by) — (60, 1o, by) weakly in H! x H;Z.v X H;iv and strongly in
leoc X leoc div x leoc div®

Therefore, one gets that, for n — +o0

which implies that there exists

1= J1(Fn, tin, bn) = /Q(|ﬁn|2+ |Ba|? + (60 |G| ?)dxdy
- /Q(|’710|2 + |Bo|* + x(60)|0[*)dxdy = J1(5o, ilo, bo),

which implies that
J1(8o, o, bo) = 1. (11)
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On the other hand, thanks to the lower semi-continuity, one can get

sup Il(t”f,ﬁ,f?) = lim sup Il(&n,ﬂn,f)n)
(7,a,b)cA =400

. o I
= lim [zan un2+a—,3x(eo)d72(;<(90))]dxdy

n—-+oo JO
—limnlnfoo/o [y(eo)wﬁnﬁ+;<2(90)|vr7n|2+ry(90)|vL .En\z}dxdy
< L(6g, g, bg) < sup L1(5,4,D),
(7,1,h)c A

which, along with (11), implies that I1 (7, i, 5) achieves its supremum on the admissible set .4, and

A= sup 11(5’, ii, E) = 11 (5’0, 110, Eo) (12)
(7,3,b)c A

(b) It remains to verify that the maximizer (y, ilp, Eo) obtained above solves the problem (9) and the
boundary condition (10). In fact, for T € R, p € Rand any (v, u,b) € H! x H}, x H}. with boundary
conditions 0|3 = 0, u|yq = 0 and n - bl = 0, we define that

j(T, ﬁ) £ 1 (5’0 —+ 10 + ﬁﬁ’o, g+ tu + ‘Bﬁo, EO +Th+ ‘BE()) —1.

Because d5/(7, B)|(0,0) = 2 # 0, by the implicit function existence theorem, we get that there exists
a unique function = B(7), defined on {7 € R : |t| < h} with some positive constant /, such that
j(t,B(t)) = 0,0 = B(0). Therefore,

J1(60 + T + B(T)F0, fig + Tu + B(T)ilo, by + Tb + B(T)by) =1 =0, V|1| <h, (13)

and )
9j (T, B) (0,0

~95(T, B)l00)

Define that i(7) £ I (6 + To + B(T)d0, flo + Tu + B(T)ilo, bo + T + B(T)bg). Then i(0) = I (5o, 1, by),
and i(t) < i(0) for any —h < T < h, which implies that

B/(0) = - —/Q(ao-u+z§0 b+ x(80)50 ) dxdy.

2
0 =1i(0) =28'(0) /Q [2&oﬁoz+?7§1<(90);yz

— 7(60)|V+ 'Eo|2]dxdy

(x(60)) — p(60) | Viio|* — x2(60)| Vo |?

_ y . d? _
+2 /Q [uoz(f + Gtz + fTo(TK(Go)dfyz(K(%)) — p(6o) Vitg - Vu

— 12(60)Vy - Vo — V- by (8) V- EO] dxdy.

Hence, it follows from (12) and (13) that
d? 5
0= [ [z +u2+ 00(60) g3 (<(60)) — 1(60) Vit Vit = x%(60) Va0 - Vo

- Vl . b?(@o)vl : Eo} dxdy —A /Q(ﬁ() U+ EO b+ K(QQ)@'QO’)dxdy,
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which implies that

o—/ [ Au0+&0ez+v.(y(90)vao)] -udxder/Q [—ABMVL(W(%)VL-EO)} - bdxdy

d2
+/ (80)(V x By) x 7 - bdxdy+/ = Ax(80)00 + oz + 00x(80) 5 (x(60))

V(i (GO)V(TO)](fdxdy =0

forall (o,u,b) € H' x H}. x HJ. . Therefore, there exists a iy such that (&, ilo, by, Po, A) satisfies the
Sturm-Liouville problem (9) and the boundary condition (10) holds in the weak sense. By a standard
regularity argument, one can show that (&, 7, bo, Vo) € H x Hﬁiv X Hﬁiv x L? and A > 0, which
ends the proof. [

Remark 3. From Lemma 2, we know that the Sturm—Liouville problem (9) at least has a solution (&, i, bo,

ﬁO/ A)
3. The Exponential Growth Rate A

The goal of this section is to prove that the eigenvalue A in Section 2 is the sharp exponential
growth rate for the linearized BMHD equations (7). The results are as follows.

Lemma 3. Let m € N, and assume that (0p, ug, bg) € H"(Q) x HJ; (Q) x Hjj} (Q) and assume the boundary
conditions for |a| < m —1

aa(7|aQ =0, 8"‘u\30 =0, 0*b - I’l|aQ =0, (V X a”‘b) X 1’l|aQ =0.
Subsequently, there exists a global unique solution (o, u, b), satisfying
(o, u,b) € C(RT; H"(Q)) x C(RT; HIE (Q)) x C(RT; HIE (Q)))

to the linearized BMHD system (7). Moreover, for any my € N with my < m, and t > 0, it holds that

my . . , t . . .
Y [H(\/;?wa,vm,vw)(t)uiz+/O [(xV/ o, VI, A VIVE - b) (T) |17 df}

=0
] - (14)
< C Z || (\/EVJUO/ v]llo, v]bo) H%Z + CEZAt||(ﬁ00/ up, bo) H%Z'
j=0
m—2 . X t .
Y [1@Viu, T p) 0l + [ 197 am(o) . ]
i (15)

m . . .
< C Y I(VKViay, Viug, Vibg)|[7, + Ce*M || (v, o, bo) |72
=0

Proof. Both the existence and uniqueness of a solution to (7) essentially follow from some a priori
estimates. We now establish the estimates.

For the L? estimate, multiplying the first equation of (7) by x(6y)c, and then integrating the result
equation with respect to (x,y) € (), one obtains

1d

24t Jo

:/ K(Go)div(K(GO)VU)adxdy+/ K(Go)ay(aix(ﬂo))adxdy.
Q Q dy

K(90)|0|2dxdy—/0u20dxdy
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Thanks to integration by parts again, one has

2
*(/OK(Q())VO"V(K(@())U)dxd]/:*./01{2(90)|V0'|2dxdy+%./Q(Tz(fiyz(Kz(Go))dxdy,

/QK(()O)(Tay(UdiyK(f)o))dxdy: —/Q U2<;yk(90))2dxdy+;/()02(;;22(1{2(90))119(@,

which implies that

1d 2 2 2 _ 2 d?
3t L x@0)le] dxdy—i—/ok (60)| Vo dxdy-/ﬂ(ug(r—&—(rk(eo)d—yzk(()g)) dxdy. (16)

Multiplying the second and third equation in (7) with u and b, respectively, and using the fact that
/Q VL (1(80) V- b) - bdxdy = /Q ¥ x (1(6)V x b) - bdxdy

=~ [ 10T %) xn- bdxdy+/ 1(6)|V x b|dx = / 1(0)|V x b|?dxdy,
Q) (@) (@)

integrating by parts, we have

14 2 2 / 2 1 2 /
u|© + b dxd + U 0, Vul|+ 0, V—-b dxdy = Uy o dxdy.

This, together with (16), implies

1d
2 i (6@, b)) dxdy + [ [1(x(60) Ve, /u(60) T, \/1(80) V- ) P dxdy .
. 2
= 2/Q up o dxdy + /Q UZK(Q());?K(G()) dxdy.
From the definition of A in Lemma 2, we get from (17) that

1d 2 2 2 / 2 2 2
- <
2 - (0) I a2+ [B2) dxdy < A [ (x(80)lof? + [uf? + [b2) dxdy,

which implies that, for any ¢t > 0
[ (@)l + u +0P) (1) dxdy < 2 [ (x(00)]o0® + ol + [bo) dxdy.  (18)

Notice that the quantities x (6 ), 1£(6p) and (6 ) have positive lower bounds, and all of their derivatives
are bounded in R. It follows from (17) that

| €2 (600) [T+ 1u(80) V4 7(60) 7 - b?] dixly
1d
< 53 (@)l + [u +b) dxdy +C [ (x(00)l+ |uf? + [0/ dxdy,

which together with (18) implies that, for all t > 0

t
/OII(K(Go)VU/ 1(80) Ve, \/7(80) V- 0)(T)||72 dT < Ce*M||(y/(00)ov, 1o, bo) |72 (19)
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Therefore, combining (19) with (18), we can show that, forall t > 0

/@), u, )OIz + [ 1:(60) T, /160) Vit \2(60)V - D)@z

< cezAfn(Maof orbo) 2

In order to get the H! estimate, applying the operator 9; (withi =1, 2and 9y = 9y, 9> = 9y) to
the equations (7), we obtain

(20)

ata,-a - 81- [ﬁuz} - aidiV(K(Go)VU) = aiay (U%K(Qo)),
9:0;u — 9;div(u(09) V) + Vo;p = d;0es, (21)
9:0;b — V- (7(60) V- - 9ib) = V(9;7(60) V" - b),

which is equivalent to

3010 — =9z — (s div(x(go)vaia)—div(di (eo)w)al
—3 (a o (90)) +9, ( ﬁx(eo))alz,

drdiu — div(ju(00) Vo) — div (£ 1(00) Vit ) 8L + Vaip = dj0es,

30ib — V- (1(60) VL - 9,0) = vl( 7(8) VL - b)éé,

(22)

where 55 =0ifi =1, and 53 = 1ifi = 2. Taking the L? inner product of the first equation in (22) with
(69)9;0, and then using integration by parts, one gets

%% (90)|V(7\2dxdy+/ 2(6y) |V2(7| }dxdy / Vuy - Vodxdy
d 2 d 2
—/Q Uy 0 U@bg;((eo)dxdy—i-/ 4dy (60) — (@K(90)> )|V0’| dxdy (23)

_% Qaz;v[x( )d’i/S x(60)] dxdy+/ (8,2 [x(8 )Ef;K(eo)—(g/K(go)H dxdy.

Similarly, taking the L? inner product of the second and third equations in (21) with d;u and 9;b,
respectively, and then using integration by parts, we obtain

Zdt/ (Vu, Vb)|2dxdy+/ (60) |V2u|2+27 (60) |V - ;|2 dxdy

i=1

_ ) 2 2 4" 1 1, 2 &>
f/QVle Vadxdy—i—z/o\vm dyzy(Go)dxdy+2/0|V bl dyz'y(Go)dxdy,

which, along with (23), gives

1d
53t Q(‘(ﬁVU,VM,Vb)|2)dxdy+/(){|(Kv2(7/\/ﬁv2u,ﬁv(vj_.b)|2} dxdy

< Cl(kVe, uVu, 7V - b)|72 + ClI(/x(80)e, u, b) |72
This, together with (20), implies that for all ¢ > 0
1(\/x(80) Ve, Vit,, Vb)( 2+/ |(kV20, /Y0, 7V (V- b) (1) |2, dT

< [1(4/%(80) Vv, Vg, Vo) |72 + Ce* | (+/x(80) v, 1o, bo) I3
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By an induction argument, we can get (14) and (15), which completes the proof. [

4. Nonlinear Energy Estimates for the Case a4 < a_

In this section, we prove the nonlinear estimates for the nonlinear perturbation (4) for the case
ar <a-—.

Lemma 4. Assume that o9 € H*(Q), (1o, bo) € H3,,(Q) x H3, (Q) and assume the boundary conditions
orlgn =0, dulgn =0, b -nlyn =0, (V xdb) x n|yn =0.
Subsequently, there exists a unique global solution (o, u, b) satisfying
(0, 14, b) € Croe(R*; H*(Q0)) % Cioe (R* H, () X Crae(R™; H3yo ()

to the perturbed BMHD (4) with initial data (0, uo, by) and the corresponding boundary conditions. Moreover,
there are two positive constants § € (0,1] and T > 0, such that, for any t € [0, T and || (¢, u, b) ()| g2 < 5,
it holds that

t
I(0m,0) sy + [ 10V, Vi, V) |2 d < €1l (o, w0, bo) 3 2+c/ (o) |2 (24)

where the constant C only depends on 6 and Q.

Proof. Similar to the proof of Lemma 3, we just need to present some necessary a priori estimates for
sufficiently smooth solutions to (4).

Multiplying the three equations in (4) by o, u, and b, respectively, and then integrating by parts,
we obtain

Zdt/ (o, u, b)|2dxdy+/ (k(60 + )| Vo> + (6o + 0) [ Vul* + 7(60 + )|V - b]?) dxdy

—/ uz 0dxdy+/ 90+2)0) (6 )ayadxdy,

which implies

> ub) s + [ (80 +0) Vel + (B + )| Tu + (60 + )|V - bP) dxcly
< llollZz + llull?z + llx(8o + o) — x(60) | 219y erll -

Therefore, applying Young's inequality, we can show

d 2 2 2
T (el a4 o) xdy
+/Q[K(9O+a)|Va|2+y(90+a)|w\2+7(90+a)|w~b|2] dxdy
Sllelfz + lullfz + 1€ i lelf2 < lolfz + llull?:
Integrating the above inequality gives that forall t < T

(e, 1, D) [Fee 12y + coll (Vo, Vi, V- B) [T 12
(25)

< v, b0) Bz +C [ (ol + ) d
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In order to get the H! estimate, applying the operator 9; (withi = 1, 2and 91 = 9, 9, = 9y) to the

equations (4), we have

010;0 + u - Vo;o — div(x(6y + 0)V9;0) — div(Voo;x (6 + 7))
= 9; (ﬁ)uz + Oz — 9y ("fgg)‘”) —du- Vo,
919;u + u - Voju — div(u(6g + o) Vo,u) + Vo,p
= 9;0e; — ;i - Vu + div(Vuo;u(6g+0)) +b-Vo;b +9;b - Vb,
010;b + 1 - Vo;b — VL (v(0y + )0, V+ - b)
=b-Voju+9;b-Vu—ou-Vb+V+(9;y(6g+0c)VE-b).

(26)

Multiplying the three equations in (26) by 0,0, d;u and 0;b, respectively, and then using integration by

parts, we have

14 q
2dt Jo
+/Q [k(00 + o) |[V20 > + (B0 + o) | V2ul* + v(6g + ) |VV+ - b|*] dxdy = F

\Vo|? + |Vu|? + |Vb|?) dxdy

with
2
def d 1 1. o
F= /Ql-_l dy (K(90)>u26y0+ K(90)81”281‘7+31031M2
(80)2y[<(60 + ) — x(6)] — yx(B0) k(B0 + ) — K(80)] .,
* K2 (60 oo

—0;ju-Voo;o+ (alb -Vb—o;u- VM) iU+ (alb -Vu—o;u- Vb) -9;b

1 1 1 4
+ Eaf,u(é)o +0)|Vul? + 581-2')/(90 +0)|V+ b2 + 58121((90 +0)|Vo|? | dxdy =: Z E;.

j=1

Thanks to the boundness of «(6y) and its derivatives, it follows from Holder’s inequality that
1Al S llualli2lloyellie + 19l 20|12 S ([[uzlliz + [IVul )l Vel

and

|F2| < [l (B0 +0) = x(60) | 1 070l 12 S (I8l + [l =) ]| [| V20l 2
< (lollz + Vel )| V2ell 2.

Similarly, by Poincare inequality, we can estimate F3 and Fy, as follows

B3| S (Yo, Vu, V- b) |17 + [[(Ve, Vi, V- b)||1,
SV, Vu, VE-b) 12, + [[(Ve, Vi, V) |2, [[(V2e, V2u, VVE - b) ||2,,

|Ba| S Ve, Vi, V- 0) |14 + V2l 2| (Yo, Vi, V- b) |17
< 1+ Gyl (Vo, Vu, Vb) 1) (V2e, V2u, VV - b) |17,
which together with (27) implies that

d 2
a/Q(|(Va,vu,v17)| ) dxdy
+2/Q k(80 + )| V202 + (00 + )| V2ul + (80 + 0) [V V' - b2] dxdy
S e, w) 172+ (Yo, Vi, V) 172+ (7 + Cyll (0, 1, 0) [ 70) | (VP0, VP, VY- b)[|7,.

(27)

(28)
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Therefore, it follows from (28) that, for some positive constant cy and any ¢ > 0,

(Yo, Vi, Vb) (1) L2+c0/ (Y20, V2u, VY - 1) 2,
< (Yo, Vi, Vb)(0 2+c/ (e, )%, dT+C/0 (Yo, Vu, v+ - b)|2, dr
ot
+c/0 (7 + Cyll (1, b) |20) || (V20 V20, VU - b) |2, d

which, together with (25), leads to

t
11,82 g + o /O (Yo, Vu, ¥ - b) |2, dt < C|| (00, 1o, bo) |2
ot t
+c/0 (o, u)]1%, dT+C/0 (7 + Cy (0, b)) || (Y20, V2, VY- - b) |12, d
Then we have
t t
10,0) ey + [ 11V, Vi, V) 3 d < €l (00,0, b0) 2 +C [ 110, 0)[2 d,

if 7 > 0 is sufficiently small and ||(c, u,b)(t)||;n < & with § small enough and t € [0, T] for some
positive time T.
Similarly, one can obtain that

t
(01,0 2 o) + co/o (Yo, Vi, O - b) |2, d
t
< Cll (00,10, b0) 3 +C [ o) 32 v
t
+c/0 (7 + Gyl (0,1, b)) [ (VP0, Vou, V2V - b) 12, dr

which implies (24). O
5. Proof of Theorem 1
The goal of this section is to prove Theorem 1.

Proof. (i) First, from Section 3, one can construct a solution of the form
f -
(c!,ut,bt) = de e™M Gy, i, bo)

to the system (7) with the initial data (&9, o, bo) € H>(Q) x H2, (Q) x H3, (Q)) and the corresponding
boundary conditions. Moreover, these initial data can be assumed to satisfy

(&0, 0, bo) || 2 = 1

by a standard normalization argument.
For any 6 € (0,6p), take (0, ud, b3) = 8(o, o, by), and (0, u’, b?) is the solution to (4) with initial

data ((70, uo, b §) and g9 > 0 sufficiently small (to be determined later), and define T° > 0, such that
AT 9 5

0s

« def

T* = sup{t > 0: ||(¢°, u®, 1) (t)|| 2 < b0} (29)
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and
* %k def ~ ~ T
T E sup{t > 0: ||(¢°, u®, b°)(t) |2 < 26|(Fo, iio, bo) || 2™} (30)

Subsequently, for all < min (T5 , T*, T**), using the estimate (24) and the definitions of T* and T**,
we obtain

t
1% B O + [ (T, Vi, T 1) 2 e
0
(31)
t
<Cc&+C / (0%, u0) |2, dT < CO% + 2C362CeM / A < Cpo2e*M
0

for some constant C, > 0 independent of J.

Let (¢4, u?,b?) = def (0, u, 1) — (0’ ul,b'). Noting that (¢4, uf,bl) = def 5(o!,ul,bt) is also a
solution to (7) with the 1n1t1al data (03, u, b3), so (04, u?,b?) solves the following problem:

coyd = div(x(80) Vo) — 3y (o7 fx(60) ) = F
ot — div(pu(6p)Vul) + Vp? — oe, = G,

b — V- (7(60) V- 1) =

divu? =0, divb? =0, (¢4, u?,b?)|;—o = 0,

(0, u)[aq = 0, b7 - nfaq = 0, (V x b?) x nfyn =0,

with
. 5Y_ /
F=—ul- Vo +div([x(8y + °) — x(60)] V) — ay( e )
G =0 -V —ul-Vul +div([u(6g + o) — u(6o)|Vuo),
H=0-Vu —u -V + V([y(00 +0°) — 7(60)]V*: - 1°),
namely,

K(00)0:0? — ug — x(6p)div(x(6p) Vo) — x(eo)ay(ad%;c(eo)) = x(6o)F,

o — div(pu(60)Vut) + Vp — odey = G,

o — VL (v(60)VE-b?) = H, (32)
divud =0, divb? =0, (¢4, u?,b?)|;—o = 0,

(0, ub)|s0 =0, b4 -nlyn =0, (V x b¥) x njyn = 0.

Similar to the proof of (17), one can get from (32) that

3 k@) -+ |2 vy
2t

+/ (60) |wd\2+y(90)|wd|2Jrry(eo)wL b2 dxdy — 2/ ud o dxdy
—/ (eo)dxdy+/ k(0) Fo + G - u + H - b%) dxdy.

Hence, by the definition of A, one has

d
o || (<(60) 0+ w2 b ?) dxdy
0 (33)
ng/ ((80) |02 + [u]? + |bd|2)dxdy+2/ (k(80) Fo + G - u + H - b) dxdy.
Q Q
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For the remainder terms on the right-hand-side of (33), one first can deduce that
| [ w(00)ou® - Vo dxdy| < Cllo®| s 5]V 2

A3 (1,,0)2 4,3 513 5
< Clle? || LIwl | IV e LI Vul | 2V o[ 2
< Cllo | g 14 | [ VP || 2

< CUe Nl + 0l )| 1V 2.
Similarly, it holds that
| /Q ul - (b0 -l - V) dxdy|
< (1l e+ Sl | ) 1, B | (Ve V80 | 2,
and

I/de (00 Yl =’ VB dxddy| < (0] g+ 016 ) 1, 00) [ || (Ve V0°) | 2.

15 0f 23

(34)

(35)

(36)

By integration by parts, one can control the term ‘ S o (B0)div([x(8p + o) — x(69)]V?) dxdy‘

by ‘fo ([K(eo + 0% — k(80)]Ve® - Vaix(6) + k(6 + o°) — K(eo)]ayaﬁad%;c(eo)) dxdy
implies that

| /Q o x(80) div k(6 + 0%) — x(60)] Vo) dxdy|

< 1k (80 + ) — x(80) [ 1+ (V[ 51V | 2 + 19y [l 2 10 )
SN 1 1V g IV l2 + 81V o ] 2) + 10 [V [ 2 (e + Sl 1)
S 1 1V g (N0 + Sl ().

Similarly, one can show that

[ 1div([n(80 +0°) = p(E)IVu]) - ] + [V (1780 + 0%) = (80)]V* - 1) - 1| dixdy
S 102 (V2 V0% |1 (| (Vs V80 |2 + 81| (Vs VL) [ 12).

Noticing that
k(6 + 0°) — o°x’ (6p)
’ /QadK(Go)ay( %(00) ) dxdy’
<| /Q [(60 + ) — x(60) — o*'(80)] 3y dxdy|
d (6, +¢T‘5) —x(6y) — 05K’(9 )
ia o 0 o
+ ‘ /QU' dyK(GO) %(00) dxdy|,
one has

‘/Q(rdx(Go)ay(K(eo+UZEGE)05K/(90)> dxd]/‘

< Ilx (8o +°) —x(60) — o’ (80) [l 2 (Vo™ | 2 + o] 12)
S =11 lo? i S 1o NIV (1o [ +Slle ).

, which

(37)

(38)
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Substituting (34)—(38) into (33), yields

d 42 di2 L dp2
5 1 06(00) 02+ w2 + |o2) ddy
<20 [ (x(80)[0” 2+ [ + |b"2) dxdy
+ Cl[(0°, 1, 1) || 1(V 2, Vil , V) || || (02,1, 10, 60, 6ut, 661 |,
which, along with the Gronwall’s inequality, gives rise to
d . d pdy)2
1@, ) 2 2

t .
<C / AN (00, w8, 00) || 1 || (W02, Vil VB0 || | (0, ud, 60, 60, 6ut, 66V || o dT
0

(39)
N >
< ceM( /O M| (00,4, 1) | dT) [ (V0 Vi, V) 3 g
x [|(¢®, u®, b5,§al,5u1,5b1)||L?o(H1).
It follows from (31) and (39) that, for all { < min (T‘S, T*, T**), it holds that
1
d . d pdy2 < L\ 53,30t
1, ) Bz < (1+ \/X>C‘5 :
which yields that
3
10, u?,b7) | o 12) < C36° %62 (40)
for some positive constant C3 independent of 6.
Now, we claim that
T° = min (T?, T*, T**) (41)
if €¢ is taken to be so small that
. 50 ”(6'0/ ﬁOIEO)H%Z
0<eg < , 42
co < min (7 52 ) (42)

In fact, if T* = min (T°, T*, T**) < T?, then (31) implies that

10, 18, 1) (T) g2 < V/Ca0eAT" < 24/Cotg < %50

which contradicts with the definition of T* in (29).
On the other hand, if T** = min (T‘S, T*, T*) < T, then it follows from (31), that

100, 1, 0) ()| 2 < 1| (0f, 1§, B5) (T*) |2 + N[ (0, e, b (T) | 2

< 3lI(c", ul, bY)(T*) |2 + C36%2e30T™ < 6| (@0, 0, Bo) | 22T + C367/2e2AT™
ok - - ~ 3 - - ~ ok
< 8¢ (|1(80, 110, bo) [l 2 + C3v/2€0) < 5 1 (@0, o, bo)l| 26T

which contradicts with the definition of T** in (30), and, thus, (41) holds. Therefore, thanks to the
fact that

Y o T 5 .
1(05, 15, b5) (T°) | 2 = 6| (@0, l0, bo) | 2e™ " = 2e0[(Fo, o, Bo) |2,
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we get from (40) and (42) that

(%, 1, b)Y (TO)]| 2 > || (0, ul, B2) (T°) || 12 — [ (o, uf, b7) (T°) | 12
> 2| (&0, 1o, bo) || 12 — C36%/ 234

Z 280”(5’0, ﬁo,Eo)HLz — 2\@(?383/2 Z 80”(5’0, ﬁOrEO)HLZ/

which completes the proof of the case (i).

(ii) Now, we consider the case a4+ > a_ and dd—;zK(GO(y)) <0or0 < ;L;K(Go(y)) < Bo, with

Bo > 0 small enough constant. We will prove that the equilibrium state (6y(y),0,0) is nonlinearly
asymptotically stable.
First, it follows from (4) that

K(00)0:0° + x(680)ul - Vo — x(6p)div(x(6p)Vo?)
= x(00)dy (Uéf—yx(()o)) —ud + () F°,
0’ + u® - Vul — div(u(6)Vul) + Vp® = oepy +1° - VI + GF, (43)
otb® +u® - Vb — V4L (y(60) VL - 0°) = b° - Vil + H?,
divu® =0, dive’ =0

with

FO = div([(6 + 0°) — x(60)]V?) + 9, (HHI Xl () )
G® = div([u(6o + 0°) — u(60) Vo),
H? = VE([v(6 + 0°) — v(60)] VL - b9).

Multiplying the three equations in (43) by ¢, u’, and b, respectively, then using integration by parts,
we can get that

1d
3o |G+ w0+ 0 dxdy + [ [ @) TP+ p(60) |V
+7(80)| V- b° ) dxddy
2
:/Q(U‘S)ZK(GO)EZ/Z(K(GO))dxdy—i-/QK(GO)F‘S(T‘dedy—i-/QG‘S -l dxdy (44)
+ /QH‘S - b dxdy — /QK(GO)(/"Su‘S Vol dxdy — /Q {u‘s (- Vu)
—u® (BB + B (1 V) — b (b - Vu‘s)} dxdy.

Notice that

I/QK(f)o)U‘Su‘S-VU‘S dxdy| < C|lo®|| 4 ]|ul]| 4| Vo |2
1 1 c 1 1
< Cle°)|2 |6l || 21V || 21|Vl || 2,1V o? | 2,
we get
\/()K(9o)05u‘5'va‘5dxdy| S @, w0 |2 )| (Vo?, Vul)|[7,. (45)
Thanks to the fact that div #° = div b® = 0, we have

/Q[u‘s (V) —ul - (V) 410 - (u® - V) — b - (b° - Vul)] dxdy = 0. (46)
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By using integration by parts, one can control the term
| /Q 0?x(80)div ([x(6 + 0*) — x(60)| V) dxdy|

by
[ (txte0+ ) —K(eo)]w&.w%(eow[K(90+aﬁ)—K(eo)}aya%ﬁ;yk(eo))

which implies that

| /Q o (80)div([x(8o + 0°) — x(80)] Vo) dxdy|
S |80 + 0°) — (80) |4 (Vo |l VO || 12 + [19y0° || 2110 || 14)

(47)
SNl Vo a1V |2 + 119y0° [ 210”174
S Gl I Vo 172 + IV |22 + Cy 0?2 Vol |17
Similarly, it follows from integration by parts that
I/QdiV([ﬂ(Qoﬂf‘s) — u(60)]Vu)) - u® dxdy| < (B0 + 0°) — u(60) | 21| Vi |34 8)
SN2 VUl |21 V2 |2 S 0Vl 52 + Cyllo? [ 22V (172,
and
| /Q VE([r(60+0°) = v(60)] V- b%]) - b dxdy| < [[(60 + 0°) = v(60) | 2]V - 8|7 9)
SN2V -l VVE- 02 S 7 VY- B7 + Gyl [ 511V - 0132,
Notice that
/ U'éK(e )a (K(GO +(75) 7K(90) 7‘7(51(/(90))(13([1]/
Jo 0% x(60)
. /Q (60 + 0°) — x(60) — o« (60)]0,0° dxdy (50)
[ x(Bo+0°) —x(Bo) — K (6) 5d
/Q <(60) o dyK(Gg)dxdy.
Therefore, we have
- 5y _ o
‘ /Q U,OK(GO)ay(K(GO +0 ) ?éeg) oK (90))113((1]/‘
o
S NIx(8o + 0°) — x(80) — o’ (60) [l 12 (Ve[| + 10° || 12) (51)

J )

S IZ Vel +11e°ll2) S 10l 1V 172 + 1o 17211V | 2
) )

S o lIZ:0v e’ |72

On the other hand, by Poincare inequality for a strip, it follows from physical condition (2) and the
assumption in (ii) of Theorem 1 that

2 :
| [0 (60) 53 (x(80)) | < o | 2(60) Vi Py
Therefore, plugging (45)—(51) into (44), for By small enough, we can get

d
S /x(@0)0?0,19) 3, + coll (o, v, V) )

< (12 + 101172 + o | ) 1 (Y, Vi, VO[22 + | (V2ul, V20, V26°) |2
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for some positive constant cg.

In order to get the H! estimate, one can apply the operator 9; (withi = 1, 2and 9; = dy, 9o = dy)
to the equations (4) to get

0;0;0° + u’ - V;0° + 9;u’ - Voo — div(x(0y)V9;0°) — div(9;x(6) Va?)
= 3y9; (aé %K(eo)) — 9 (ﬁug) 1 9;F,

0;0;1° 4 ul - Vo;u® 4 9;u’ - Vul — div(u(6p) Vo;ud)
= 1° - Vo;b° 4 9;b° - VI° 4 0,0%, + 0,G?,

0;0;0° + u’ - Vo;b° + 0;u’ - Vb° — V+(v(60)9;VE - 19)
=1° - Voul 4+ 0;b° - Vul + 9;H°.

— div(9;u(6) Vi) + V;p° (53)

— V@ (60) V- - )

Multiplying the three equation in (53) by 9;0?, 9;u’, and 9;b° respectively, then using integration by
parts, we can obtain

2 s / (Ve V00 Paxdy + [ [x(60) [ V20" + (00)| V2 P+ (60) [TV - b7 ] dxdy

dx(60) . @1 (8) s, d1(80) S
= _/Q[ dyo Vo' - Vo dyo Vil - Vayu dyo (V4 B0 (VE - ayb )}dxdy

2 - .
n Z / (9% - Vb® - 9u° + 0,10 - Vs - ;b° — dyu® - Vb - 9,10 ) dxdly -

uj 2.5 5 Y. 92,6
—Z/ 90)) ) }aia + (oPer + G?) - 3Pu’ fdxdy
—Z/ o’ - Vul - 9;uldxdy — 2/ - V0?)o,0%dxdy.

Thanks to the boundedness of x(6p), #(60), v(6y) and their derivatives, it follows from Holder
inequality and Young inequality that

dx(00) o s s, du(0o) o 5 s d4v(00) o1 .5 1 5
|/Q [Tw Yoyt + TR ot + TR ) (V- ay )]y
S (Yo%, Vil , Vi) |2 | (V20?, V2ul, V26 | 12 (59)
Sl (V22, V28, V260)|2, + Cy || (Vo?, Vul, V) |2,

Similarly, we can prove

2 N
’ 2/081'115 Vil il dxdy’ SV 2 Vil |2 S (V|2 V2| 12
=

(56)
S Gyl V[T + V2|2,

2 ) ) ) ) )
|3 [ o - Vo' - a0 dxdy| < GV ) Vo2 + | V2o (57)
i=1

2 o
‘ y / 0:6° - Vb0 - 90 + ;b0 - Vil - 9;b° — d;u’ - Vb‘s-aib")dxdy‘

i—17/0Q (58)

< GV LIV |72 + 5l V200 172
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On the other hand, direct estimates give that

<5
]Z/ 90)) - + F]320° + (o%er + G°) - 03’ + HO - 320’ }adxy|
(90) 59)
S I vzff‘sfVzuérVzb‘))||L2(HF‘S||L2 FIG 2 + 1H 2 + 10, u®) |2 + VO 12)
Sll(V2e?, V2ul ,V20°) |17, + Gy (IIF° 172 + G213 + | HC |72 + [[(Vo?, Vud) |I72)
Iz + 1G° 12 + 1HC |l 2
SVl (Vo2 Vil , V80 || s + [|0°]| = | (V20?, V20, V20%) | 12
+ 100017 + 1Vl 2, (60)
o 1 1
S V2, Ve, V)| 12 + |12 V20 | ) 1(V 202, VPP, V26°) | 12
+ (1 + (o] 2) IV | 2.

Therefore, substituting (55)—(60) to (54), we can show that, for some positive constant ¢,
d
S 1(Vo?, Vul, VE)||, + e[ (V202 V2l V2) |1,

S U+ 1015 + IVl [2) 1[(Ve?, Vul, Vo0 |17 (61)
+(1(ve?, Vul, VB)I2 + [|0°]| | V20 [ 2) [(V202, V20l W 200) | 72

Similarly, we can get for some positive constant cp,
d
T (V20°, V2ul, V260 |13, + o | (Vo0 Vou?, V20 I,

S (14 (v, Vul, VE0)|12) [ (V2e, V2ul, V20 |12 (62)
+ |(V2?, V2, vzbé)uizu(v%{ V3ul, v3b5)\|§2

Hence, it follows from (52), (61), and (62) that for some positive constant c3,

d
1@ 1, 00 [ + el (Vo Vel V) |
< Gll(0®, 1, 60) 1321 (Vo?, Vel Vo) |

(63)

By a bootstrap argument, we can obtain that there is a positive constant ¢y < 2%34, such that, for any
6 € (0,00),if || (08, ub, 1Y) || 2 < &, then

C3
101, ) e 2y + SNV, T, V) [Ty < (08,6, 0) 72 < &

HZ

It follows from this and (63) that

—||(U u b")||H2+—||(VU vul, V) |3, <0,

which, together with Poincare inequality, implies that

d
101, 0) [ + call (0, u®, %) [ < O (64)
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for some positive constant c4. Therefore, (64) implies that, for any ¢ > 0
1%, 6) (D)l < 1105, 1, 03 | e,

which gives (5). This finishes the proof. O

6. Conclusions

In this paper, we consider the 2D Boussinesq-MHD equations with the temperature-dependent
fluid viscosity, thermal diffusivity and electrical conductivity in a channel. We get thatifa; > a_,

and %K(Go(y)) <0or0 < %K(Go(y)) < Bo, with By > 0 small enough constant, and then the
equilibrium state (# = 0, B =0, § = 6y(y)) is nonlinearly asymptotically stable, and, if a; < a_, then
the equilibrium state (7 = 0, B =0, 6 = 6y(y)) is nonlinearly unstable. There is one open interesting
problem. How about the equilibirum state (# = (y,0), B = (y,0), 8 = 6y(y)) or the equilibirum state

(# = (y,0), B= (y,0), 8 = 0)? We will consider this problem in another paper.
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