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Abstract: In this paper, we study the asymptotic behavior of minimizing solutions of
a Ginzburg–Landau type functional with a positive weight and with convex potential near 0 and we
estimate the energy in this case. We also generalize a lower bound for the energy of unit vector field
given initially by Brezis–Merle–Rivière.
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1. Introduction

Let G be a bounded, simply connected and smooth domain of R2, g : ∂G → S1 a smooth boundary
data of degree d and p a smooth positive function on G. We set

p0 = min
{

p(x) : x ∈ G
}

(1)

and Λ = p−1(p0). Let us consider a C2 functional J : R→ [0, ∞) satisfying the following conditions :

Hypothesis 1 (H1). J(0) = 0 and J(t) > 0 on (0, ∞).

Hypothesis 2 (H2). J′(t) > 0 on (0, 1].

Hypothesis 3 (H3). there exists ρ0 > 0 such that J′′(t) > 0 on (0, ρ0).

For each ε > 0 let uε be a minimizer for the following Ginzburg–Landau type functional

Eε (u) =
∫

G
p |∇u|2 dx +

1
ε2

∫
G

J
(

1− |u|2
)

dx (2)

defined on the set
H1

g(G, C) =
{

u ∈ H1(G, C) : u = g on ∂G
}

. (3)

It is easy to prove that min
u∈H1

g(G,C)
Eε (u) is achieved by some smooth uε which satisfies

 −div(p∇uε) =
1
ε2 j(1− |uε|2)uε in G

uε = g on ∂G,
(4)
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where j (t) = J′ (t). In this paper, we are interested in studying the asymptotic behavior of uε

and estimate the energy Eε(uε) as ε → 0 under the assumptions that p has a finite number of local
minima b1, ..., bN all lying in G and that it behaves in a “good” way in a neighborhood of each of its
minima. More precisely, throughout this paper we shall assume

Λ = {b1, . . . , bN} ⊂ G (5)

and there exist real numbers αk, βk, sk satisfying 0 < αk ≤ βk and sk > 1 such that

αk |x− bk|sk ≤ p(x)− p0 ≤ βk |x− bk|sk (6)

in a neighborhood of bk for every 1 ≤ k ≤ N.
The presence of a non-constant weight function is motivated by the problem of pinning the vortices

of uε to some restricted sites, see [11,13,20] for more detailed physical motivations. Indeed, in general,
the study of the minimization of the energy functional Problem (2) and its particular form is motivated
by pinning phenomena in superconductivity that attract vortices to some sites. In [1], the authors
show that in presence of an applied magnetic field, if the applied fields reach a critical value,
these sites are attracted away from the interior, the pinning effect breaks down and vortices appear
in the interior. In [22], the authors consider a model of a superconductor subjected to an applied
electric current and electromagnetic field and containing impurities. They study a mixed heat
and Schrödinger Ginzburg–Landau evolution equation on a bounded two-dimensional domain with
an electric current applied on the boundary and a pinning potential term. Other models are considered
in [2], where the authors treat the structure of symmetric vortices in a Ginzburg–Landau model of
high-temperature superconductivity and antiferromagnetism. In [4], the authors give an analysis of
minimizers of the Lawrence–Doniach energy for superconductors in applied fields.

Please note that in [19], the author investigates a different type of generalization for the standard
Ginzburg–Landau problem, taking the weight p = 1 and allowing the potential to vanish on a larger set.

Our way of act provides an approach to various proofs related to stationary Ginzburg–
Landau vortices.

In this paper, without loss of generality, we assume d ≥ 0. By the way we treat only the case
d > 0, being the case d = 0 trivial.

The case when J(|u|) =
(
1− |u|2

)2

4
and p = 1

2 corresponding to the Ginzburg–Landau energy,
was studied by several authors since the groundbreaking works of Béthuel-Brezis and Hélein.
More precisely they dealt with the case with boundary data satisfying d = 0 and d 6= 0 respectively
in [5,6]. In this latter work, the case of G star shaped was treated. Eventually in [23], Struwe gave
an argument which works for an arbitrary domain and later del Pino and Felmer in [12] gave a very
simple argument for reducing the general case to the star shaped one. More in particular the method
of Struwe is found to be very useful for the case of non-constant p. We note that in [14] we study
the effect of the presence of |u| in the weight p(x, u) = p0 + s|x|k|u|l where s is small, k ≥ 0 and l ≥ 0.

The case when J(|u|) =
(
1− |u|2

)2

4
and p blue is not a constant function was studied in [3,7–9].

More precisely in [7–9] the authors considered the cases card Λ = 1 and d ≥ 1, card Λ ≥ d and the case
where p has minima on the boundary of the domain. In the first case they highlight a singularity of
degree greater than 1 when d > 1. More precisely, if Λ = {b} ⊂ G, they proved

uεn → u∗ = eiφ
(

z− b
|z− b|

)2d
in C1,α

loc
(
G \ {b}

)
,

where φ is determined by the boundary data g.
In the second case, they showed that actually N = d, the degree around each bk is equal to 1

and for a subsequence εn → 0
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uεn → u∗ = eiφ
d

∏
j=1

z− bj

|z− bj|
in C1,α

loc
(
G \ {b1, . . . , bd}

)
,

the configuration {b1, . . . , bd} being minimizing for a certain renormalized energy defined in Λd.
Moreover, they proved the asymptotic behavior Eε(uε) = πp0d| log ε| + O(1). In the third case,
the authors considered the situation when the weight has both minima in the domain and on
the boundary. In [3], the authors studied the case card Λ < d and established the convergence
of a subsequence uεn → u∗ in C1,α

loc
(
G \ {b1, . . . , bN}

)
for every α < 1, where the N distinct points

{b1, . . . , bN} lie in Λ and u∗ ∈ C∞ (G \ {b1, . . . , bN} , S1) is a solution of

−div (p∇u∗) = p |∇u∗|2 u∗ in G \ {b1, . . . , bN} , u∗ = g on ∂G.

Moreover, the degree dk of u∗ around each bk satisfies dk ≥ 1 and ∑N
k=1 dk = d.

In the current paper we will suppose that card Λ = N < d as this is the more interesting case.
Indeed, as already observed in [3], singularities of degree > 1 must occur and in some cases they could
be on the boundary. Following the same argument as in [5] or in [3], we prove that uεn has its zeros
located in d discs, called “bad discs”, with radius λεn where λ > 0. Outside this discs |uεn | is close to 1.
For n large each bad disc contains exactly one zero. Thus, there are exactly dk zeros approaching each bk
(as n→ ∞). In the case dk > 1 (this must be the case of at least one k if N < d), one expects to observe
an “interaction energy” between zeros approaching the same limit bk. A complete understanding of
this process requires a study of the mutual distances between zeros of uεn which approach the same bk.
It turns out that these distances depend in a crucial way on the behavior of the weight function p

around its minima points. In [3], where sk = 2 and J(|u|) =

(
1− |u|2

)2

4
, it is showed that each bk

with dk > 1 contributes an additional term to the energy, namely πp0
(
d2

k − dk
)

log
(
| log ε| 12

)
which

is precisely the mentioned interaction energy. The method of [5,6,23] can be adapted without any
difficulties to the case of J satisfying (H1)÷ (H3) with a zero of finite order at t = 0. This applies
for example to J(t) = |t|l , ∀l ≥ 2.

In our paper, due to the presence of a non-constant weight and a potential with zero of infinite
order at t = 0, the energy cost of each vortex of degree dk > 1 is much less than the previous one.
Indeed, a precise computation of the energy around a minimum of the weight p, in the spirit of [3,7–9]
will imply that certain potentials with sufficiently slow growth allow for a vortex energy that is not
2πdk| log ε|+ O(1) but instead

2πp0dk| log ε|+ 2πp0
d2

k−dk
sk

log | log ε| − 2πp0dk I
(

1
ε (| log ε|)−

1
sk

)
+ o

(
I
(
(| log ε|)

1
sk

))
, (7)

where the quantity

I(R) =
1
2

∫ j(ρ0)

1
R2

j−1(t)
t

dt

will play an important role (see Section 3).
For the sake of clarity, let us give some natural example of the situation which we are studying

which is only one very particular case among our general assumptions:

J(t) = Jh(t) =

{
exp(−1/th) for t > 0 ,

0 for t ≤ 0 ,
(8)

for h > 0. Clearly, J satisfies (H1)− (H2)− (H3). So, for example, for J1 we find I(R) = 1
2 log log R +

O(1), (see the Appendix Proposition 1.4 in [15]), and the vortex energy in this case reads:
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2πp0dk(| log ε| − 1
2

log | log ε|) + 2πp0
d2

k − dk

sk
log | log ε|+ O(1).

Let us finally point out that it could also be interesting for our problem to give a precise asymptotic

behavior of the term o(I(|log ε|)
1
sk )) in (7). At the moment, this question is not yet fully understood,

since it is related to renormalized energy introduced in [8] (see also [3]).
Another interesting question is to study our problem (2) with the presence of an applied magnetic

field. We guess it would be object of a forecoming papers.
The paper is organized as follows. In Section 2, we state our main result. In Section 3 we recall

some definitions and results contained in [15]. Section 4 is devoted to prove the generalization of
Theorem 4 of [10] which will be useful for obtaining a precise lower bound of the energy for our case.
In Section 5 we prove our main result, namely Theorem 1, by stating an upper and a lower bound
for the energy (2). Finally, as a corollary of upper and lower bounds of the energy, we find an estimate
of the mutual distances between bad discs approaching the same singularity bk.

2. Statement of the Main Result

Our main theorem describes the asymptotic behavior of the minimizers of the Ginzburg–Landau
type functional (2) and their energies.

Theorem 1. For each ε > 0, let uε be a minimizer for the energy (2) over H1
g(G, C), with G, g as above, d > 0

and J satisfying (H1)÷(H3).

(i) For a subsequence εn → 0 we have

uεn → u∗ = eiφ
N

∏
j=1

(
z− bj

|z− bj|

)dj

in C1,α
loc
(
G \ {b1, . . . , bN}

)
(9)

for every α < 1, where the N distinct points {b1, . . . , bN} lie in Λ, ΣN
j=1dj = d and φ is a smooth

harmonic function determined by the requirement u∗ = g on ∂G.

(ii) Setting

I(R) =
1
2

∫ j(ρ0)

1
R2

j−1(t)
t

dt

we have

Eεn (uεn) =2πp0d log
1
εn

+ 2πp0

(
ΣN

k=1
d2

k − dk

sk

)
log log

1
εn

− 2πp0dI

(
1
εn

(
log

1
εn

)− 1
sk

)
+ o

(
I

((
log

1
εn

) 1
sk

))
.

(10)

As it is showed in [15], limR→∞
I(R)
log R

= 0 hence the leading term in the energy is always of order

o(| log ε|). Moreover, it is easy to see that I(R) is a positive, monotone increasing, concave function
of log R for R large (see [15]). The proof of Theorem 1 consists of two main ingredients: the method
of Struwe [23], as used also in [3] in order to locate the “bad discs”, (i.e., a finite collection of discs
of radius O(ε) which cover the set

{
x : |uε(x) < 1

2 |
}

) and the generalization of a result of Brezis,
Merle and Rivière [10] which will play an important role in finding the lower bound of the energy.
More precisely in Theorem 2, we will bound from below the energy of a regular map defined away
from some points a1, a2, . . . , am in BR(0) such that 0 < a ≤ |u| ≤ 1 in Ω, deg

(
u, ∂BR(aj

)
= dj

and with a bound potential by using the reference map u0(z) =
(

z−a1
|z−a1|

)d1
(

z−a2
|z−a2|

)d2
....
(

z−am
|z−am |

)dm
.
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After the results of [10], Han and Shafrir , Jerrard, Sandier, Struwe obtained the essential lower bounds
for the Dirichlet energy of a unit vector field, see [17,18,21,23].

3. Preliminary Results

In this section, we recall some results proved in [15] (see also [16]) useful in the sequel. Let us
consider the following quantity, introduced in [15] which will play an important role in our study

I (R, c) = sup
{∫ R

1

1− f 2

r
dr :

∫ R

1
J
(

1− f 2
)

rdr ≤ c
}

(11)

for any R > 1 and c > 0.

Lemma 1. For every R > 0 and c > 0, there exists a maximizer f0 = f (R)
0 in (11) satisfying 0 ≤ f0(r) ≤ 1

for every r such that f0(r) is non-decreasing. Moreover, if r0 = r0(c) is defined by the equation

c = J(1)

(
r2

0 − 1
2

)
,

then there exists r̃0 = r̃0(c, R) ∈ [1, r0] such that

f0(r)

{
= 0 i f r ∈ [1, R] and r < r̃0,
> 0 i f r > r̃0.

Furthermore ∫ R

1
J
(

1− f 2
0

)
rdr = c, ∀R > r0

and
j
(

1− f 2
0

)
=

1
λr2 , r > r̃0

for some λ = λ(R, c) > 0.

Moreover, it holds

Lemma 2. There exist two constants κ1 > 0, κ2 > 0 such that

κ1min(1,
1
c
) ≤ λ ≤ κ2(1 +

1
c
), R ≥ r0 + 1. (12)

Actually, the proof of the previous lemma shows that the estimate of λ is uniform for c lying
in a bounded interval.

Lemma 3. For every c > 1 there exists a constant C(c) such that for every c1, c2 ∈ [1/c, c] we have

|I(R, c1)− I(R, c2)| ≤ C(c) ∀R ≥ 1. (13)

In view of Lemma 3 it is natural to set

I(R) = I(R, 1)

and for any fixed c0 > 1 we have

|I(R, c)− I(R)| ≤ C(c0), ∀c ∈ [1/c0, c0] ∀R ≥ 1. (14)

We recall some properties of I(R).
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Lemma 4. We have

I(R) =
1
2

∫ j(η0)

1
R2

j−1(t)
t

dt ∀R ≥ 1. (15)

In particular,

lim
R→∞

I(R)
log R

= 0. (16)

Moreover for every α > 0 there exists a constant C1 (α) such that

|I (αR)− I(R)| ≤ C1 (α) (17)

for R > max
(

1,
1
α

)
and c ∈ (0, c0].

The next lemma provides an estimate we shall use in the proof of the upper bound in Section 5.1.

Lemma 5. We have ∫ R

µ0

(
f ′0
)2 ≤ C, ∀R > µ0

where µ0 = max

(
r0(1),

1√
aj (ρ0)

)
being r0(1) and a defined respectively as in Lemmas 1 and 2.

In Theorem 1 we will need a similar functional to that of (11). Hence for R > 1 and c > 0 we set

Ĩ (R, c) = sup

{∫ R

1

1− f 2

r
dr + 4

∫ R

1

(
1− f 2)2

r
dr :

∫ R

1
J
(

1− f 2
)

rdr ≤ c

}
. (18)

Now, let us recall an important relation between the two functionals (11) and (18).

Lemma 6. There exists a constant C = C(c) such that∣∣∣ Ĩ (R, c)− I(R, c)
∣∣∣ ≤ C (19)

for R > 1.

Lemma 7. There exists a constant κ such that for every c > 0, α > 0,

|I (αR, c)− I(R)| ≤ κ(c0, α)∣∣∣ Ĩ (αR, c)− I(R)
∣∣∣ ≤ C1(c0, α)

for R > max
(

1,
1
α

)
and c ∈ (0, c0].

The next two propositions, dealing with a lower bound for the energy in a simple annulus and in
a more general perforated domain respectively, will play an important role in the proof of our lower
bound stated in Section 5.2 (see [15] for details).

Proposition 1. Let AR1,R2 denotes the annulus {R1 < |x| < R2} and let

u ∈ C1 (AR1,R2 ,C
)
∩ C

(
AR1,R2 ,C

)
satisfy

deg
(

u, ∂BRj(0)
)
= d, j = 1, 2,
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1
2
≤ |u| ≤ 1 on AR1,R2

and
1

R2
1

∫
AR1,R2

J
(

1− |u|2
)

dx ≤ c0,

for some constant c0. Then there exists a constant c1 depending only on c0 such that

∫
AR1,R2

|∇u|2dx ≥ 2πd2
(

log
R2

R1
− I

(
R2

R1

))
− d2c1.

Proposition 2. Let x1, x2, . . . , xm be m points in Bσ(0) satisfying

|xi − xj| ≥ 4δ, ∀i 6= j and |xi| <
σ

4
, ∀i,

with δ ≤ σ

32
. Set Ω = Bσ(0) \

⋃m
j=1 Bδ(xj) and let u be a C1-map from Ω into C, which is continuous on

∂Ω satisfying
deg

(
u, ∂Bσ(xj)

)
= dj, ∀j

1
2
≤ |u| ≤ 1 in Ω

and
1
δ2

∫
Ω

J
(

1− |u|2
)

dx ≤ K.

Then, denoting d = ∑m
j=1 dj, we have

∫
Ω
|∇u|2dx ≥ 2π|d|

(
log

σ

δ
− I

(σ

δ

))
− C

with C = C
(

K, m, ∑m
j=1 |dj|

)
.

4. Lower Bound for the Energy of Unit Vector Fields

In this section, we will generalize Theorem 4 of [10]. To this aim let a1, a2, . . . , am be m points
in BR(0) such that ∣∣ai − aj

∣∣ ≥ 4R0, ∀i 6= j (20)

and
|ai| ≤

R
2

, ∀i, (21)

with
R0 ≤

R
4

. (22)

Set

Ω = BR(0)\
m⋃

j=1

BR0(aj)

and let u be a C1 −map from Ω into C which is continuous on ∂Ω.
We suppose that

0 < a ≤ |u| ≤ 1 in Ω (23)

and
1

R2
0

∫
Ω

J
(

1− |u|2
)

dx ≤ K, (24)
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for some constants a and K.
Let us observe that (23) implies

deg
(
u, ∂BR(aj

)
) = dj ∀j

is well defined. Hence, let us denote d = ∑m
j=1
∣∣dj
∣∣ and consider the map

u0(z) =
(

z− a1

|z− a1|

)d1
(

z− a2

|z− a2|

)d2

....
(

z− am

|z− am|

)dm

. (25)

We want to prove the following result

Theorem 2. Let us suppose that (20)÷(24) hold, then we have

∫
Ω

p |∇u|2 dx ≥ p0

∫
Ω
|∇u0|2 dx− 2πp0

(
m

∑
i=1

d2
i

)
I
(

R
R0

)
+

−2π
(

1− a2
)

p0 ∑
i 6=j
|di|

∣∣dj
∣∣ log

R
|ai − aj|

− C,

(26)

where C is a constant depending only on p0, a, d, m and K.

Proof. Let us set ρ = |u| so that u = ρeiϕ locally in Ω. Hence we have

|∇u|2 = |∇ρ|2 + ρ2 |∇ϕ|2 .

Similarly, we can set u0 = eiϕ0 locally in Ω which implies |∇u0| = |∇ϕ0| and

∇ϕ0(z) =
m

∑
i=1

di
Vi(z)
|z− ai|

, (27)

where

Vi(z) =
(
− y− ai
|z− ai|

;
x− ai
|z− ai|

)
is the unit vector tangent to the circle of radius |z− ai| centered at ai.

By introducing the function ψ = ϕ− ϕ0, we can write u = ρu0eiψ and have

|∇u|2 = |∇ρ|2 + ρ2 |∇ϕ0 +∇ψ|2 . (28)

By (1) and (28) we get∫
Ω

p |∇u|2 dx ≥ p0

∫
Ω
|∇ρ|2 dx + p0

∫
Ω

ρ2 |∇ϕ0|2 dx + p0

∫
Ω

ρ2 |∇ψ|2 dx + 2p0

∫
Ω

ρ2∇ϕ0∇ψdx.

By adding and subtracting one in the second and fourth integral and by (23), we get∫
Ω

p |∇u|2 dx ≥− p0

∫
Ω

(
1− ρ2

)
|∇ϕ0|2 dx + p0

∫
Ω
|∇ϕ0|2 dx + p0a2

∫
Ω
|∇ψ|2 dx

+ 2p0

∫
Ω

(
ρ2 − 1

)
∇ϕ0∇ψdx + 2p0

∫
Ω
∇ϕ0∇ψdx.

(29)
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Using 2AB ≥ −|A|2 − |B|2, for A = 2
(
ρ2 − 1

)
∇ϕ0 and B =

∇ψ

2
, we can write

∫
Ω

p |∇u|2 dx ≥− p0

∫
Ω

(
1− ρ2

)
|∇ϕ0|2 dx + p0

∫
Ω
|∇ϕ0|2 dx + p0a2 ‖∇ψ‖2

2

− 4p0

∫
Ω

(
ρ2 − 1

)2
|∇ϕ0|2 dx− p0

4
‖∇ψ‖2

2 + 2p0

∫
Ω
∇ϕ0∇ψdx.

(30)

As in Theorem 4 of [8] it holds∣∣∣∣∫Ω
∇ϕ0∇ψ

∣∣∣∣ dx ≤ Cm|d| ‖∇ψ‖2 , (31)

for some universal constant C, hence (30) becomes

∫
Ω

p |∇u|2 dx ≥ p0

∫
Ω
|∇ϕ0|2 dx−

[
p0

∫
Ω

(
1− ρ2

)
|∇ϕ0|2 dx + 4p0

∫
Ω

(
ρ2 − 1

)2
|∇ϕ0|2 dx

]
+ p0

(
a2 − 1

4

)
‖∇ψ‖2

2 − 2p0Cm|d| ‖∇ψ‖2 .
(32)

Now let us denote X = ‖∇ψ‖2 and consider the following function

Y =

(
a2 − 1

4

)
X2 − 2Cm |d|X.

If a >
1
2

, it reaches its minimum value Ymin = −C2m2 |d|2

a2 − 1
4

at Xmin =
Cm |d|
a2 − 1

4
. Then we get

∫
Ω

p |∇u|2 dx ≥ p0

∫
Ω
|∇u0|2 dx− p0

[∫
Ω

(
1− ρ2

)
|∇ϕ0|2 dx + 4

∫
Ω

(
ρ2 − 1

)2
|∇ϕ0|2 dx

]
− C (33)

where C is a constant depending only on p0, a, d and m.
Taking into account (11), (18) and (19), in order to get our result, it is enough to estimate

the following term ∫
Ω

(
1− ρ2

)
|∇ϕ0|2 dx. (34)

To this aim let us observe that (27) implies

|∇ϕ0(z)|2 ≤
m

∑
i=1

d2
i

|z− ai|2
+ ∑

i 6=j

didj

|z− ai|
∣∣z− aj

∣∣ .
Then (34) can be written as

∫
Ω

(
1− ρ2

)
|∇ϕ0|2 dx =

∫
Ω

(
1− ρ2

) [ m

∑
i=1

d2
i

|z− ai|2
dz + ∑

i 6=j

didj

|z− ai|
∣∣z− aj

∣∣
]

≤
m

∑
i=1

d2
i

∫
Ω

1− ρ2

|z− ai|2
dz + ∑

i 6=j
didj

∫
Ω

1− ρ2

|z− ai|
∣∣z− aj

∣∣dz

=
m

∑
i=1

d2
i Ai + B.

(35)

Let us analyze each term separately. In order to estimate Ai for every i = 1, . . . , m, let us introduce

δi = dist (ai, ∂BR(0)) and observe that
R
2
≤ δi ≤ R as a consequence of (22).
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Therefore for any fixed i, by definition (18), it holds

Ai =
∫

Ω

1− ρ2

|z− ai|2
dz ≤

∫
BR(0)\BR0 (ai)

1− ρ2

|z− ai|2
dz ≤ 2π I

(
δi
R0

)
≤ 2π I

(
R
R0

)
+ C (36)

where C depends only on K defined in (24) but is independent of R, R0 and ai. For the second term,
acting as in Theorem 5 of [10] and using (23) we obtain

|B| ≤ ∑
i 6=j
|di|

∣∣dj
∣∣ ∫

Ω

1− ρ2

|z− ai|
∣∣z− aj

∣∣dz ≤ 2π(1− a2)∑
i 6=j
|di|

∣∣dj
∣∣ log

R∣∣ai − aj
∣∣ + C. (37)

where C depends only on m and d.

Then by putting together (52) and (37) into (35) we get

∫
Ω

(
1− ρ2

)
|∇ϕ0|2 dx ≤ 2π

(
m

∑
i=1

d2
i

)
I
(

R
R0

)
+ 2π(1− a2)∑

i 6=j
|di|

∣∣dj
∣∣ log

R∣∣ai − aj
∣∣ + C. (38)

where C depending on K, a, m and d but does not depend on R, R0 and ai for every i = 1, . . . , m.
Finally, by (33) and (38) we get (26).

Under the same hypotheses of Theorem 2, as an immediate consequence of (26) and Theorem 5
of [10], we get the following result

Corollary 1. Let us suppose that (20)÷(24) hold, then we have

∫
Ω

p |∇u|2 dx ≥ 2πp0

(
m

∑
i=1

d2
i

)(
log

R
R0
− I

(
R
R0

))
+ 2πp0 ∑

i 6=j

(
−
(

1− a2
)
|di|

∣∣dj
∣∣+ didj

)
log

R
|ai − aj|

− C,
(39)

where C is a constant depending only on p0, a, d, m and K.

Remark 1. If di ≥ 0 for i = 1, . . . , m then (39) becomes

∫
Ω

p |∇u|2 dx ≥ 2πp0

(
m

∑
i=1

d2
i

)(
log

R
R0
− I

(
R
R0

))
+ 2πp0a2 ∑

i 6=j
didj log

R
|ai − aj|

− C, (40)

where C is a constant depending only on p0, a, d, m and K.

5. Proof of Theorem 1

Throughout this section, for any subdomain D of G we shall denote

Eε (u, D) =
∫

D
p|∇u|2dx +

1
ε2

∫
D

J
(

1− |u|2
)

dx (41)

and if D = G we simply write Eε(u). Moreover, similarly to Proposition 1, we will use the following notation

BR1,R2(b) = {R1 < |x− b| < R2} (42)

for the annulus centered in b and with radius R1 and R2.
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Our main result of this section is the asymptotic behavior of the energy for minimizers which will
give (10) of Theorem 1. More precisely we prove the following result

Proposition 3. Assume (5) and (6) hold true. Then for a subsequence εn → 0 we have

Eεn (uεn) = 2πp0d log
1
εn

+ 2πp0

(
ΣN

k=1
d2

k − dk

sk

)
log log

1
εn

− 2πp0dI

(
1
εn

(
log

1
εn

)− 1
sk

)
+ o

(
I

((
log

1
εn

) 1
sk

))
.

(43)

5.1. An Upper Bound for the Energy

Let us prove an upper bound for the functional (2).

Proposition 4. Let us suppose that (5) and (6) hold true. Then for a subsequence εn → 0 we have

Eεn (uεn) ≤2πp0d log
1
εn

+ 2πp0

(
ΣN

k=1
d2

k − dk

sk

)
log log

1
εn

− 2πp0dI

(
1
εn

(
log

1
εn

)− 1
sk

)
+ O(1).

(44)

Proof. Let η0 > 0 satisfy

0 < η0 <
1
4

min
(

min
i 6=j

∣∣b̄i − b̄j
∣∣ , min

i=1,...,N
dist

(
b̄i, ∂G

))
and fix k = 1, . . . , N. Set

Tεn =

(
log

1
εn

)− 1
sk

. (45)

We will construct a function Uεn(x) defined in
⋃N

k=1 Bη0

(
b̄k
)
. From this point onwards the proof

will develop into three steps.

Step 1. We define Uεn(x) = Uk
εn(x) on BTεn ,η0(b̄k) where

Uk
εn(x) =

(
x− b̄k

|x− b̄k|

)dk

. (46)

By following a similar argument as in [3], it is easy to show that

Eεn

(
Uk

εn , Bη0(b̄k) \ BTεn
(b̄k)

)
≤ 2πp0

d2
k

sk
log log

1
εn

+ O(1). (47)

Step 2. Let us fix dk equidistant points xn
1 , xn

2 , . . . , xn
dk

on the circle ∂B Tεn
2

(
b̄k
)

and set

Aεn = BTεn
(b̄k, ) \

dk⋃
j=1

B Tεn
10dk

(
xj
)

.

We define Uεn
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as an S1-valued map which minimizes the energy
∫

Aεn

p |∇u|2 dx among S1-valued maps

for the boundary data

(
x− b̄k∣∣x− b̄k

∣∣
)dk

on ∂BTεn

(
b̄k,
)

and
x− xj∣∣x− xj

∣∣ on ∂B Tεn
10dk

(
xj,
)
, j = 1, . . . , dk.

Clearly we have
Eεn (Uεn(x), Aεn) ≤ C. (48)

Now, let us fix j ∈ {1, . . . , dk}, let ϑj denote a polar coordinate around xj and let f0(r) be

a maximizer for I
(

1
εn

(
log 1

εn

)− 1
sk

)
as given by Lemma 1. Let ϑk denote a polar coordinate

around b̄k, on each B Tεn
10dk

(
xj
)
, according to notation (42), we define Uεn(x) = U j,k

εn (x)

in B Tεn
10dk

(
b̄k
)

where

U j,k
εn (x) =



|x−xj|
λε f0(λ)eiϑj on Bλεn

(
xj
)

f0

(
|x−xj|

εn

)
eiϑj on B

λεn , Tεn
20dk

(
xj
)

(
f0

(
Tεn

20dkεn

)
+

(
|x−xj |−

Tεn
20dk

Tεn
20dk

)(
1− f0

(
Tεn

20dkεn

)))
eiϑj on B Tεn

20dk
, Tεn

10dk

(b̄k).

(49)

In this step we prove that

Eεn

(
U j,k

εn , B Tεn
10dk

(
xj
))

≤ −2πp0
1
sk

log log
1
εn

+ 2πp0 log
1
εn

−2πp0 I

(
1
εn

(
log

1
εn

)− 1
sk

)
+ O(1).

(50)

To this aim let us observe that of course we have

Eεn

(
U j,k

εn , Bλεn

(
xj
))

= O(1). (51)

By putting U j,k
εn (x) in the energy we obtain

Eεn

(
U j,k

εn , B
λεn , Tεn

20dk

(
xj
))

= 2π
∫ Tεn

20dk

λεn
p f
′2
0 rdr + 2π

∫ Tεn
20dk

λεn
p

f 2
0
r

dr︸ ︷︷ ︸
(a)

+

+
2π

ε2

∫ Tεn
20dk

λεn
J
(

1− f 2
0

)
rdr.

(52)

By Lemma 5 and (66) we deduce

∫ Tεn
20dk

λεn
p f
′2
0 rdr ≤ C (53)

and
1
ε2

∫ Tεn
20dk

λεn
J
(

1− f 2
0

)
rdr ≤ C. (54)

Hence let us split term (a) in (52) in the following way
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(a) = 2π
∫ Tεn

20dk

λεn
p

f 2
0
r

dr = 2π
∫ Tεn

20dk

λεn
(p− p0)

f 2
0
r

dr︸ ︷︷ ︸
(1)

+ 2πp0

∫ Tεn
20dk

λεn

f 2
0
r

dr︸ ︷︷ ︸
(2)

. (55)

Let us observe that∣∣x− b̄k
∣∣sk ≤ 2sk

(∣∣x− xj
∣∣sk +

∣∣xj − b̄k
∣∣sk
)
∀j ∈ {1, . . . , dk}, (56)

hence, by (6) we have

(1) ≤ 2sk+1

(20dk)sk
πβk

(
log

1
εn

)−1 ∫ Tεn
20dk

λε

f 2
0
r

dr + 2πβk

(
log

1
εn

)−1 ∫ Tεn
20dk

λεn

f 2
0
r

dr

= − 2πβk

(
1

10sk dsk
k
+ 1

)(
log

1
εn

)−1 ∫ Tεn
20dk

λεn

1− f 2
0

r
dr+

+ 2πβk

(
1

10sk dsk
k
+ 1

)(
log

1
εn

)−1 ∫ Tεn
20dk

λεn

dr
r

.

By Lemma 1 and Lemma 7

(1) ≤ −2πβk

(
1

10sk dsk
k
+ 1

)(
log

1
εn

)−1
I

(
1
εn

(
log

1
εn

)− 1
sk

)

+ 2πβk

(
1

10sk dsk
k
+ 1

)(
log

1
εn

)−1 [
− 1

sk
log log

1
εn

+ log
1

λεn

]
+ O(1)

= −2πβk

(
1

10sk dsk
k
+ 1

)(
log

1
εn

)−1
I

(
1
εn

(
log

1
εn

)− 1
sk

)

− 2
πβk
sk

(
1

10sk dsk
k
+ 1

)(
log

1
εn

)−1
log log

1
εn

+ 2πβk

(
1

10sk dsk
k
+ 1

)(
1− log λ

(
log

1
εn

)−1
)
+ O(1).

Let us observe that

lim
n→+∞

(
log

1
εn

)−1
log log

1
εn

= 0

and again by (16) that

lim
n→+∞

(
log

1
εn

)−1
I

(
1
εn

(
log

1
εn

)− 1
sk

)
= 0.

Then we can conclude
(1) ≤ O(1).

Now let us consider the second term in the right hand side of (55)
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(2) =2πp0

∫ Tεn
20dk

λεn

f 2
0
r

dr = −2πp0

∫ Tεn
20dk

λεn

1− f 2
0

r
dr + 2πp0

∫ Tεn
20dk

λεn

dr
r

=− 2πp0 I

(
1
εn

(
log

1
εn

)− 1
sk

)
+ 2πp0

(
− 1

sk
log log

1
εn

+ log
1

λεn

)
+ O(1)

=− 2πp0 I

(
1
εn

(
log

1
εn

)− 1
sk

)
− 2πp0

1
sk

log log
1
εn

+ 2πp0 log
1
εn

+ O(1).

By collecting together, we get

(a) = (1) + (2) ≤ −2πp0 I
(

1
εn

(
log 1

εn

)− 1
sk

)
− 2πp0

1
sk

log log 1
εn

+ 2πp0 log 1
εn

+ O(1). (57)

Let us observe that (50) will follows from (51), (53), (54) and (57) once we prove that

Eεn

(
U j,k

εn , B Tεn
20dk

, Tεn
10dk

(xj)

)
≤ C. (58)

To verify (58) we write,

U j,k
εn (xj + reiϑj) = z(r)eiϑj on B Tεn

20dk
, Tεn

10dk

(xj) (59)

where

z(r) = f0

(
Tεn

20dkεn

)
+

 r− Tεn
20dk

Tεn
20dk

(1− f0

(
Tεn

20dkεn

))
.

Acting as in Proposition 3.1 in [15], by the properties of f0 of Lemma 1 and as Tεn go to zero
when εn tends to zero, we compute

∫
B Tεn

20dk
,

Tεn
10dk

(xj)
|∇U j,k

εn |2dz =
∫

B Tεn
20dk

,
Tεn
10dk

(xj)
z2|∇ϑk|2dz + 2π

∫ Tεn
10dk

Tεn
20dk

(
z′
)2 rdr

=O(1) + 2π

1− f0

(
Tεn

20dkεn

)
η0

2 ∫ Tεn
10dk

Tεn
20dk

rdr ≤ C.

(60)

About the second term of the energy, using the inequality J(t) ≤ tj(t), Lemma 1 and Lemma 2,
we obtain

1
ε2

n

∫
B Tεn

20dk
,

Tεn
10dk

(xj)
J
(

1− |U j,k
εn |2

)
dx ≤ C

ε2
n

∫
B Tεn

20dk
,

Tεn
10dk

(xj)
j
(

1− |U j,k
εn |2

)
dx

≤ C
ε2

n
j
(

1− f 2
0

(
Tεn

20dkεn

))(
T2

εn

100d2
k
−

T2
εn

400d2
k

)

=
C
ε2

n

3

λ
(

Tεn
20dkεn

)2

T2
εn

400
= O(1).

(61)

Hence by (60) and (61) we get (58).
Finally, by (51), (53), (54), (57) and (58) we can write

Eεn

(
U j,k

εn , B Tεn
10dk

(
xj
))
≤ −2πp0

1
sk

log log 1
εn

+ 2πp0 log 1
εn
− 2πp0 I

(
1
εn

(
log 1

εn

)− 1
sk

)
+ O(1). (62)
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Step 3. We define the function Uεn in
⋃dk

j=1 BTεn

(
xj
)

such that

Uk
εn(x) = U j,k

εn (x) if x ∈ BTεn

(
xj
)

.

As the discs centered in xj are disjoint and as they are exactly dk discs we get

E

Uk
εn(x),

dk⋃
j=1

BTεn

(
xj
) ≤ −2πp0dk I

(
1
εn

(
log

1
εn

)− 1
sk

)
− 2πp0

dk
sk

log log
1
εn

+2πp0dk log
1
εn

+ O(1).

(63)

By (47), (48) and (63) we have

Eεn

(
Uk

εn , Bη0(b̄k)
)
≤2πp0

d2
k

sk
log log

1
εn
− 2πp0dk I

(
1
εn

(
log

1
εn

)− 1
sk

)

− 2πp0
dk
sk

log log
1
εn

+ 2πp0dk log
1
εn

+ O(1).

(64)

Finally, we pose Uεn(x) = w on G \⋃N
k=1 Bη0(b̄k) where w is any S1-valued map of class C1 on

this domain which equals g on ∂G and
(

x−b̄k
|x−b̄k|

)dk

on ∂Bη0(b̄k) for k = 1, . . . , N. Then Uεn ∈

H1
g (G, C) and we get

Eεn (uεn) ≤ Eεn (Uεn) ≤2πp0d log
1
εn

+ 2πp0ΣN
k=1

d2
k − dk

sk
log log

1
εn

− 2πp0dI

(
1
εn

(
log

1
εn

)− 1
sk

)
+ O(1)

(65)

which is (44).

5.2. A Lower Bound for the Energy

When G is star shaped, using a Pohozaev identity, we obtain

1
ε2

∫
G

J
(

1− |uε|2
)

dx ≤ C0, ∀ε > 0. (66)

By following the same arguments of Lemmas 3.1 and 3.2 in [15] we get

‖uε‖L∞(G) ≤ 1 and ‖∇uε‖L∞(G) ≤
C
ε

. (67)

Using the construction in [6] we know that there exist λ > 0 and a collection of balls
{

Bλε

(
yε

j

)}
j∈J

such that {
x ∈ G : |uε (x)| ≤ 3

4

}
⊂
⋃
j∈J

Bλε

(
yε

j

)
, (68)

∣∣∣yε
i − yε

j

∣∣∣ ≥ 8λε ∀i, j ∈ J, i 6= j

and
card J ≤ Nb.
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By construction, the degrees

νj = deg
(

uε, ∂Bλε

(
yε

j

))
, j ∈ J

are well defined. Given any subsequence εn → 0 we may extract a subsequence (still denoted by εn)
such that

card Jεn = const = N1

and
yj = yεn

j → lj ∈ G, j = 1, . . . , N1. (69)

Let b1, b2, . . . , bN2
be the distinct points among the

{
lj
}N1

j=1 and set

Ik =
{

j ∈ {1, . . . , N1} ; yεn
j → bk

}
, k = 1, . . . , N2.

Denoting by dk = ∑j∈Ik
νj for every k = 1, . . . , N2, we clearly have and ∑N2

k=1 dk = d. By following
the same arguments as in [3], thanks to the previous upper bound, applied to b̄k = bk, and Proposition 2,
we get

dk > 0 for every k = 1, . . . , N2 (70)

and
bk ∈ Λ = p−1(p0) for every k = 1, . . . , N2. (71)

Hence, having in mind (5), in the following we can set N2 = N and bk = bk. Moreover, acting as
in [3], Lemma 2.1 by Propositions 1 and 2, we get νj = +1 for every j ∈ Ik.
Let η satisfy

0 < η <
1
2

min
(

min
i 6=j

∣∣bi − bj
∣∣ , min

i=1,...,N2
dist (bi, ∂G)

)
. (72)

and take Tεn as in (45). We now are able to prove the following lower bound :

Proposition 5. Assume G is star shaped and (5) and (6) hold true. Then we have, for a subsequence εn → 0

Eεn (uεn) ≥ 2πp0d log
1
εn

+ 2πp0

N

∑
k=1

d2
k − dk

sk
log log

1
εn
− 2πp0dI

(
1
εn

(
log

1
εn

)− 1
sk

)

− 2πp0

N

∑
k=1

d2
k I

((
log

1
εn

) 1
sk

)
+

9
8

πp0

N

∑
k=1

∑
i 6=j

log

(
log 1

εn

)− 1
sk

| yi − yj |
+ O(1),

(73)

where the points yi and yj, i, j ∈ Ik, are as in (69).

Proof. The proof develops into two steps.

Step 1. By following a similar argument as in [3], at first we prove

max
i∈Ik
|bk − yi| = Rn ∼ | log εn|

− 1
sk (74)

for every k = 1, . . . , N2 with |Ik| = dk > 1.
We know that Bη (bk) contains exactly dk bad discs Bλεn (yi), such that for every α ∈ (0, 1)∣∣yi − yj

∣∣ > εα
n ∀i 6= j. (75)
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For any fixed α ∈ (0, 1), we have

E
(
uεn , Bη (bk)

)
≥E

(
uεn , B2Rn ,η (bk)

)
+ E

uε, B2Rn (bk) \
⋃

i∈Ik

Bεα
n (yi)


+ E

uεn ,
⋃

i∈Ik

Bλεn ,εα
n (yi)

 = (a) + (b) + (c).

(76)

Taking into account (66), by Proposition 1, there exist two constants C1 and C3 depending
only on C0 and a constant C2 depending on C0 and dk, such that

(a) ≥ 2πd2
k p0

[
log

η

2Rn
− I

(
η

2Rn

)]
− d2

kC1, (77)

(b) ≥ 2πdk p0

[
log

2Rn

εα
n
− I

(
2Rn

εα
n

)]
− C2 (78)

and

(c) ≥ 2π (dk − 1) p0

[
log εα

n
λεn
− I

(
εα

n
λεn

)]
+ 2π

(
p0 + αk

R
sk
n
4

) [
log εα

n
λεn
− I

(
εα

n
λεn

)]
− C3. (79)

Let us denote

f (Rn) = 2πp0dk log
1
εn

+ 2πp0

(
d2

k − dk

)
log

1
Rn

+
π

2
αk (1− α) Rsk

n log
1
εn

(80)

and

g (Rn) = 2πd2
k p0 I

(
1

Rn

)
+ 2πdk p0 I

(
Rn

εα
n

)
+ 2π

(
p0 + αk

Rsk
n

4

)
I
(

1
ε1−α

n

)
+ C4. (81)

where C4 is a constant depending only on C0 and dk. Then

E
(
uεn , Bη (bk)

)
≥ f (Rn)− g (Rn)− C4. (82)

Now let us observe that for n large enough, we get

η

2Rn
≥ 1,

since Rn tends to 0. Moreover, by (75) it holds

εα
n <

∣∣yi − yj
∣∣ ≤ |yi − bk|+

∣∣yj − bk
∣∣ ≤ 2Rn ∀i 6= j.

Hence we get
εα

n
2
≤ Rn ≤

η

2
(83)

Let us pose Rn = cn

(
log

1
εn

)− 1
sk

and consider the following difference
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[ f (Rn)− g (Rn)]−
[

f

((
log

1
εn

)− 1
sk

)
− g

((
log

1
εn

)− 1
sk

)]
=

[
f (Rn)− f

((
log

1
εn

)− 1
sk

)]
︸ ︷︷ ︸

(1)

+

[
g

((
log

1
εn

)− 1
sk

)
− g (Rn)

]
︸ ︷︷ ︸

(2)

.

By (80) and (81) we get

(1) = 2πp0

(
d2

k − dk

)
log

1
cn

+
π

2
αk (1− α)

(
csk

n − 1
)

(84)

and

(2) = 2πd2
k p0

(
I

((
log

1
εn

) 1
sk

)
− I

(
1
cn

(
log

1
εn

) 1
sk

))
+

+2πp0dk

(
I

(
1
εα

n

(
log

1
εn

)− 1
sk

)
− I

(
cn

εα
n

(
log

1
εn

)− 1
sk

))
+

+
παk

(
1− csk

n
)

2

(
log

1
εn

)−1
I
(

1
ε1−α

n

)
.

(85)

Let us consider the case cn > 1. Therefore we have

Rn >

(
log

1
εn

)− 1
sk . (86)

By (15), (86) and as the functions j−1 and I are increasing, we get

(2) ≥− 2πp0dk

∫ (log 1
εn )

2
sk ε2α

n

ε2α
n

R2
n

j−1(t)
t

dt +
παk

(
1− csk

n
)

2

(
log

1
εn

)−1
I
(

1
ε1−α

n

)

≥− 2πp0dk j−1

((
log

1
εn

) 2
sk

ε2α
n

)
log c2

n +
παk

(
1− csk

n
)

2

(
log

1
εn

)−1
I
(

1
ε1−α

n

)
.

Since

lim
n→+∞

(
log

1
εn

) 2
sk

ε2α
n = 0

and by (16)

lim
n→+∞

(
log

1
εn

)−1
I
(

1
ε1−α

n

)
= 0, (87)

by regularity of function j−1 and as j−1(0) = 0, there exists n0 such that for n ≥ n0 we have

(2) ≥ 2δπp0dk log
1
cn

+
π

2
αk
(
1− csk

n
)

γ. (88)

Then, by denoting
h (Rn) = f (Rn)− g (Rn) , (89)
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by (84) and (88) and choosing δ =
1
2

and γ =
1− α

2
, we get

h (Rn)− h

((
log

1
εn

)− 1
sk

)
≥ 2πp0

(
d2

k −
dk
2

)
log

1
cn

+
π

8
αk (1− α)

(
csk

n − 1
)

.

Hence we get

h (Rn)− h

((
log

1
εn

)− 1
sk

)
→ +∞ as cn → +∞. (90)

Now let us suppose there exists a subsequence (cnk )k, still denoted by (cn), such that cn < 1.
Up to a subsequence we have

Rn <

(
log

1
εn

)− 1
sk . (91)

By (15), (91) and as the functions j−1 and I are increasing, we get

(2) ≥− 2πp0d2
k

∫ (log 1
εn )
− 2

sk

R2
n

j−1(t)
t

dt +
π

2
αk
(
1− csk

n
) (

log
1
εn

)−1
I
(

1
ε1−α

n

)

≥− 2πp0d2
k j−1

((
log

1
εn

)− 2
sk

)
log

1
c2

n
+

π

2
αk
(
1− csk

n
) (

log
1
εn

)−1
I
(

1
ε1−α

n

)
.

Since

lim
n→+∞

(
log

1
εn

)− 2
sk
= 0

and by (16)

lim
n→+∞

(
log

1
εn

)−1
I
(

1
ε1−α

n

)
= 0,

similarly to the previous case, by regularity of function j−1 and as j−1(0) = 0 there exists n0

such that for n ≥ n0 we have

(2) ≥ −2δπp0d2
k log

1
cn

+
π

2
αk
(
1− csk

n
)

γ ≥ −2δπp0d2
k log

1
cn

. (92)

Then, by denoting
h (Rn) = f (Rn)− g (Rn) ,

by (84) and (92) we get

h (Rn)− h

((
log

1
εn

)− 1
sk

)
≥ 2πp0

(
d2

k − dk − δd2
k

)
log

1
cn

+
π

2
αk (1− α)

(
csk

n − 1
)

.

Let us choose δ > 0 such that d2
k − dk− δd2

k > 1 or equivalently δ < 1− 1 + dk

d2
k

. This is possible

as dk > 1 and then 1− 1 + dk

d2
k

> 0. For this choice it holds

h (Rn)− h

((
log

1
εn

)− 1
sk

)
→ +∞ as

1
cn
→ +∞. (93)
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By (90) and (93), in both cases we can conclude as in [3]

h (Rn)− h

((
log

1
εn

)− 1
sk

)
→ +∞ as max

(
cn,

1
cn

)
→ +∞. (94)

By (82) we get

h (Rn)− h

((
log

1
εn

)− 1
sk

)
≤ E

(
uεn , Bη (bk)

)
+ C4 − h

((
log

1
εn

)− 1
sk

)
.

We know that bk = bj for some j ∈ {1, . . . , N}. Hence by using the upper bound (44) of
Proposition 4, taking into account (80), (81) and (89), since α < 1, we obtain

h (Rn)− h

((
log

1
εn

)− 1
sk

)
≤ −2πp0dk I

(
1
εn

(
log

1
εn

)− 1
sk

)
+ 2πp0d2

k I

((
log

1
εn

) 1
sk

)
+

2πp0dk I

(
1
εα

n

(
log

1
εn

)− 1
sk

)
+ 2π

(
p0dk +

αk
4

(
log

1
εn

)−1
)

I
(

1
ε1−α

n

)
+ O(1).

(95)

By assumption (H2) and (15) in Lemma 4, we deduce that the functional I is increasing, thus
for n large enough, we get

I

(
1
εn

(
log

1
εn

)− 1
sk

)
≥ I

(
1
εα

n

(
log

1
εn

)− 1
sk

)
,

I

(
1
εn

(
log

1
εn

)− 1
sk

)
≥ I

((
log

1
εn

) 1
sk

)
and

I

(
1
εn

(
log

1
εn

)− 1
sk

)
≥ I

(
1

ε1−α
n

)
.

Hence, by (87), the leading term of the second member in (95) is the negative one and we can
conclude that

h (Rn)− h

((
log

1
εn

)− 1
sk

)
→ −∞ as n→ +∞. (96)

This is a contradiction with (94) and arguing as in [3], (94) directly implies (74).
Step 2. Let η as in (72) and Tεn as in (45). We know that Bη (bk) contains exactly dk bad discs Bλε

(
yj
)
,

j ∈ Ik satisfying (74).

We have

Eεn

(
uεn , Bη (bk)

)
≥Eεn

(
uεn , Bη (bk) \ BTεn

(bk)
)
+ ∑

j∈Ik

Eεn

(
uεn , BTεn

(bk) \ Bλεn

(
yj
))

=E1 + E2.
(97)

By Proposition 1, we have

E1 ≥ 2πp0d2
k log

η

Tεn

− 2πp0d2
k I
(

η

Tεn

)
− dkC6.
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where C6 is a constant depending only on C0.
Then

E1 ≥ 2πp0
d2

k
sk

log log
1
εn
− 2πp0d2

k I

((
log

1
εn

) 1
sk

)
+ O(1). (98)

By (40) in Remark 1 applied to y1, . . . , ydk
, as νj = deg

(
uε, ∂B

(
yj, λε)

))
= +1 for every

j = 1, . . . , dk and by (68), we have

E2 ≥ 2πp0dk

(
log

Tεn

λεn
− I

(
Tεn

λεn

))
+

9
8

πp0 ∑
i 6=j

log
Tεn

| yi − yj |
− C7

where C7 is a constant depending only on dk, C0, and p0 where C0 is introduce in (66). Then

E2 ≥− 2πp0
dk
sk

log log
1
εn

+ 2πp0dk log
1
εn
− 2πp0dk I

(
1
εn

(
log

1
εn

)− 1
sk

)

+
9
8

πp0 ∑
i 6=j

log
Tεn

| yi − yj |
+ O(1).

(99)

By collecting together (98) and (99) we obtain

Eεn

(
uεn , Bη (bk)

)
≥2πp0

d2
k − dk

sk
log log

1
εn
− 2πp0d2

k I

((
log

1
εn

) 1
sk

)
+ 2πp0dk log

1
εn

− 2πp0dk I

(
1
εn

(
log

1
εn

)− 1
sk

)
+

9
8

πp0 ∑
i 6=j

log
Tεn

| yi − yj |
+ O(1).

(100)

Summing over k we have

Eεn (uεn) ≥Eεn

(
uεn ,

N⋃
k=1

Bη (bk)

)
≥ 2πp0d log

1
εn

+ 2πp0

N

∑
k=1

d2
k − dk

sk
log log

1
εn

− 2πp0

N

∑
k=1

d2
k I

((
log

1
εn

) 1
sk

)
− 2πp0dI

(
1
εn

(
log

1
εn

)− 1
sk

)

+
9
8

πp0

N

∑
k=1

∑
i 6=j

log
Tεn

| yi − yj |
+ O(1)

(101)

which is (73).

Remark 2. In Proposition 5 we have proved (73) for a star shaped domain. An argument of del Pino and Felmer
in [12] can now be used to show that (66) holds without the assumption on the starshapedness of G. Hence (73)
is still true for general domain and we can conclude again by acting as in [15].

5.3. Proof of Theorem 1 Completed

By collecting together Propositions 4 and 5, and taking into account Remark 2, we obtain
Proposition 3 which is (10) of Theorem 1.

Thanks to estimate (66), we can now follow the construction of bad discs as in [5] and prove
convergence (9) of Theorem 1. Since the arguments are identical to those of [5] we omit the details.
Now Theorem 1 is completely proved.

Finally as a consequence of (64) and (100), we get the following estimate of the distance between
the centers of bad discs.
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Corollary 2. For every i 6= j in Ik (1 ≤ k ≤ N2) with |Ik| = dk > 1, we have

exp

(
−C8 I

((
log

1
εn

) 1
sk

))
| log εn |

− 1
sk≤

∣∣yi − yj
∣∣ ≤ C9 | log εn |

− 1
sk (102)

where C8 and C9 are two constants independent of ε.

Proof. By lower bound (100) we have

∫
Ω

p |∇u|2 dx ≥2πp0dk log
1
εn

+ 2πp0
d2

k − dk

sk
log log

1
εn
− 2πp0ΣN

1 d2
k I

((
log

1
εn

) 1
sk

)

− 2πp0dI

(
1
εn

(
log

1
εn

)− 1
sk

)
+

9
8

πp0 ∑
i 6=j

log
Tεn

| yi − yj |
+ O(1).

(103)

The upper bound (64) and (103), imply

∑
i 6=j

log

 | log εn |
− 1

sk

| yi − yj |

 ≤ C8 I

((
log

1
εn

) 1
sk

)

which by using (74), is the claimed result.
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