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Abstract: In this paper, we introduce and investigate a hybrid type of nonlinear Riemann Liouville
fractional integro-differential equations. We develop and extend previous work on such non-fractional
equations, using operator theoretical techniques, and find the approximate solutions. We prove the
existence as well as the uniqueness of the corresponding approximate solutions by using hybrid
fixed point theorems and provide upper and lower bounds to these solutions. Furthermore, some
examples are provided, in which the general claims in the main theorems are demonstrated.
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1. Introduction

Nonlinear fractional integro-differential equations are an important class of equations and widely
applied in many areas such as physics, electromagnetic, mechanics, biology, signal processing, finance
(in particular option pricing), economics and many more. There are also many different methods
to solve these types of equations, in particular, to study the solutions of existence and uniqueness.
Further properties for these types of equations have been studied by many researchers using different
techniques. Sitho et al. in [1] used the couple of hybrid fixed point theorems for the sum of three
operators to prove the existence solutions for this type of equations. In 2016, Dhage et al. [2] studied
the existence and approximate solutions of this kind of equations by using a hybrid fixed point
theorem under weaker mixed partial continuity and Lipschitz conditions. In the same year, Dhage et al.
(see, [3]) introduced and proved algorithms for the existence of solution for nonlinear first order
ordinary integro-differential equations and to approximate the solutions for initial value problems.
In 2019, Ardjouni and Djoudi [4] proved the existence and approximation of solutions of these types of
equations by using Dhage iteration principle. The hybrid equations have applications of modelling
non-linear systems, hybrid systems and physical systems with fractional calculus; e.g., human factors
(2019), where fractional calculus is used to model the human operator [5,6] and a hybrid model for
vehicle driving in [7].
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Now consider the following initial value problem (IVP) for a hybrid type nonlinear fractional
integro-differential equation (HTNFIDE)

(Dαu)(t) + λu(t) = f
(

t, u(t),
∫ t

t0

(t− s)α−1

Γ(α)
g(s, u(s))ds

)
, (1)

u(t0) = B0 ∈ R.

for all t ∈ J and for some positive real λ ∈ R, where f : J × R × R → R and g : J × R → R
are continuous functions, then Dα denotes the Riemann-Liouville fractional derivative of order
α (0 < α ≤ 1) and J = [t0, t0 + a] closed-bounded interval for t0, a ∈ R with t0 ≥ 0 and a > 0.
By a function u ∈ C1(J,R) that satisfies the above problem IVP, the soulution of Equation (1), where
C1(J,R) is the space of differentiable continuous functions defined on J.

The present work is organized as follows: Firstly, we study the existence and uniqueness results
for IVPs. Next, we give an existence result for IVPs for hybrid fractional differential equations with
linear perturbations of the first type.

2. Preliminaries

Here, we recall some related concepts which will be useful in our study; details can be found
in [8–12].

Definition 1 ([13,14]). The following operator Iα defined by

Iαh(x) =
1

Γ(α)

∫ x

a

h(µ)
(x− µ)1−α

dµ, α > 0, (2)

for x ∈ [a, b], is said to be a Riemann–Liouville fractional integral having order α and similarly, the operator Dα

Dαh(u) =
1

Γ(m− α)

[
d

du

]m ∫ u

a

h(µ)
(u− µ)α−m+1 dµ, (m− 1) ≤ α < m, (3)

is called a Riemann–Liouville fractional differential, here m is an integer and α is a real number for u ∈ [a, b],
see the details in [15,16].

Throughout this study, E(‖.‖,�) represents partially ordered linear normed space with respect to
relation �.

The space E(‖.‖,�) is called a regular ( see, [17]) if for non-increasing (resp., non-decreasing)
sequence {un} in E such that un → u∗ as n→ ∞, un � u∗ (resp., un � u∗) for all n ∈ N.

Definition 2 ([18,19]). A function T : E → E is said to be partially continuous at a ∈ E for every ε > 0 if
there exists a δ > 0 such that

‖u− a‖< δ⇒ ‖Tu− Ta‖< ε,

then the map T is called partially continuous on whole space E.

Definition 3 ([20,21]). A subset Ω 6= ∅ of the partially ordered Banach space E is said to be partially compact
if B in Ω is a relatively compact set in E.

Definition 4 ([20,22]). A function T : E→ E is called:

1. partially compact if T(E) is a partially relatively compact set in E,
2. uniformly partially compact if it is partially compact and uniformly partially bounded on E,
3. partially totally bounded if for any bounded subset Ω of E, T(Ω) is a partially relatively compact subset

of E,
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4. partially continuous and partially totally bounded, then it is called partially completely continuous on E.

Definition 5 ([3,18]). A metric d and the relation � on E 6= ∅ are called compatible if for every monotone
sequence {un} in E with a subsequence {unk} of {un} converges to u∗, the sequence {un} converges to u∗.
The set Ω ⊆ E is called Janhavi subset of E if the metric d and the relation � are compatible in the set Ω.
In particular, E is called a Janhavi Banach space or Janhavi metric if Ω = E.

Remark 1. Note that the set of real numbers R with absolute value function as a norm and with the usual
order relation ≤ has compatibility property. Further, each Euclidean space of finite dimensional Rn has the same
property of compatibility with respect to relationship � with the usual components and with the standard norm
‖.‖ in Rn.

The iteration method was developed in [18,20,22], and incorporated into the following theorems,
which are the main tools that will be applied to some of the problems in this work. Note that
“the monotonic convergence” for successive approximations sequence to the solution of a nonlinear
equation that begins with a lower or upper solution of the equations as its initial approximation”. This
is also a useful tool to examine the existence of a solution in nonlinear analysis. As we will see, Picard′s
successive iterations medhod differs from the usual Dhage iteration method.

Theorem 1 ([20]). Let (E,�, ‖.‖) be a complete regular space respect to partially ordered then T : E→ E is a
partially continuous, partially compact operator and increasing. If there exists an element u0 ∈ E such that
u0 � Tu0 or Tu0 � u0, then the operator Tu = u has a solution u∗ in E, and thus sequence {Tnu0} converges
to u∗.

Definition 6. An upper semi−continuous and monotone increasing function ξ : R+ → R+ is said to be a
D−function provided that ξ(0) = 0. Then, an operator T : E→ E is said to be a partial D−contraction if there
is a D−function satisfies

‖Tu− Tv‖≤ ξ(‖u− v‖)

for u, v ∈ E, where 0 < ξ(r) < r, for r > 0. In particular, if ξ(r) = kr, for k > 0, then T is called a Lipschitz
operator and if 0 < k < 1, then T is known as contraction on (E,�, ‖.‖).

Theorem 2. Let (E,�, ‖.‖) be a partially ordered, regular complete normalized linear space with the norm ‖.‖.
Further A, B : E→ E be two increasing operators such that

(a) the operator A is a partial nonlinear D−contraction and partially bounded,
(b) the operator B is partially compact and partially continuous, and
(c) there exists an element u0 ∈ E such that u0 � Au0 + Bu0 or u0 � Au0 + Bu0.

Then the equation Au + Bu = u has a solution u∗ in (E,�, ‖.‖) and sequence un+1 = Aun + Bun

converges monotonically to u∗.

3. Existence and Uniqueness of Solutions

In this section, we first define the order relation � and respect to norm ‖.‖ in C(J,R) as follows

‖u‖= sup
t∈J
|u(t)|, (4)

and
u ≤ v⇔ u(t) ≤ v(t), for all, t ∈ J. (5)

Note that C(J,R) is a Banach space with respect to supremum norm and is also partially ordered
respect to �. Also C(J,R) is regular and a lattice, that is, each pair of elements has an upper and
lower bound.
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The following lemma is an application of the Arzela-Ascoli theorem.

Lemma 1. Let (C(J,R),�, ‖.‖) be partially ordered with respect to � and norm ‖.‖. Then, � and ‖.‖ are
compatible in a compact subset of C(J,R).

We can see the proof of the lemma in [3]. Next. we need the following:

Definition 7. A differentiable function z ∈ C1(J,R) is a lower solution for (1) if fulfills

(Dαz)(t) + λz(t) ≤ f
(

t, z(t),
∫ t

t0

(t− s)α−1

Γ(α)
g(s, z(s))

)
ds (6)

z(t0) ≤ B0 ∈ R,

for every t in J. Similarly, an upper solution y ∈ C1(J,R) for (1) if staisfies the inverting the inequalities in (6).

3.1. Existence Theorem

For the future discussion we need the following assumptions: Let

(A1) there is a constant M f > 0 such that | f (t, u, v)| ≤ M f , ∀t ∈ J and u in R.
(A2) the function f (t, u, v) is monotone increasing in u and v for any t in J.
(A3) the function g(t, u) is monotone increasing in u for any t in J.
(A4) the (1) has a lower solution z ∈ C1(J,R).
(A5) there exists a constant L > 0 such that

0 ≤ g(t, u)− g(t, v) ≤ L(u− v)

for every t ∈ J, u, v ∈ R, with u ≥ v.
(A6) There are D−functions ξ1 and ξ2 such that

0 ≤ f (t, x1, x2)− f (t, y1, y2) ≤ ξ1(x1 − y1) + ξ2(x2 − y2)

for all u1, u2, v1, v2 ∈ R with u1 ≥ v1 and u2 ≥ v2. Furthermore

aα

Γ(α + 1)

(
ξ1(r) + ξ2(Lar)

)
< r, for any, r > 0

(A7) The the Equation (18) has a lower solution z ∈ C1(J,R).

The following lemma is important in our proof and related to Riemann & Liouville
differential operator.

Lemma 2. Let h : J → R, be an integrable function then u ∈ C1(J,R) is a solution for (1)

(Dαu)(t) + λu(t) = h(t), t ∈ J

u(t0) = B0 ∈ R

if and only if

u(t) = ce−λ tα
α! + e−λ tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! h(s)ds, t ∈ J

where c = B0e
λtα0
Γ(α) is a constant.

Next we have
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Theorem 3. Let the assumptions (A1 − A4) be held. Then the HTNFIDE (4) has a solution u∗ on J and the
sequence {un}∞

n=1 satisfies

u1(t) = y(t),

un+1(t) = ce−λ tα
α!

+ e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

(7)

for all t in R, converges to u∗.

Proof. From Lemma 2, the HTNFIDE (4) is equivalent to the nonlinear integral equation

u(t) = ce−λ tα
α!

+ e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds. (8)

Set E = C(J,R). Then, by Lemma 1 it follows that each compact chain in E has the property of
compatibility with respect to the order relation � and the norm ‖.‖ in E. We introduce the operator
T by

Tu(t) = e−λ tα
α!

(
c +

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds
)

. (9)

Since Tu is continuous, then Tu ∈ E. That is, T maps E into itself. The HTNFIDE (4) is then
equivalent to the operator equation

Tu(t) = u(t), t ∈ J. (10)

Through a series of steps, we must prove that the operator T fulfills all the conditions of Theorem 1.

Step I: Let T be increasing on E and for u, v in E with u ≤ v. Then, from (A2), we get

Tu(t) = e−λ tα
α!

(
c +

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dT

)
ds
)

,

≤ e−λ tα
α!

(
c +

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, v(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, v(ξ))dξ

)
ds
)

= Tv(t)

for all t in J. This proves that T is a increasing operator on E.

Step II: Let T be partially continuous on E. {un} is a chain points sequences C in E such that
un → u, ∀n ∈ N. Then, by the controlled convergence theorem,

lim
n→∞

Tun(t) =

lim
n→∞

(
e−λ tα

α!

(
c +

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds
))

= e−λ tα
α!

(
c +

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds
)

= Tu(t)
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for every t in J. This proves that {Tun} converges to Tu point-wise on J. Therefore, we prove that
{Tun} is an equi-continuous sequence of functions in E. Let t1, t2 in J and t1 < t2. Then

|Tun(t2)− Tun(t1)| ≤ c|e−λ
tα1
α! − e−λ

tα2
α! |

+|e−λ
tα2
α!

∫ t2

t0

(t2 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |

+|e−λ
tα2
α!

∫ t2

t0

(t2 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

+|e−λ
tα1
α!

∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |+ |e−λ

tα2
α! − e−λ

tα1
α! |

×|
∫ t2

t0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

+e−λ
tα1
α! |
∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, xn(ξ))dξ

)
ds

−
∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |+

∣∣∣e−λ
tα2
α! − e−λ

tα1
α!

∣∣∣∣∣∣ ∫ t0+a

t0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds
∣∣∣

+|
∫ t2

t1

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, un(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

≤ |e−λ
tα1
α! − e−λ

tα2
α! |
(

c +
M f

Γ(α)

∫ t0+a

t0

(t2 − s)(α−1) − (t1 − s)α−1eλ sα

α! ds
)

+
M f

Γ(α)

∣∣∣ ∫ t2

t1

−(t1 − s)α−1eλ sα

α!

∣∣∣ds

≤ |e−λ
tα1
α! − e−λ

tα2
α! |
(

c +
M f

Γ(α)

∫ t0+a

t0

(
(t2 − s)(α−1) − (t1 − s)α−1

)
eλ sα

α! ds
)

+
M f

Γ(α)

∣∣∣(p(t1)− p(t2)
∣∣∣

≤
∣∣∣e−λ

tα1
α! − e−λ

tα2
α!

∣∣∣(c +
M f .eλ(t0+a)α−1

Γ(α)

)
+

M f

Γ(α)

∣∣∣(p(t1)− p(t2)
∣∣∣
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where, p(t) =
∫ t

t0

(t0 + a− s)α−1

Γ(α)
eλ sα

α! ds, t ∈ J.

Step III: Let T be a operator of partially compact on E and C an arbitrary chain in E. Then we
prove that T(C) is a equi-continuous an uniformly bounded set in E. Firstly, we prove that T(C) is
uniformly bounded. We put u ∈ C is arbitrary. Then,

|Tu(t)| ≤ |ce−λ tα
α! |

+

∣∣∣∣e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds
∣∣∣∣

≤ |c|+
aα M f

Γ(α + 1)
= r

for every t in J. We are taking the supremum over t, we get ‖Tu‖≤ r for every u ∈ C. Thus T(C) ≺ E
is a uniformly bounded. Therefore, we will prove that T(C) is an equicontinuous set in E. We put
t1, t2 ∈ J is arbitrary with t1 < t2. Then

|Tu(t2)− Tu(t1)| ≤ c|e−λ
tα1
α! − e−λ

tα2
α! |

+|e−λ
tα2
α!

∫ t2

t0

(t2 − s)α−1

Γ(α)
eλs f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |

+|e−λ
tα2
α!

∫ t2

t0

(t2 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

+|e−λ
tα1
α!

∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |+

∣∣∣∣e−λ
tα2
α! − e−λ

tα1
α!

∣∣∣∣
×
∣∣∣∣∫ t2

t0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds
∣∣∣∣

+e−λ
tα1
α! |
∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−
∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

≤ c
∣∣∣∣e−λ

tα1
α! − e−λ

tα2
α!

∣∣∣∣+ |e−λ
tα2
α! − e−λ

tα1
α! |∣∣∣∣∫ t0+a

t0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds
∣∣∣∣∣∣∣∣∫ t2

t1

(t1 − s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds
∣∣∣∣
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≤ |e−λ
tα1
α! − e−λ

tα2
α! |(c +

M f

Γ(α)

∫ t0+a

t0

(t2 − s)(α−1) − (t1 − s)α−1eλ sα

α! ds)

+
M f

Γ(α)

∫ t2

t1

(t1 − s)α−1eλ sα

α! ds

≤
∣∣∣∣e−λ

tα1
α! − e−λ

tα2
α!

∣∣∣∣ (c +
M f

Γ(α)

∫ t0+a

t0

(
c(t2 − s)(α−1) − (t1 − s)α−1

)
eλ sα

α! ds
)

+
M f

Γ(α)
|(p(t1)− p(t2)|

where, p(t) =
∫ t

t0
(t0 + a− s)α−1eλ sα

α! ds, t ∈ J.
Since the functions t → (t− s)α−1 and t → p(t) are uniformly continuous on compact interval

J = [t0, t0 + a], then we have that |Tu(t2)− Tu(t1)| → 0 as t2 → t1, uniformly for every u ∈ C. This
proves that T(C) is an equi-continuous set in E. Thus T(C) ≺ E is compact and consequently T is
an partially compact operator on E→ E.

Step IV: z fulfills the operator inequality z ≤ Tz.
from the assumption (A4) we can obtain, y is a lower solution of HTNFIDE in (4) introduced on
J. Thus

(Dαz)(t) + λz(t) ≤ f
(

t, z(t),
∫ t

t0

(t− s)α−1

Γ(α)
g(s, z(s))ds

)
, (11)

and
z(t0) ≤ B0 ∈ R. (12)

for every t in J. Now integrating the Equation (11) from t0 to t, we have

z(t) ≤ ce−λ tα
α! + e−λ tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, z(s),
∫ s

t0

(s−ξ)α−1

Γ(α) g(ξ, z(ξ))dξ
)

ds (13)

for every t in J. This proves that z is a lower solution of the operator in equation u = Tu.
Thus T satisfies all the conditions of Theorem 1, and the Remark 1 and we can deduce the operator

in equation Tu = u that contains the solution. Therefore, the integral equation and HTNFIDE (4) have
a solution u∗ introduced in J. Moreover, the sequence {un} of successive approximations introduced
by Equation (7) converges monotonically to u∗. Thus we have completed the proof.

Remark 2. The inference of theorem 3 also still true if we substitute condition (A4) with (B4) The HTNFIDE
(4) contain a upper solution v ∈ C1(J,R).

Example 1. Let J = [0, 1] be a closed and bounded interval, then we consider the HTNFIDE

(D
3
2 u)(t) + u(t) = tanh(u(t)) + tanh

(∫ t

0

(t− s)
1
2

Γ( 3
2 )

sinh u(s)ds

)
, (14)

u(0) = 1.

Now if we apply the Theorem 3, we will get λ = 1, c = 1, g(t, u) = sinh u and f (t, u, v) =

tanh u + tanh v. Obviously, the functions f and g are continuous on J ×R, and f achieves (A1) with
M f = 2. Furthermore, g(t, u) is increasing in u for any t in J, and f (t, u, v) is increasing in u and v
for any t in J, thus conditions (A2) and (A3) are achieved. Finally, the HTNFIDE (14) has a lower
solution z defined by

z(t) = 2
Γ( 3

2 )

(
e
−t

1
2

Γ( 3
2 ) − 1

)
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on J. Hence, all the assumption of Theorem 1 are achieved, and thus HTNFIDE (14) has a solution u∗

introduced on J, and the sequence {un}, introduced by

u1(t) = y(t),

un+1(t) = e−
tα
α! + e−

tα
α!

∫ t

0

(t− s)
1
2

Γ(
3
2 )

e
sα

α! tanh un(s)ds

+e−
tα
α!

∫ t

0

(t− s)
1
2

Γ( 3
2 )

e
sα

α! tanh

(∫ s

0

(s− ξ)
1
2

Γ( 3
2 )

sinh un(ξ)dξ

)
ds

for all t ∈ J and where Γ( 3
2 ) =

3
√

π
2 , converges monotonically to u∗.

3.2. Uniqueness Theorem

In this section, we investigate a uniqueness theorem for the HTNFIDE (4) by using the weaker
partially Lipschitz condition.

Theorem 4. A suppose that conditions (A4)− (A6) achieve. Then the HTNFIDE (4) contain of an unique
solution u∗ introduced on J, and the sequence {un} of successive approximations introduced by the Equation (7)
converges monotonically to u∗.

Proof. Set E = C(J,R). Obviously, E is a lattice with respect to the order relation � and thus upper
and lower bounds there is for all pair of elements in E. We introduce the operator T by (9). Then,
the HTNFIDE (4) is equivalent to the operator Equation (10). We must prove that T fulfills all the
conditions of Theorem 1.

Obviously, T is an increasing operator from E → E. We want to prove that the operator T is a
partially nonlinear D−contraction on E, thus let u, v ∈ E with u ≥ v. Then, by (A5) and (A6)

|Tu(t)− Tv(t)| ≤ |e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f
(

s, v(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, v(ξ))dξ

)
ds|

≤ e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! | f
(

s, u(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
− f
(

s, v(s),
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, v(ξ))dξ

)
|ds

≤ e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! (ξ1(u(s)− v(t))

+ξ2

(
c
∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ − g(ξ, v(ξ))

)
dξ

)
ds

≤ e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
e
−λ
α! (t

α−sα) (ξ1(u(s)− v(s))

+ξ2

∫ s

t0

(s− ξ)α−1

Γ(α)
L(u(ξ)− v(ξ))dξ

)
ds

≤ 1
Γ(α)

∫ t

t0

(t− s)α−1e
−λ
α! (tα − sα)

(
ξ1(‖u− v‖) + ξ2

bα

Γ(α + 1)
La‖u− v‖

)
ds

≤ ξ‖u− v‖ (15)
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for every t ∈ J, where ξ(r) = aα

Γ(α+1)

(
ξ1(r) + ξ2(Lar)

)
< r, r > 0.

Taking the supremum over t, we get

‖Tu− Tv‖≤ ξ(‖u− v‖)

for every u, v ∈ E, with u ≥ v. Consequently, T is a partially nonlinear D−contraction in E. In addition,
as in the proof of Theorem 3, we can show that the function z given in condition (A4) achieves the
inequality of the operator z ≤ Tz in J. Now, we apply direction of Theorem 1 gives that the HTNFIDE
(4) has a unique solution u∗, and the sequence {un} of successive approximations introduced by
Equation (9) converges monotonically to u∗.

Remark 3. The inference of Theorem 4, also still true if we substitute condition (A4) with (B4).

Example 2. Consider J = [0, 1] closed and bounded interval, then the HFIDE

(D
3
2 u)(t) + x(t) =

1
2

(
tan−1 u(t) + tan−1

∫ t

t0

(t− s)
1
2

Γ( 3
2 )

g(s, u(s))ds

)
(16)

u(0) = 1

where g : J ×R→ R is a function introduced by

g(t, u) =

{
1, if u ≤ 0

1 + u
1+u , if u > 0.

Hence, λ = 1, c = 1, f (t, u, v) = 1
2
(
tan−1 u + tan−1 v

)
. Obviously, the functions f and g are

continuous on J ×R×R and J ×R, consecutively. The function f achieves (A1) with M f =
π
2 and it

is easy to prove that g achieves (A5) with L = 1. Further, f (t, u, v) is increasing in u and v for any t in J.
To prove that f fulfills (A6) on J ×R×R, let u1, u2, v1, v2 ∈ R be such that u1 ≥ v1 and u2 ≥ v2. Then,

0 ≤ f (t, u1, u2)− f (t, v1, v2) ≤
1
2

(
tan−1 u1 − tan−1 v1 + tan−1 u2 − tan−1 v2

)
≤ 1

2
u1 − v1

1 + η2
1
+

1
2

u2 − v2

1 + η2
2

≤ ξ1(u1 − v1) + ξ2(u2 − v2)

for all t ∈ J and for some u1 > η1 > v1 and u2 > η2 > v2, where ξ1 and ξ2 are D−functions
introduced by

ξ1(r) =
r

1 + η2
1

, and ξ2(r) =
r

1 + η2
2

for 0 < η1, η2 < r. Furthermore,

1
2

aα

Γ(α + 1)
(ξ1(r) + ξ2(ar)) =

r
1 + η2 < r

where η = min{η1, η2}.

At the end, the HTNFIDE (4) has a lower solution z(t) =
2

Γ( 3
2 )

(
e
−t

1
2

Γ( 3
2 ) − 1

)
introduced on J. Thus,

all the supposition of Theorem 4 are fulfilled and thus we conclude that the HTNFIDE (16) has a
unique solution u∗ introduced on J. Moreover, the sequence {un}, introduced by



Mathematics 2020, 8, 984 11 of 14

u0(t) = z(t),

xn+1(t) = e−
tα
α! +

1
2

e−
tα
α!

∫ t

0

(t− s)α−1

Γ(α)
e

sα

α! tan−1 un(s)ds

+
1
2

e−
tα
α!

∫ t

0

(t− s)α−1

Γ(α)
e

sα

α! tan−1
(∫ s

0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds (17)

for every t in J, converges monotonically to u∗.

4. The First Type Linear Perturbations

At times, it is conceivable that the non-linearity of those involved in HTNFIDE (1) does
not fulfill either the supposition of Theorem 3 or the supposition of Theorem 4. In spite of,
from incising the functions f1 and f2 of f in the form f = f1 + f2 fulfill the conditions of
Theorems (3 and 4). Consecutively. in Dhage’s terminology [3], the resulting equation is said to
be the hybrid integro-differential equation with the first type linear disturbance. The objective of this
section is to get an existence result for such an equation.

Given above notations in the sections, we consider the nonlinear hybrid HTNFIDE

Dαu(t) + λu(t) = f1

(
t, u(t),

∫ t

t0

(t− s)α−1

Γ(α)
g(s, u(s))

)
ds

+ f2

(
t, u(t),

∫ t

t0

(t− s)α−1

Γ(α)
g(s, u(s))ds

)
u(t0) = B0, (18)

for every t in J, where f1, f2 : J ×R×R→ R and g : J ×R→ R are continuous functions.
From a solution of the HTNFIDE (18), we denote a function u ∈ C1(J,R) that fulfills equation (18),

where C1(J,R) is the habitual space of continuously differentiable real-valued functions introduced on
on J.

The HTNFIDE (18) is called the hybrid fractional integro-differential equation with a the first
type linear perturbation [18,22].

The HTNFIDE (18) is well recognized in the literature and discussed of the existence and other
properties. herein, we prove that existence of solutions by using partially compactness type conditions
and the mixed partially Lipschitz.

Theorem 5. Assume that (A1)–(A3) fulfilled with f and replaced by f2, and further let (A1), (A5), and (A6)

fulfilled with f and replaced by f1. If (A7) satisfied, then the HTNFIDE (18) has a solution u∗ introduced on J
and the sequence {un} of successive approximations, introduced by

u1(t) = z(t),

un+1(t) = ce−λ tα
α!

+e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f1

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

+e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f2

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds, (19)

for t ∈ J, converges monotonically to u∗.
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Proof. Set E = C(J,R). Then, from Lemma 2 it follows that each compact chain C in E has the property
of compatibility with respect to the order relation � and the norm ‖.‖ in E.

According to Lemma 2, the HTNFIDE (18) is equivalent to the nonlinear integral equation

u(t) = ce−λ tα
α! + e−λ tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f1

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds,

+e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f2

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds, t ∈ J. (20)

Set E = C(J,R) and introduce the operators A and B on E by

Au(t) = e−λ tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f1

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds (21)

and

Bu(t) = ce−λ tα
α! + e−λ tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ sα

α! f2

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds. (22)

Obviously, A, B : E→ E. In addition, HTNFIDE (18) is equivalent to the operator equation

Au(t) + Bu(t) = u(t), t ∈ J. (23)

Following similar arguments to those used in the proofs of Theorems 3 and 4, we can show that
operator A is a nonlinear Dcontraction and partially bounded and B is a partially compact operator and
partially continuous in E. From the direct application of Theorem 2 gives that the operator equation
u ≤ Au + Bu has a solution u∗. Thus, HTNFIDE (18) has a sequence {un}∞

n=1, and the solution u∗

introduced by (19) monotonic converges to u∗. This completes the proof.

The inference of Theorem 5 residues true if we substitute (A7) with (B7). The HTNFIDE (18) has
a upper solution y ∈ C1(J,R).

Example 3. On the interval J = [0, 1] we consider the HTNFIDE,

D
1
2 u(t) + u(t) = tan−1 u(t) + tanh

( ∫ t

0

(t− s)
−1
2

Γ( 1
2 )

sinh u(s)ds
)

, (24)

u(0) = 1.

If we apply the Theorem 5, we will get λ = 1, c = 1, f1(t, u, v) = tan−1 u, f2(t, u, v) = tanh v
and g(t, v) = sinh v. Therefore the function f1 fulfills (A1) with M f1 = π

2 and also fulfills (A6) with
ξ1(r) = r

1+ξ2 , 0 < ξ < r and ξ2(r) = 0. Now f2 fulfills (A1) with M f2 = 1 and it is increasing in v,

thus (A2) fulfills. Likewise, g fulfills (A3). In the end, z(t) = 3(e−t − 1), for every t ∈ J, is a lower
solution of the HTNFIDE (24) on J, and thus (A7) is fulfilled. Next, by Theorem 5, the HTNFIDE
(24) possesses a solution u∗ on J, and the sequence {un}∞

n=1, introduced by

u1(t) = 3(e−t − 1),

un+1(t) = e−
tα
α! + e−

tα
α!

∫ t

t0

(t− s)α−1

Γ(α)
e

sα

α! tan−1 un(s)ds

+e−
tα
α!

∫ t

0

(t− s)α−1

Γ(α)
e

sα

α! tanh
(∫ s

0
sinh un(ξ)dξ

)
ds, (25)

for t ∈ J, converges monotonically to x∗.
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5. Conclusions

From our above study, we observe that if the HTNFIDE ((1) or (18)) have an upper y solution,
then a lower solution z such that y ≥ z, follows the congruous solutions u∗ and u∗ of the HTNFIDE
((1) or (18)) that fulfills u∗ ≤ u∗, and these are the maximum and minimum solutions in a vector
segment [z, y] of the Banach space E = C(J,R). In fact, the order relation � introduced by Equation (5)
is equivalent to the order relation introduced by

K = {u ∈ C(J,R) | u(t) ≥ 0, for every t ∈ J}

which is a closed set in C(J,R). We also observe that the Dhage iteration method is a useful tool
for proving existence results for certain nonlinear hybrid fractional integro-differential equations.
The HTNFIDE is considered here, for which we have illustrated the Dhage iteration method to
obtain algorithms for the solutions under weaker partially Lipschitz and compactness conditions,
is of fairly simple nature. An analogous study could also be made for more complicated fractional
integro-differential equations on using a similar approach with appropriate modifications. However,
we left the study along this direction to future work.
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