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Abstract: In 2020, Kang, Song and Jun introduced the notion of multipolar intuitionistic fuzzy
set with finite degree, which is a generalization of intuitionistic fuzzy set, and they applied it to
BCK/BCI-algebras. In this paper, we used this notion to study p-ideals of BCI-algebras. The notion
of k-polar intuitionistic fuzzy p-ideals in BCI-algebras is introduced, and several properties were
investigated. An example to illustrate the k-polar intuitionistic fuzzy p-ideal is given. The relationship
between k-polar intuitionistic fuzzy ideal and k-polar intuitionistic fuzzy p-ideal is displayed.
A k-polar intuitionistic fuzzy p-ideal is found to be k-polar intuitionistic fuzzy ideal, and an example to
show that the converse is not true is provided. The notions of p-ideals and k-polar (∈,∈)-fuzzy p-ideal
in BCI-algebras are used to study the characterization of k-polar intuitionistic p-ideal. The concept
of normal k-polar intuitionistic fuzzy p-ideal is introduced, and its characterization is discussed.
The process of eliciting normal k-polar intuitionistic fuzzy p-ideal using k-polar intuitionistic fuzzy
p-ideal is provided.

Keywords: multipolar intuitionistic fuzzy set with finite degree k; k-polar (∈,∈)-fuzzy ideal; k-polar
intuitionistic fuzzy ideal; k-polar intuitionistic fuzzy p-ideal
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1. Introduction

BCI-algebras were introduced by Iséki [1] as the algebraic counterpart of the BCI-logic.
BCI-algebras are a generalization of BCK-algebras, and they originated from two sources: set theory
and propositional calculi. See the books [2,3] for more information on BCK/BCI-algebras. Fuzzy sets
were first introduced by Zadeh [4], in which the membership degree is represented by only one
function—the truth function. Intuitionistic fuzzy sets, which were introduced by Atanassov (see
[5,6]), are a generalization of fuzzy sets. As an extension of the bipolar fuzzy set, Chen et al. [7]
introduced an m-polar fuzzy set in 2014, and then this concept was applied to certain algebraic
structures as BCK/BCI algebras, graph theory and decision making problem. For BCK/BCI-algebras,
see [8–10], for graph theory, see [11–14] and see [15–18] for decision making problems. Al-Masarwah
and Ahmad discussed the notion of m-polar fuzzy sets with applications in BCK/BCI-algebras.
They introduced the notions of m-polar fuzzy subalgebras and m-polar fuzzy (closed, commutative)
ideals and gave characterizations of m-polar fuzzy subalgebras and m-polar fuzzy (commutative)
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ideals. They considered relations between m-polar fuzzy subalgebras, m-polar fuzzy ideals and m-polar
fuzzy commutative ideals (see [8]). Using the notion of multipolar fuzzy point, Mohseni Takallo et
al. [9] studied p-ideals of BCI-algebras. In [19], Kang et al. introduced the notion of multipolar
intuitionistic fuzzy set with finite degree as a generalization of intuitionistic fuzzy set, and applied it
to BCK/BCI-algebras. They introduced the concepts of a k-polar intuitionistic fuzzy subalgebra and a
(closed) k-polar intuitionistic fuzzy ideal in a BCK/BCI-algebra, and investigated their relations and
characterizations. In a BCI-algebra, they considered the relationship between a k-polar intuitionistic
fuzzy ideal and a closed k-polar intuitionistic fuzzy ideal, and discussed the characterization of a
closed k-polar intuitionistic fuzzy ideal. They consulted conditions for a k-polar intuitionistic fuzzy
ideal to be a closed k-polar intuitionistic fuzzy ideal in a BCI-algebra. The aim of this manuscript
was to use Kang et al.’s notion so called multipolar intuitionistic fuzzy set for studying p-ideal in
BCI-algebras. This is a generalization of multipolar fuzzy p-ideals of BCI-algebras which is studied
in [9]. We introduce the concept of k-polar intuitionistic fuzzy p-ideals in BCI-algebras, and then we
study several properties. We first give an example to illustrate the k-polar intuitionistic fuzzy p-ideal.
We consider the relationship between k-polar intuitionistic fuzzy ideal and k-polar intuitionistic fuzzy
p-ideal. We first prove that every k-polar intuitionistic fuzzy p-ideal is a k-polar intuitionistic fuzzy
ideal, and then give an example to show that the converse is not true in general. We use the notion of
p-ideals in BCI-algebras to study the characterization of k-polar intuitionistic fuzzy p-ideal. We also
use the notion of k-polar (∈,∈)-fuzzy p-ideal in BCI-algebras to study the characterization of k-polar
intuitionistic fuzzy p-ideal. We define the concept of normal k-polar intuitionistic fuzzy p-ideal,
and discuss its characterization. We look at the process of eliciting normal k-polar intuitionistic fuzzy
p-ideal from a given k-polar intuitionistic fuzzy p-ideal.

2. Preliminaries

If a set U has a special element 0 and a binary operation ∗ satisfying the conditions:

(I) (∀ω, υ, τ ∈ U) (((ω ∗ υ) ∗ (ω ∗ τ)) ∗ (τ ∗ υ) = 0),
(II) (∀ω, υ ∈ U) ((ω ∗ (ω ∗ υ)) ∗ υ = 0),
(III) (∀ω ∈ U) (ω ∗ω = 0),
(IV) (∀ω, υ ∈ U) (ω ∗ υ = 0, υ ∗ω = 0 ⇒ ω = υ),

then it is said that U is a BCI-algebra. If a BCI-algebra U satisfies the following identity:

(V) (∀ω ∈ U) (0 ∗ω = 0),

then U is called a BCK-algebra.
Any BCK/BCI-algebra U satisfies the following conditions:

(∀ω ∈ U) (ω ∗ 0 = ω) , (1)

(∀ω, υ, τ ∈ U) ((ω ∗ υ) ∗ τ = (ω ∗ τ) ∗ υ) . (2)

A subset I of a BCI-algebra U is called

• a subalgebra of U if ω ∗ υ ∈ I for all ω, υ ∈ I.
• an ideal of U if it satisfies:

0 ∈ I, (3)

(∀ω ∈ U) (∀υ ∈ I) (ω ∗ υ ∈ I ⇒ ω ∈ I) . (4)

• a p-ideal of U (see [20]) if it satisfies Equation (3) and

(∀ω, υ, τ ∈ U) ((ω ∗ τ) ∗ (υ ∗ τ) ∈ I, υ ∈ I ⇒ ω ∈ I) . (5)
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Let {bi | i ∈ Γ} be a family of real numbers where Γ is any index set and we define

∨
{bi | i ∈ Γ} :=

{
max{bi | i ∈ Γ} if Γ is finite,
sup{bi | i ∈ Γ} otherwise.

∧
{bi | i ∈ Γ} :=

{
min{bi | i ∈ Γ} if Γ is finite,
inf{bi | i ∈ Γ} otherwise.

If Γ = {1, 2}, we will also use b1 ∨ b2 and b1 ∧ b2 instead of
∨{bi | i ∈ Γ} and

∧{bi | i ∈
Γ}, respectively.

Let k be a natural number and [0, 1]k denote the k-Cartesian product of [0, 1], that is,

[0, 1]k = [0, 1]× [0, 1]× · · · × [0, 1]

in which [0, 1] is repeated k times. The order “≤” in [0, 1]k is given by the pointwise order.
By a k-polar fuzzy set on a set U (see [7]), we mean a function ξ̂ : U → [0, 1]k where k is a natural

number. The membership value of every element z ∈ U is denoted by

ξ̂(z) =
(
(proj1 ◦ ξ̂)(z), (proj2 ◦ ξ̂)(z), · · · , (projk ◦ ξ̂)(z)

)
,

where proji : [0, 1]k → [0, 1] is the i-th projection for all i = 1, 2, · · · , k and ◦ is the composition of
functions.

A k-polar fuzzy set ξ̂ on a BCK/BCI-algebra U is called a k-polar fuzzy ideal of U (see [8]) if the
following conditions are valid.

(∀z ∈ U)
(

ξ̂(0) ≥ ξ̂(z)
)

, (6)

(∀z, x ∈ U)
(

ξ̂(z) ≥ ξ̂(z ∗ x) ∧ ξ̂(x)
)

. (7)

By a k-polar fuzzy point on a set U, we mean a k-polar fuzzy set ξ̂ on U of the form

ξ̂(x) =

{
r̂ = (r1, r2, · · · , rk) ∈ (0, 1]k if x = z,
0̂ = (0, 0, · · · , 0) if x 6= z,

(8)

and it is denoted by zr̂ where z is a given element of U. We say that z is the support of zr̂ and r̂ is the
value of zr̂.

We say that a k-polar fuzzy point zr̂ is contained in a k-polar fuzzy set ξ̂, denoted by zr̂ ∈ ξ̂,
if ξ̂(z) ≥ r̂, that is, (proji ◦ ξ̂)(z) ≥ ri for all i = 1, 2, · · · , k.

A k-polar fuzzy set ξ̂ on a BCI-algebra U is called a k-polar (∈,∈)-fuzzy p-ideal of U (see [9]) if
it satisfies

(∀z ∈ U)(∀r̂ ∈ [0, 1]k)
(

zr̂ ∈ ξ̂ ⇒ 0r̂ ∈ ξ̂
)

, (9)

(∀z, x, y ∈ U)(∀r̂, t̂ ∈ [0, 1]k)
(
((z ∗ y) ∗ (x ∗ y))r̂ ∈ ξ̂, xt̂ ∈ ξ̂ ⇒ zinf{r̂,t̂} ∈ ξ̂

)
. (10)

It is easy to show that Condition (10) is equivalent to the following condition.

(∀z, x, y ∈ U)
(

ξ̂(z) ≥ ξ̂((z ∗ y) ∗ (x ∗ y)) ∧ ξ̂(x)
)

. (11)
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A multipolar intuitionistic fuzzy set with finite degree k (briefly, k-pIF set) over a set U (see [19]) is
a mapping

(ξ̂, $̂) : U → [0, 1]k × [0, 1]k, z 7→ (ξ̂(z), $̂(z)) (12)

where ξ̂ : U → [0, 1]k and $̂ : U → [0, 1]k are k-polar fuzzy sets over a set U such that ξ̂(z) + $̂(z) ≤ 1̂
for all z ∈ U, that is, (proji ◦ ξ̂)(z) + (proji ◦ $̂)(z) ≤ 1 for all z ∈ U and i = 1, 2, · · · , k. We know
that if the multipolar intuitionistic fuzzy set has degree 1, then it is an intuitionistic fuzzy set. So, the
intuitionistic fuzzy set is a special case of the multipolar intuitionistic fuzzy set. From this point of
view, multipolar intuitionistic fuzzy set is a generalization of intuitionistic fuzzy set.

Given a k-pIF set (ξ̂, $̂) over a set U, we consider the sets

U(ξ̂, t̂) := {z ∈ U | ξ̂(z) ≥ t̂} and L($̂, ŝ) := {z ∈ U | $̂(z) ≤ ŝ}, (13)

where t̂ = (t1, t2, · · · , tk) ∈ [0, 1]k and ŝ = (s1, s2, · · · , sk) ∈ [0, 1]k with t̂ + ŝ ≤ 1̂, which is called a
k-polar upper (resp., lower) level set of (ξ̂, $̂) where "+" is the componentwise operation in [0, 1]k, that is,
ti + si ≤ 1 for all i = 1, 2, · · · , k. It is clear that U(ξ̂, t̂) =

⋂k
i=1 U(ξ̂, t̂)i and L($̂, ŝ) =

⋂k
i=1 L($̂, ŝ)i where

U(ξ̂, t̂)i = {z ∈ U | (proji ◦ ξ̂)(z) ≥ ti} and L($̂, ŝ)i = {z ∈ U | (proji ◦ $̂)(z) ≤ si}.

A k-pIF set (ξ̂, $̂) over U is called a k-polar intuitionistic fuzzy ideal (briefly, k-pIF ideal) of U (see [19])
if it satisfies the conditions

(∀z ∈ U)(ξ̂(0) ≥ ξ̂(z), $̂(0) ≤ $̂(z)), (14)

that is, (proji ◦ ξ̂)(0) ≥ (proji ◦ ξ̂)(z) and (proji ◦ $̂)(0) ≤ (proji ◦ $̂)(z) for i = 1, 2, · · · , k. and

(∀z, x ∈ U)

(
ξ̂(z) ≥ ξ̂(z ∗ x) ∧ ξ̂(x)

$̂(z) ≤ $̂(z ∗ x) ∨ $̂(x)

)
. (15)

3. k-Polar Intuitionistic Fuzzy p-Ideals

In this section, let U be a BCI-algebra unless otherwise stated.

Definition 1. A k-pIF set (ξ̂, $̂) over U is called a k-polar intuitionistic fuzzy p-ideal (briefly, k-pIF p-ideal) of
U if it satisfies Condition (14) and

(∀z, x, y ∈ U)

(
ξ̂(z) ≥ ξ̂((z ∗ x) ∗ (y ∗ x)) ∧ ξ̂(y)

$̂(z) ≤ $̂((z ∗ x) ∗ (y ∗ x)) ∨ $̂(y)

)
. (16)

Example 1. Let U = {0, x, a, b} be a set with a binary operation ∗ which is given in Table 1.

Table 1. Cayley table for the binary operation “∗”.

∗ 0 x a b

0 0 x a b
x x 0 b a
a a b 0 x
b b a x 0
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Then, U is a BCI-algebra (see [2]). Let (ξ̂, $̂) be a 4-polar intuitionistic fuzzy set over U given by

(ξ̂, $̂) : U → [0, 1]4 × [0, 1]4,

z 7→


((0.8, 0.67, 0.9, 0.56), (0.19, 0.15, 0.07, 0.28)) if z = 0,
((0.7, 0.57, 0.7, 0.56), (0.19, 0.24, 0.07, 0.35)) if z = x,
((0.5, 0.37, 0.4, 0.32), (0.37, 0.44, 0.39, 0.58)) if z = a,
((0.5, 0.37, 0.4, 0.32), (0.37, 0.44, 0.39, 0.58)) if z = b.

It is routine to check that (ξ̂, $̂) is a 4-polar intuitionistic fuzzy p-ideal of U.

Theorem 1. Let I be a subset of U and let (ξ̂ I , $̂I) be a k-pIF set on U defined by

ξ̂ I : U → [0, 1]k, z 7→
{

1̂ if z ∈ I,
0̂ otherwise

$̂I : U → [0, 1]k, z 7→
{

0̂ if z ∈ I,
1̂ otherwise

Then, (ξ̂ I , $̂I) is a k-pIF ideal p-ideal of U if and only if I is a p-ideal of U.

Proof. Straightforward.

In the following theorem, we look at the relationship between k-pIF ideal and k-pIF p-ideal.

Theorem 2. Every k-pIF p-ideal is a k-pIF ideal.

Proof. Let (ξ̂, $̂) be a k-pIF p-ideal of U. If we put x = 0 in (16) and use (1), then

(proji ◦ ξ̂)(z) ≥ min{(proji ◦ ξ̂)((z ∗ 0) ∗ (x ∗ 0)), (proji ◦ ξ̂)(x)}
= min{(proji ◦ ξ̂)(z ∗ x), (proji ◦ ξ̂)(x)}

and

(proji ◦ $̂)(z) ≤ max{(proji ◦ $̂)((z ∗ 0) ∗ (x ∗ 0)), (proji ◦ $̂)(x)}
= max{(proji ◦ $̂)(z ∗ x), (proji ◦ $̂)(x)}

for all z, x ∈ U. Therefore (ξ̂, $̂) is a k-pIF ideal of U.

In the following example, we find that the converse of Theorem 2 is not true.

Example 2. Let U = {0, x, b, c, d} be a set with a binary operation ∗, which is given in Table 2.

Table 2. Cayley table for the binary operation “∗”.

∗ 0 x b c d

0 0 0 d c b
x x 0 d c b
b b b 0 d c
c c c b 0 d
d d d c b 0
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Then, U is a BCI-algebra (see [2]). Define a 3-polar intuitionistic fuzzy set (ξ̂, $̂) on U as follows:

(ξ̂, $̂) : U → [0, 1]3 × [0, 1]3,

z 7→



((0.6, 0.7, 0.9), (0.2, 0.25, 0.07)) if z = 0,
((0.6, 0.5, 0.7), (0.3, 0.25, 0.17)) if z = x,
((0.2, 0.3, 0.4), (0.6, 0.45, 0.27)) if z = b,
((0.5, 0.4, 0.6), (0.4, 0.35, 0.37)) if z = c,
((0.2, 0.3, 0.4), (0.6, 0.45, 0.27)) if z = d.

It is easy to confirm that (ξ̂, $̂) is a 3-polar intuitionistic fuzzy ideal of U. But it is not a 3-polar intuitionistic
fuzzy p-ideal of U since

(proj2 ◦ ξ̂)(x) = 0.5 < 0.7 = min{(proj2 ◦ ξ̂)((x ∗ b) ∗ (0 ∗ b)), (proj2 ◦ ξ̂)(0)}

and/or
(proj3 ◦ $̂)(x) = 0.17 > 0.07 = max{(proj3 ◦ $̂)((x ∗ b) ∗ (0 ∗ b)), (proj3 ◦ $̂)(0)}.

Proposition 1. Every k-pIF p-ideal (ξ̂, $̂) of U satisfies the following inequalities.

(∀z ∈ U)(ξ̂(z) ≥ ξ̂(0 ∗ (0 ∗ z)), $̂(z) ≤ $̂(0 ∗ (0 ∗ z))). (17)

Proof. If we change y to z and x to 0 in Equation (16), then

(proji ◦ ξ̂)(z) ≥ min{(proji ◦ ξ̂)((z ∗ z) ∗ (0 ∗ z)), (proji ◦ ξ̂)(0)}
= min{(proji ◦ ξ̂)(0 ∗ (0 ∗ z)), (proji ◦ ξ̂)(0)}
= (proji ◦ ξ̂)(0 ∗ (0 ∗ z))

and

(proji ◦ $̂)(z) ≤ max{(proji ◦ $̂)((z ∗ z) ∗ (0 ∗ z)), (proji ◦ $̂)(0)}
= max{(proji ◦ $̂)(0 ∗ (0 ∗ z)), (proji ◦ $̂)(0)}
= (proji ◦ $̂)(0 ∗ (0 ∗ z))

for all z ∈ U.

Proposition 2. Every k-pIF p-ideal (ξ̂, $̂) of U satisfies the following inequalities.

(∀z, x, y ∈ U)

(
ξ̂(z ∗ x) ≤ ξ̂((z ∗ y) ∗ (x ∗ y))
$̂(z ∗ x) ≥ $̂((z ∗ y) ∗ (x ∗ y))

)
. (18)

Proof. Let (ξ̂, $̂) be a k-pIF p-ideal of U. Then, it is a k-pIF ideal of U by Theorem 2. For any z, x, y ∈ U,
we have ((z ∗ y) ∗ (x ∗ y)) ∗ (z ∗ x) = 0. Hence

(proji ◦ ξ̂)((z ∗ y) ∗ (x ∗ y))

≥ min{(proji ◦ ξ̂)(((z ∗ y) ∗ (x ∗ y)) ∗ (z ∗ x)), (proji ◦ ξ̂)(z ∗ x)}
= min{(proji ◦ ξ̂)(0), (proji ◦ ξ̂)(z ∗ x)} = (proji ◦ ξ̂)(z ∗ x)
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and

(proji ◦ $̂)((z ∗ y) ∗ (x ∗ y))

≤ max{(proji ◦ $̂)(((z ∗ y) ∗ (x ∗ y)) ∗ (z ∗ x)), (proji ◦ $̂)(z ∗ x)}
= max{(proji ◦ $̂)(0), (proji ◦ $̂)(z ∗ x)} = (proji ◦ $̂)(z ∗ x)

for all z, x, y ∈ U.

We provide conditions for a k-pIF ideal to be a k-pIF p-ideal.

Theorem 3. Let (ξ̂, $̂) be a k-pIF ideal of U satisfying the condition

(∀z, x, y ∈ U)

(
ξ̂(z ∗ x) ≥ ξ̂((z ∗ y) ∗ (x ∗ y))
$̂(z ∗ x) ≤ $̂((z ∗ y) ∗ (x ∗ y))

)
. (19)

Then, it is a k-pIF p-ideal of U.

Proof. Using Equations (15) and (19), we have that

ξ̂(z) ≥ ξ̂(z ∗ x) ∧ ξ̂(x) ≥ ξ̂((z ∗ y) ∗ (x ∗ y)) ∧ ξ̂(x)

and

$̂(z) ≤ $̂(z ∗ x) ∨ $̂(x) ≤ $̂((z ∗ y) ∗ (x ∗ y)) ∨ $̂(x)

for all z, x, y ∈ U. Therefore (ξ̂, $̂) is a k-pIF p-ideal of U.

Lemma 1. Every k-pIF ideal (ξ̂, $̂) of U satisfies the following inequalities.

(∀z ∈ U)(ξ̂(z) ≤ ξ̂(0 ∗ (0 ∗ z)), $̂(z) ≥ $̂(0 ∗ (0 ∗ z))). (20)

Proof. For any z, x ∈ U, we obtain

ξ̂(0 ∗ (0 ∗ z)) ≥ ξ̂((0 ∗ (0 ∗ z)) ∗ z) ∧ ξ̂(z) = ξ̂((0 ∗ z) ∗ (0 ∗ z)) ∧ ξ̂(z) = ξ̂(0) ∧ ξ̂(z) = ξ̂(z)

and

$̂(0 ∗ (0 ∗ z)) ≤ $̂((0 ∗ (0 ∗ z)) ∗ z) ∨ $̂(z) = $̂((0 ∗ z) ∗ (0 ∗ z)) ∨ $̂(z) = $̂(0) ∨ $̂(z) = $̂(z)

by Equations (2), (3), (14) and (15).

Theorem 4. Let (ξ̂, $̂) be a k-pIF set over U. If (ξ̂, $̂) satisfies the following inequalities

(∀z ∈ U)(ξ̂(z) ≥ ξ̂(0 ∗ (0 ∗ z)), $̂(z) ≤ $̂(0 ∗ (0 ∗ z))). (21)

Proof. For any z, x, y ∈ U and i = 1, 2, · · · , k, we have

(proji ◦ ξ̂)((z ∗ y) ∗ (x ∗ y)) ≤ (proji ◦ ξ̂)(0 ∗ (0 ∗ (z ∗ y) ∗ (x ∗ y)))

= (proji ◦ ξ̂)((0 ∗ x) ∗ (0 ∗ y))

= (proji ◦ ξ̂)(0 ∗ (0 ∗ (z ∗ y)))

≤ (proji ◦ ξ̂)(z ∗ x),
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and

(proji ◦ $̂)((z ∗ y) ∗ (x ∗ y)) ≥ (proji ◦ $̂)(0 ∗ (0 ∗ (z ∗ y) ∗ (x ∗ y)))

= (proji ◦ $̂)((0 ∗ x) ∗ (0 ∗ y))

= (proji ◦ $̂)(0 ∗ (0 ∗ (z ∗ y)))

≥ (proji ◦ $̂)(z ∗ x),

which imply that ξ̂((z ∗ y) ∗ (x ∗ y)) ≤ ξ̂(z ∗ x) and $̂((z ∗ y) ∗ (x ∗ y)) ≥ $̂(z ∗ x) for all z, x, y ∈ U.
Therefore (ξ̂, $̂) is a k-pIF p-ideal of U by Theorem 3.

We consider characterizations of a k-pIF p-ideal.

Theorem 5. Given a k-pIF set (ξ̂, $̂) over U, the following assertions are equivalent.

(i) (ξ̂, $̂) is a k-pIF p-ideal of U.

(ii) The k-polar upper and lower level sets U(ξ̂, r̂) and L($̂, q̂) are p-ideals of U for all (r̂, q̂) ∈ [0, 1]k × [0, 1]k

with U(ξ̂, r̂) 6= ∅ 6= L($̂, q̂).

Proof. Assume that (ξ̂, $̂) is a k-pIF p-ideal of U. It is clear that 0 ∈ U(ξ̂; r̂) and 0 ∈ L($̂; q̂) for any
r̂ = (r1, r2, · · · , rk) ∈ (0, 1]k and q̂ = (q1, q2, · · · , qk) ∈ (0, 1]k. Let z, x, y, b, c, d ∈ U be such that
(z ∗ y) ∗ (x ∗ y) ∈ U(ξ̂; r̂), x ∈ U(ξ̂; r̂), (b ∗ d) ∗ (c ∗ d) ∈ L($̂; q̂) and c ∈ L($̂; q̂). Then, (proji ◦ ξ̂)((z ∗
y) ∗ (x ∗ y)) ≥ ri, (proji ◦ ξ̂)(x) ≥ ri, (proji ◦ $̂)((b ∗ d) ∗ (c ∗ d)) ≤ qi and (proji ◦ $̂)(c) ≤ qi. It follows
from Equations (16) that

(proji ◦ ξ̂)(z) ≥ min{(proji ◦ ξ̂)((z ∗ y) ∗ (x ∗ y)), (proji ◦ ξ̂)(x)} ≥ ri

and

(proji ◦ $̂)(b) ≤ max{(proji ◦ $̂)((b ∗ d) ∗ (c ∗ d)), (proji ◦ $̂)(c)} ≤ qi

for i = 1, 2, · · · , k. Hence z ∈ U(ξ̂; r̂) and b ∈ L($̂; q̂) and therefore U(ξ̂; r̂) and L($̂; q̂) are p-ideals of U.
Conversely, suppose that the k-polar upper and lower level sets U(ξ̂, r̂) and L($̂, q̂) are p-ideals

of U for all (r̂, q̂) ∈ [0, 1]k × [0, 1]k with U(ξ̂, r̂) 6= ∅ 6= L($̂, q̂). If ξ̂(0) < ξ̂(b) for some b ∈ U,
then b ∈ U(ξ̂; r̂) and 0 /∈ U(ξ̂; r̂) where r̂ := ξ̂(b). This is a contradiction, and so ξ̂(0) ≥ ξ̂(z) for
all z ∈ U. If $̂(0) > $̂(c) for some c ∈ U, then (proji ◦ $̂)(0) > (proji ◦ $̂)(c) for i = 1, 2, · · · , k.
If we take qi := (proji ◦ $̂)(c) for i = 1, 2, · · · , k, then c ∈ L($̂, q̂)i and 0 /∈ L($̂, q̂)i for i = 1, 2, · · · , k.
Thus c ∈ ⋂k

i=1 L($̂, q̂)i = L($̂, q̂) and 0 /∈ L($̂, q̂), which is a contradiction; hence $̂(0) ≤ $̂(z) for
all z ∈ U. Now, suppose that there exist b, c, d ∈ U such that ξ̂(b) < ξ̂((b ∗ d) ∗ (c ∗ d)) ∧ ξ̂(c) or
$̂(b) > $̂((b ∗ d) ∗ (c ∗ d)) ∨ $̂(c). If we take

r̂ := ξ̂((b ∗ d) ∗ (c ∗ d)) ∧ ξ̂(c)

and
q̂ := $̂((b ∗ d) ∗ (c ∗ d)) ∨ $̂(c),

then

(b ∗ d) ∗ (c ∗ d) ∈ U(ξ̂; r̂) and c ∈ U(ξ̂; r̂)

or

(b ∗ d) ∗ (c ∗ d) ∈ L($̂, q̂) and c ∈ L($̂, q̂).
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Since U(ξ̂; r̂) and L($̂, q̂) are p-ideals of U by assumption, it follows that b ∈ U(ξ̂; r̂) or b ∈ L($̂; q̂).
Hence ξ̂(b) ≥ r̂ = ξ̂((b ∗ d) ∗ (c ∗ d)) ∧ ξ̂(c) or $̂(b) ≤ q̂ = $̂((b ∗ d) ∗ (c ∗ d)) ∨ $̂(c), which is a
contradiction. Thus ξ̂(z) ≥ ξ̂((z ∗ y) ∗ (x ∗ y)) ∧ ξ̂(x) and $̂(z) ≤ $̂((z ∗ y) ∗ (x ∗ y)) ∨ $̂(x) for all
z, x, y ∈ U; therefore (ξ̂, $̂) is a k-pIF p-ideal of U.

Given a k-pIF set (ξ̂, $̂) over U and (t̂, ŝ) ∈ (0, 1]k × [0, 1)k, we consider the sets:

R(ξ̂,t̂)(U) := {z ∈ U | ξ̂(z) + t̂ > 1̂}

and

R($̂,ŝ)(U) := {z ∈ U | $̂(z) + ŝ < 1̂}.

Then, R(ξ̂,t̂)(U) =
⋂k

i=1 R(ξ̂,t̂)(U)i and R($̂,ŝ)(U) =
⋂k

i=1 R($̂,ŝ)(U)i where

R(ξ̂,t̂)(U)i := {z ∈ U | (proji ◦ ξ̂)(z) + ti > 1}

and

R($̂,ŝ)(U)i := {z ∈ U | (proji ◦ $̂)(z) + si < 1}

for i = 1, 2, · · · , k.

Theorem 6. Given a k-pIF set (ξ̂, $̂) over U, the following assertions are equivalent.

(i) (ξ̂, $̂) is a k-pIF p-ideal of U.
(ii) The sets R(ξ̂,t̂)(U) and R($̂,ŝ)(U) are p-ideals of U for all (t̂, ŝ) ∈ (0, 1]k × [0, 1)k with R(ξ̂,t̂)(U) 6= ∅ 6=

R($̂,ŝ)(U).

Proof. Assume that (ξ̂, $̂) is a k-pIF p-ideal of U. It is clear that 0 ∈ R(ξ̂,t̂)(U) and 0 ∈ R($̂,ŝ)(U).
Let z, x, y, b, c, d ∈ U be such that (z ∗ y) ∗ (x ∗ y) ∈ R(ξ̂,t̂)(U), x ∈ R(ξ̂,t̂)(U), (b ∗ d) ∗ (c ∗ d) ∈ R($̂,ŝ)(U)

and c ∈ R($̂,ŝ)(U). Then, ξ̂((z ∗ y) ∗ (x ∗ y)) + t̂ > 1̂, ξ̂(x) + t̂ > 1̂, $̂((b ∗ d) ∗ (c ∗ d)) + ŝ < 1̂ and
$̂(c) + ŝ < 1̂. It follows that

(proji ◦ ξ̂)(z) + ti ≥ min{(proji ◦ ξ̂)((z ∗ y) ∗ (x ∗ y)), (proji ◦ ξ̂)(x)}+ ti

= min{(proji ◦ ξ̂)((z ∗ y) ∗ (x ∗ y)) + ti, (proji ◦ ξ̂)(x) + ti} > 1

and

(proji ◦ $̂)(b) + si ≤ max{(proji ◦ $̂)((b ∗ d) ∗ (c ∗ d)), (proji ◦ $̂)(c)}+ si

= max{(proji ◦ $̂)((b ∗ d) ∗ (c ∗ d)) + si, (proji ◦ $̂)(c) + si} < 1

for all i = 1, 2, · · · , k. Hence z ∈ ⋂k
i=1 R(ξ̂,t̂)(U)i = R(ξ̂,t̂)(U) and b ∈ ⋂k

i=1 R($̂,ŝ)(U)i = R($̂,ŝ)(U);

therefore R(ξ̂,t̂)(U) and R($̂,ŝ)(U) are p-ideals of U for all (t̂, ŝ) ∈ (0, 1]k × [0, 1)k.

Conversely suppose that (ii) is valid. If ξ̂(0) < ξ̂(z) or $̂(0) > $̂(b) for some z, b ∈ U, then ξ̂(0) +
t̂ ≤ 1̂ < ξ̂(z) + t̂ or $̂(0) + ŝ ≥ 1̂ > $̂(b) + ŝ for some (t̂, ŝ) ∈ (0, 1]k × [0, 1)k. Thus 0 /∈ R(ξ̂,t̂)(U) or

0 /∈ R($̂,ŝ)(U) which is a contradiction. Hence (ξ̂, $̂) satisfies Condition (14). Suppose that ξ̂(b) <

ξ̂((b ∗ d) ∗ (c ∗ d)) ∧ ξ̂(c) for some b, c ∈ U. Then, ξ̂(b) + t̂ ≤ 1̂ < (ξ̂((b ∗ d) ∗ (c ∗ d)) ∧ ξ̂(c)) + t̂ =

(ξ̂((b ∗ d) ∗ (c ∗ d)) + t̂) ∧ (ξ̂(c) + t̂) for some t̂ ∈ (0, 1]k. It follows that (b ∗ d) ∗ (c ∗ d) ∈ R(ξ̂,t̂)(U) and



Mathematics 2020, 8, 993 10 of 14

c ∈ R(ξ̂,t̂)(U), which implies that b ∈ R(ξ̂,t̂)(U) since R(ξ̂,t̂)(U) is a p-ideal of U; hence ξ̂(b) + t̂ > 1̂,
which is a contradiction. If $̂(z) > $̂((z ∗ y) ∗ (x ∗ y)) ∨ $̂(x) for some z, x ∈ U, then

$̂(z) + ŝ ≥ 1̂ > (ξ̂((z ∗ y) ∗ (x ∗ y)) ∨ ξ̂(x)) + ŝ = (ξ̂((z ∗ y) ∗ (x ∗ y)) + ŝ) ∨ (ξ̂(x) + ŝ)

for some ŝ ∈ [0, 1)k. Thus (z ∗ y) ∗ (x ∗ y) ∈ R($̂,ŝ)(U) and x ∈ R($̂,ŝ)(U). Since R($̂,ŝ)(U) is a p-ideal
of U, it follows that z ∈ R($̂,ŝ)(U), that is, $̂(z) + ŝ < 1̂. This is a contradiction. This shows that (ξ̂, $̂)

satisfies Condition (16); therefore (ξ̂, $̂) is a k-pIF p-ideal of U.

The following theorem shows the characterization of k-pIF p-ideal using k-polar (∈,∈)-fuzzy
p-ideal.

Theorem 7. A k-pIF set (ξ̂, $̂) over U is a k-pIF p-ideal of U if and only if ξ̂ and $̂c are k-polar (∈,∈)-fuzzy
p-ideals of U where $̂c = 1− $̂, i.e., (proji ◦ $̂)c = 1− (proji ◦ $̂) for i = 1, 2, · · · , k.

Proof. Let (ξ̂, $̂) be a k-pIF p-ideal of U. It is clear that ξ̂ is a k-polar (∈,∈)-fuzzy p-ideal of U.
Let z, x, y ∈ U. Then,

(proji ◦ $̂)c(0) = 1− (proji ◦ $̂)(0) ≥ 1− (proji ◦ $̂)(z) = (proji ◦ $̂)c(z)

and

(proji ◦ $̂)c(z) = 1− (proji ◦ $̂)(z) ≥ 1−max{(proji ◦ $̂)((z ∗ y) ∗ (x ∗ y)), (proji ◦ $̂)(x)}
= min{1− (proji ◦ $̂)((z ∗ y) ∗ (x ∗ y)), 1− (proji ◦ $̂)(x)}
= min{(proji ◦ $̂)c((z ∗ y) ∗ (x ∗ y)), (proji ◦ $̂)c(x)}.

Thus $̂c is a k-polar (∈,∈)-fuzzy p-ideal of U.
Conversely, suppose that ξ̂ and $̂c are k-polar (∈,∈)-fuzzy p-ideals of U. For any z, x ∈ U,

we have (proji ◦ ξ̂)(0) ≥ (proji ◦ ξ̂)(z), (proji ◦ ξ̂)(z) ≥ min{(proji ◦ ξ̂)((z ∗ y) ∗ (x ∗ y)), (proji ◦ ξ̂)(x)},
1− (proji ◦ $̂)(0) = (proji ◦ $̂)c(0) ≥ (proji ◦ $̂)c(z) = 1− (proji ◦ $̂)(z), i.e., (proji ◦ $̂)(0) ≤ (proji ◦
$̂)(z) and

1− (proji ◦ $̂)(z) = (proji ◦ $̂)c(z) ≥ min{(proji ◦ $̂)c((z ∗ y) ∗ (x ∗ y)), (proji ◦ $̂)c(x)}
= min{1− (proji ◦ $̂)((z ∗ y) ∗ (x ∗ y)), 1− (proji ◦ $̂)(x)}
= 1−max{(proji ◦ $̂)((z ∗ y) ∗ (x ∗ y)), (proji ◦ $̂)(x)},

that is, (proji ◦ $̂)(z) ≤ max{(proji ◦ $̂)((z ∗ y) ∗ (x ∗ y)), (proji ◦ $̂)(x)}; therefore (ξ̂, $̂) is a k-pIF
p-ideal of U.

The following corollary is an immediate consequence of Theorem 7.

Corollary 1. Let (ξ̂, $̂) be a k-pIF set over U. Then, (ξ̂, $̂) is a k-pIF p-ideal of U if and only if the necessary
operator �(ξ̂, $̂) = (ξ̂, ξ̂c) and the possibility operator ♦(ξ̂, $̂) = ($̂c, $̂) of (ξ̂, $̂) are k-pIF p-ideals of U.

Definition 2. A k-pIF p-ideal (ξ̂, $̂) of U is said to be normal if there exists z, x ∈ U such that ξ̂(z) = 1̂ and
$̂(x) = 0̂.
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Example 3. Consider the BCI-algebra U = {0, x, a, b}, which is given in Example 1. Let (ξ̂, $̂) be a 3-polar
intuitionistic fuzzy set over U given by

(ξ̂, $̂) : U → [0, 1]3 × [0, 1]3,

z 7→


((1.00, 1.00, 1.00), (0.00, 0.00, 0.00)) if z = 0,
((0.72, 0.57, 1.00), (0.00, 0.24, 0.35)) if z = x,
((0.52, 0.37, 0.32), (0.37, 0.44, 0.58)) if z = a,
((0.52, 0.37, 0.32), (0.37, 0.44, 0.58)) if z = b.

It is routine to check that (ξ̂, $̂) is a normal 3-polar intuitionistic fuzzy p-ideal of U.

It is clear that if a k-pIF p-ideal (ξ̂, $̂) of U is normal, then ξ̂(0) = 1̂ and $̂(0) = 0̂, that is,
(proji ◦ ξ̂)(0) = 1 and (proji ◦ $̂)(0) = 0 for all i = 1, 2, · · · , k.

Lemma 2. A k-pIF p-ideal (ξ̂, $̂) of U is normal if and only if ξ̂(0) = 1̂ and $̂(0) = 0̂.

Proof. Straightforward.

In the following theorem we look at the process of eliciting normal k-pIF p-ideal from a given
k-pIF p-ideal.

Theorem 8. If (ξ̂, $̂) is k-pIF p-ideal of U, then the k-pIF set (ξ̂, $̂)+ = (ξ̂+, $̂+) on U defined by

ξ̂+ : U → [0, 1]k, z 7→ 1̂ + ξ̂(z)− ξ̂(0),

$̂+ : U → [0, 1]k, z 7→ $̂(z)− $̂(0)
(22)

is a normal k-pIF p-ideal of U containing (ξ̂, $̂).

Proof. Assume that (ξ̂, $̂) is a k-pIF p-ideal of U. Then, (ξ̂, $̂) is a k-pIF ideal of U by Theorem 2.
For any z, x ∈ U, we have

(proji ◦ ξ̂)(0) = 1 + (proji ◦ ξ̂)(0)− (proji ◦ ξ̂)(0) = 1 ≥ (proji ◦ ξ̂)(z),

(proji ◦ $̂)(0) = (proji ◦ $̂)(0)− (proji ◦ $̂)(0) = 0 ≤ (proji ◦ $̂)(z),

(proji ◦ ξ̂)+(z) = 1 + (proji ◦ ξ̂)(z)− (proji ◦ ξ̂)(0)

≥ 1 + min{(proji ◦ ξ̂)((z ∗ y) ∗ (x ∗ y)), (proji ◦ ξ̂)(x)} − (proji ◦ ξ̂)(0)

= min{1 + (proji ◦ ξ̂)((z ∗ y) ∗ (x ∗ y))− (proji ◦ ξ̂)(0), 1 + (proji ◦ ξ̂)(x)− (proji ◦ ξ̂)(0)}
= min{(proji ◦ ξ̂)+((z ∗ y) ∗ (x ∗ y)), (proji ◦ ξ̂)+(x)}

and

(proji ◦ $̂)+(z) = (proji ◦ $̂)(z)− (proji ◦ $̂)(0)

≤ max{(proji ◦ $̂)((z ∗ y) ∗ (x ∗ y)), (proji ◦ $̂)(x)} − (proji ◦ $̂)(0)

= max{(proji ◦ $̂)((z ∗ y) ∗ (x ∗ y))− (proji ◦ $̂)(0), (proji ◦ $̂)(x)− (proji ◦ $̂)(0)}
= max{(proji ◦ $̂)+((z ∗ y) ∗ (x ∗ y)), (proji ◦ $̂)+(x)}

for all for i = 1, 2, · · · , k. Hence (ξ̂, $̂)+ is a k-pIF p-ideal of U and it is normal by Lemma 2. It is clear
that (ξ̂, $̂) is contained in (ξ̂, $̂)+.
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Theorem 9. Let (ξ̂, $̂) be a k-pIF p-ideal of U. Then, (ξ̂, $̂) is normal if and only if (ξ̂, $̂)+ = (ξ̂, $̂), that is,
ξ̂+ = ξ̂ and $̂+ = $̂.

Proof. The sufficiency is clear. Assume that (ξ̂, $̂) is normal. Then,

(proji ◦ ξ̂)+(z) = 1 + (proji ◦ ξ̂)(z)− (proji ◦ ξ̂)(0) = (proji ◦ ξ̂)(z)

(proji ◦ $̂)+(z) = (proji ◦ $̂)(z)− (proji ◦ ξ̂)(0) = (proji ◦ ξ̂)(z)

for all z ∈ U by Lemma 2. This completes the proof.

Corollary 2. Let (ξ̂, $̂) be a k-pIF p-ideal of U. If (ξ̂, $̂) is normal, then ((ξ̂, $̂)+)+ = (ξ̂, $̂).

Theorem 10. Let (ξ̂, $̂) be a non-constant normal k-pIF p-ideal of U, which is maximal in the poset of normal
k-pIF p-ideals under set inclusion. Then, ξ̂ and $̂ have the values 0̂ and 1̂ only.

Proof. Since (ξ̂, $̂) is normal, we have ξ̂(0) = 1̂ and $̂(0) = 0̂ by Lemma 2. Let z, x ∈ U be such that
ξ̂(z) 6= 1̂ and $̂(x) 6= 0̂. It is sufficient to show that ξ̂(z) = 0̂ and $̂(x) = 1̂. If ξ̂(z) 6= 0̂ and $̂(x) 6= 1̂,
then there exists b, c ∈ U such that 0̂ < ξ̂(b) < 1̂ and 0̂ < $̂(c) < 1̂. Let (ξ̂, $̂)∗ = (ξ̂∗, $̂∗) be a k-pIF set
on U given by

ξ̂∗ : U → [0, 1]k, z 7→ 1
2

(
ξ̂(z) + ξ̂(b)

)
.

and

$̂∗ : U → [0, 1]k, z 7→ 1
2 ($̂(z) + $̂(c)) .

It is clear that (ξ̂, $̂)∗ is well-defined. For any z, x ∈ U, we have

ξ̂∗(0) = 1
2

(
ξ̂(0) + ξ̂(b)

)
= 1

2

(
1̂ + ξ̂(b)

)
≥ 1

2

(
ξ̂(z) + ξ̂(b)

)
= ξ̂∗(z),

$̂∗(0) = 1
2 ($̂(0) + $̂(c)) = 1

2
(
0̂ + $̂(c)

)
≤ 1

2 ($̂(z) + $̂(c)) = $̂∗(z),

ξ̂∗(z) = 1
2

(
ξ̂(z) + ξ̂(b)

)
≥ 1

2

(
(ξ̂(z ∗ x) ∧ ξ̂(x)) + ξ̂(b)

)
= 1

2 ((ξ̂(z ∗ x) + ξ̂(b)) ∧ (ξ̂(x) + ξ̂(b)))

= 1
2 (ξ̂(z ∗ x) + ξ̂(b)) ∧ 1

2 (ξ̂(x) + ξ̂(b))

= ξ̂∗(z ∗ x) ∧ ξ̂∗(x)

and

$̂∗(z) = 1
2 ($̂(z) + $̂(c)) ≤ 1

2 (($̂(z ∗ x) ∨ $̂(x)) + $̂(c))

= 1
2 (($̂(z ∗ x) + $̂(c)) ∨ ($̂(x) + $̂(c)))

= 1
2 ($̂(z ∗ x) + $̂(c)) ∨ 1

2 ($̂(x) + $̂(c))

= $̂∗(z ∗ x) ∨ $̂∗(x).

Hence (ξ̂, $̂) is a k-pIF ideal of U. We have

ξ̂∗(z) = 1
2

(
ξ̂(z) + ξ̂(b)

)
≥ 1

2

(
ξ̂(0 ∗ (0 ∗ z)) + ξ̂(b)

)
= ξ̂∗(0 ∗ (0 ∗ z))
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and

$̂∗(z) = 1
2 ($̂(z) + $̂(c)) ≤ 1

2 ($̂(0 ∗ (0 ∗ z)) + $̂(c)) = $̂∗(0 ∗ (0 ∗ z))

for all z ∈ U. Hence (ξ̂, $̂)∗ is a k-pIF p-ideal of U by Theorem 4. Now, we get

ξ̂+∗ (z) = 1̂ + ξ̂∗(z)− ξ̂∗(0) = 1̂ + 1
2

(
ξ̂(z) + ξ̂(b)

)
− 1

2

(
ξ̂(0) + ξ̂(b)

)
= 1

2

(
1̂ + ξ̂(z)

)
,

and

$̂+∗ (z) = $̂∗(z)− $̂∗(0) = 1
2 ($̂(z) + $̂(c))− 1

2 ($̂(0) + $̂(c)) = 1
2 $̂(z),

and so ξ̂+∗ (0) =
1
2

(
1̂ + ξ̂(0)

)
= 1̂ and $̂+∗ (z) =

1
2 $̂(0) = 0̂. Hence (ξ̂, $̂)∗ is normal. Note that

ξ̂+∗ (0) = 1̂ > ξ̂+∗ (b) =
1
2

(
1̂ + ξ̂(b)

)
> ξ̂(b)

and
$̂+∗ (0) = 0̂ < $̂+∗ (c) =

1
2
(
0̂ + $̂(c)

)
< $̂(c).

Hence (ξ̂, $̂)+∗ is non-constant and (ξ̂, $̂) is not maximal, which is a contradiction; therefore ξ̂ and
$̂ have the values 0̂ and 1̂ only.

4. Conclusions and Future Works

As a generalization of intuitionistic fuzzy set, Kang et al. [19] introduced the notion of multipolar
intuitionistic fuzzy set with finite degree, and then they applied the notion to BCK/BCI-algebras. In this
manuscript, we used Kang et al.’s multipolar intuitionistic fuzzy set to study p-ideal in BCI-algebras.
We introduced the notion of k-polar intuitionistic fuzzy p-ideals (see Definition 1) in BCI-algebras,
and then we studied several properties (See Proposition 1, Proposition 2). We gave an example to
illustrate the k-polar intuitionistic fuzzy p-ideal (see Example 1), and considered the relationship
between k-polar intuitionistic fuzzy ideal and k-polar intuitionistic fuzzy p-ideal. We have shown that
every k-polar intuitionistic fuzzy p-ideal is a k-polar intuitionistic fuzzy ideal (see Theorem 2), and
then provided an example to show that the converse is not true in general (see Example 2). We used the
notion of p-ideals in BCI-algebras to study the characterization of k-polar intuitionistic fuzzy p-ideal
(see Theorem 1, Theorem 5 and Theorem 6), and also used the notion of k-polar (∈,∈)-fuzzy p-ideal in
BCI-algebras to study the characterization of k-polar intuitionistic fuzzy p-ideal (see Theorem 7). We
defined the concept of normal k-polar intuitionistic fuzzy p-ideal (see Definition 2), and discussed its
characterization (see Lemma 2 and Theorem 9). We looked at the process of eliciting normal k-polar
intuitionistic fuzzy p-ideal from a given k-polar intuitionistic fuzzy p-ideal (see Theorem 8). Our goal
in the future is to apply the ideas and results of this paper to other forms of ideals, filters, etc. in
BCK/BCI-algebras. We will also apply the ideas and results of this paper to other algebraic structures,
for example, MV-algebras, EQ-algebras, equality algebras, hoops, etc.
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