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Abstract: In regression analysis, oftentimes a linear (or linearized) Gauss-Markov Model (GMM) is
used to describe the relationship between certain unknown parameters and measurements taken
to learn about them. As soon as there are more than enough data collected to determine a unique
solution for the parameters, an estimation technique needs to be applied such as ‘Least-Squares
adjustment’, for instance, which turns out to be optimal under a wide range of criteria. In this context,
the matrix connecting the parameters with the observations is considered fully known, and the
parameter vector is considered fully unknown. This, however, is not always the reality. Therefore,
two modifications of the GMM have been considered, in particular. First, ‘stochastic prior information’
(p. i.) was added on the parameters, thereby creating the – still linear – Random Effects Model
(REM) where the optimal determination of the parameters (random effects) is based on ‘Least Squares
collocation’, showing higher precision as long as the p. i. was adequate (Wallace test). Secondly, the
coefficient matrix was allowed to contain observed elements, thus leading to the – now nonlinear –
Errors-In-Variables (EIV) Model. If not using iterative linearization, the optimal estimates for the
parameters would be obtained by ‘Total Least Squares adjustment’ and with generally lower, but
perhaps more realistic precision. Here the two concepts are combined, thus leading to the (nonlinear)
’EIV-Model with p. i.’, where an optimal estimation (resp. prediction) technique is developed under
the name of ‘Total Least-Squares collocation’. At this stage, however, the covariance matrix of the
data matrix – in vector form – is still being assumed to show a Kronecker product structure.

Keywords: Errors-In-Variables Model; Total Least-Squares; prior information; collocation vs.
adjustment

1. Introduction

Over the last 50 years or so, the (linearized) Gauss-Markov Model (GMM) as standard model for
the estimation of parameters from collected observation [1,2] has been refined in a number of ways.
Two of these will be considered in more detail, namely

• the GMM after strengthening the parameters through the introduction of “stochastic prior
information”. The relevant model will be the “Random Effects Model (REM)”, and the resulting
estimation technique has become known as “least-squares collocation” [3,4].

• the GMM after weakening the coefficient matrix through the replacement of fixed entries by
observed data, resulting in the (nonlinear) Errors-In-Variables (EIV) Model. When nonlinear
normal equations are formed and subsequently solved by iteration, the resulting estimation
technique has been termed “Total Least-Squares (TLS) estimation” [5–7]. The alternative approach,
based on iteratively linearizing the EIV-Model, will lead to identical estimates of the parameters [8].
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After a compact review and comparison of several key formulas (parameter estimates, residuals,
variance component estimate, etc.) within the above three models, a new model will be introduced that
allows the strengthening of the parameters and the weakening of the coefficient matrix at the same
time. The corresponding estimation technique will be called “TLS collocation” and follows essentially
the outline that had first been presented by this author in June 2009 at the Intl. Workshop on Matrices
and Statistics in Smolenice Castle (Slovakia); cf. Schaffrin [9].

Since then, further computational progress has been made, e.g. Snow and Schaffrin [10]; but
several open questions remain that need to be addressed elsewhere. These include issues related to
a rigorous error propagation of the “TLS collocation” results; progress may be achieved here along
similar lines as in Snow and Schaffrin [11], but is beyond the scope of the present paper.

For a general overview of the participating models, the following diagram (Figure 1) may
be helpful.
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Figure 1. Model Diagram.

The most informative model defines the top position, and the least informative model is at the
bottom. The new model can be formed at the intermediate level (like the GMM), but belongs to the
“nonlinear world” where nonlinear normal equations need to be formed and subsequently solved
by iteration.

2. A Compact Review of the “Linear World”

2.1. The (linearized) Gauss-Markov Model (GMM)

Let the Gauss-Markov Model be defined by

y = A
n×m

ξ+ e , q := rk A ≤ min {m, n} , e ∼ (0, σ2
0In) , (1)

possibly after linearization and homogeneization; cf. Koch [2], or Grafarend and Schaffrin [12] among
many others.

Here, y denotes the n× 1 vector of (incremental) observations,

A the n×m matrix of coefficients (given),
ξ the m× 1 vector of (incremental) parameters (unknown),
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e the n × 1 vector of random errors (unknown) with expectation E{e} = 0 while the dispersion
matrix D{e} = σ2

0In is split into the (unknown) factor

σ2
0 as variance component (unit-free) and

In as (homogeneized) n × n symmetric and positive-definite “cofactor matrix” whose inverse is
better known as “weight matrix” P; here P = In for the sake of simplicity.

Now, it is well known that the Least-Squares Solution (LESS) is based on the principle

eTe = min s.t. e = y−A ξ (2)

which leads to the “normal equations”

N ξ̂ = c for [N, c] := AT[A, y]. (3)

Depending on rk N, the rank of the matrix N, the LESS may turn out uniquely as

ξ̂LESS = N−1c iff rk N = rk A = q = m; (4)

or it may belong to a solution (hyper)space that can be characterized by certain generalized inverses of N,
namely

ξ̂LESS ∈
{
N−c

∣∣∣N N−N = N
}
=

=
{
N−rsc

∣∣∣∣N N−rsN = N , N−rsN N−rs = N−rs = (N−rs)
T
}

;
(5)

where N−rs denotes an arbitrary reflexive symmetric g-inverse of N (including the “pseudo-inverse” N+),

iff rk N = rk A = q < m. (6)

In the latter case (6), any LESS will be biased with

bias (ξ̂LESS) = E
{
ξ̂LESS − ξ

}
∈

{
−(Im −N−N) ξ

}
=

{
−(Im −N−rsN) ξ

}
, (7)

its dispersion matrix will be

D
{
ξ̂LESS

}
= σ2

0N−N(N−)T
∈

{
σ2

0N−rs

∣∣∣∣N N−rsN = N, N−rsN N−rs = N−rs = (N−rs)
T}, (8)

and its Mean Squared Error (MSE) matrix, therefore,

MSE
{
ξ̂LESS

}
∈

{
σ2

0[N
−
rs + (Im − N−rsN)(ξ σ−2

0 ξT)(Im −N−rsN)
T
]
}
. (9)

In contrast to the choice of LESS in case (6), the residual vector will be unique; for any ξ̂LESS:

ẽLESS = y−A ξ̂LESS ∼ (0, σ2
0(In −A N−rsA

T) = D
{
y
}
−D

{
A ξ̂LESS

}
). (10)

Hence, the optimal variance component estimate will also be unique:

σ̂2
0 = (n− q)−1ẽT

LESS · ẽLESS = (n− q)−1(yTy− cTξ̂LESS), (11)

E
{
σ̂2

0

}
= σ2

0 , D
{
σ̂2

0

}
≈ 2(σ2

0)
2
/(n− q) under quasi-normality. (12)

For the corresponding formulas in the full-rank case (4), the reflexive symmetric g-inverse N−rs
simply needs to be replaced by the regular inverse N−1, thereby showing that the LESS turns into an
unbiased estimate of ξ while its MSE-matrix coincides with its dispersion matrix (accuracy precision).
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2.2. The Random Effects Model (REM)

Now, additional prior information (p. i.) is introduced to strengthen the parameter vector within
the GMM (1). Based on Harville’s [13] notation of a m× 1 vector 0

∼
of so-called “pseudo-observations”,

the new m× 1 vector

x := ξ− 0
∼

of “random effects” (unknown) is formed with (13)

E{x} = β0 as given m× 1 vector of p. i. and (14)

D{x} = σ2
0Q0 as n× n positive-(semi)definite dispersion matrix of the p. i. (15)

Consequently, the Random Effects Model (REM) can be stated as

y
∼

:= y−A · 0
∼
= A

n×m
x + e , q := rk A ≤ min{m, n} , β0

m×1
:= x + e0, (16)

[
e
e0

]
∼ (

[
0
0

]
, σ2

0

[
In 0
0 Q0

]
) , Q0

m×m
symmetric and nnd (non-negative definite ). (17)

If P0 := Q−1
0 exists, the estimation/prediction of x may now be based on the principle

eTe + eT
0 P0 e0 = min s.t. e = y

∼

−Ax , e0 = β0 − x, (18)

which leads to the “normal equations” for the “Least-Squares Collocation (LSC)” solution

(N + P0) · x̃ = c
∼
+ P0 · β0 (19)

which is unique even in the rank-deficient case (6).
If Q0 is singular, but e0 ∈ <(Q0) with probability 1, then there must exist an m× 1 vector ν0 with

Q0 ν
0 = −e0 = x− β0 with probability 1 (a.s.

USV Symbol Macro(s) Description
2220 ∠ \textangle ANGLE

2221 ∡ \textmeasuredangle MEASURED ANGLE

2222 ∢ \textsphericalangle SPHERICAL ANGLE

2223 ∣ \textmid DIVIDES

2224 ∤ \textnmid DOES NOT DIVIDE

2225 ∥ \textparallel PARALLEL TO

2226 ∦ \textnparallel NOT PARALLEL TO

2227 ∧ \textwedge LOGICAL AND

2228 ∨ \textvee LOGICAL OR

2229 ∩ \textcap INTERSECTION

222A ∪ \textcup UNION

222B ∫ \textint INTEGRAL

222C ∬ \textiint DOUBLE INTEGRAL

222D ∭ \textiiint TRIPLE INTEGRAL

222E ∮ \textoint CONTOUR INTEGRAL

222F ∯ \textoiint SURFACE INTEGRAL

2232 ∲ \textointclockwise CLOCKWISE CONTOUR INTEGRAL

2233 ∳ \textointctrclockwise ANTICLOCKWISE CONTOUR INTEGRAL

2234 ∴ \texttherefore THEREFORE

2235 ∵ \textbecause BECAUSE

2236 ∶ \textvdotdot RATIO

2237 ∷ \textsquaredots PROPORTION

2238 ∸ \textdotminus DOT MINUS

2239 ∹ \texteqcolon EXCESS

223C ∼ \textsim TILDE OPERATOR

223D ∽ \textbacksim REVERSED TILDE

2240 ≀ \textwr WREATH PRODUCT

2241 ≁ \textnsim NOT TILDE

2242 ≂ \texteqsim MINUS TILDE

2243 ≃ \textsimeq ASYMPTOTICALLY EQUAL TO

2244 ≄ \textnsimeq NOT ASYMPTOTICALLY EQUAL TO

2245 ≅ \textcong APPROXIMATELY EQUAL TO

2247 ≇ \textncong NEITHER APPROXIMATELY NOR ACTUALLY EQUAL TO

2248 ≈ \textapprox ALMOST EQUAL TO

2249 ≉ \textnapprox NOT ALMOST EQUAL TO

224A ≊ \textapproxeq ALMOST EQUAL OR EQUAL TO

224B ≋ \texttriplesim TRIPLE TILDE

224C ≌ \textbackcong ALL EQUAL TO

224D ≍ \textasymp EQUIVALENT TO

224E ≎ \textBumpeq GEOMETRICALLY EQUIVALENT TO

224F ≏ \textbumpeq DIFFERENCE BETWEEN

2250 ≐ \textdoteq APPROACHES THE LIMIT

2251 ≑ \textdoteqdot GEOMETRICALLY EQUAL TO

2252 ≒ \textfallingdoteq APPROXIMATELY EQUAL TO OR THE IMAGE OF

2253 ≓ \textrisingdoteq IMAGE OF OR APPROXIMATELY EQUAL TO

2254 ≔ \textcolonequals COLON EQUALS

2255 ≕ \textequalscolon EQUALS COLON

2256 ≖ \texteqcirc RING IN EQUAL TO

2257 ≗ \textcirceq RING EQUAL TO

2259 ≙ \texthateq ESTIMATES

225C ≜ \texttriangleeq DELTA EQUAL TO

2260 ≠ \textneq
\textne

NOT EQUAL TO

2261 ≡ \textequiv IDENTICAL TO

2262 ≢ \textnequiv NOT IDENTICAL TO

39

almost surely). (20)

Thus, the principle (18) may be equivalently replaced by

eTe + (ν0)
T

Q0 ν
0 = min s.t. e = y

∼

−Ax and (20), (21)

which generates the LSC solution uniquely from the “modified normal equations”

(Im + Q0N) · x̃LSC = β0 + Q0c
∼

for c
∼

:= ATy
∼

(22)

or, alternatively, via the “update formula”

x̃LSC = β0 + Q0 (Im + NQ0)
−1(c
∼
−Nβ0) (23)

which exhibits the “weak (local) unbiasedness” of x̃LSC via

E{x̃LSC} = β0 + Q0 (Im + NQ0)
−1(E

{
c
∼

}
−Nβ0) = β0 + 0 = E{x}. (24)

Consequently, the MSE-matrix of x̃LSC can be obtained from

MSE {x̃LSC} = D {x̃LSC − x} = σ2
0Q0 (Im + NQ0)

−1 = (25)
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= σ2
0 (N + P0)

−1 if P0 := Q−1
0 exists, (26)

whereas the dispersion matrix of x̃LSC itself is of no relevance here. It holds:

D{x̃LSC} = D {x} −D {x− x̃LSC} = σ2
0Q0 − σ

2
0Q0(Im + NQ0)

−1. (27)

Again, both residual vectors are uniquely determined from

(ẽ0)LSC = β0 − x̃LSC = −Q0 ν̂
0
LSC for (28)

ν̂0
LSC := (Im + NQ0)

−1(c
∼
−Nβ0), and (29)

ẽLSC = y
∼

−A x̃LSC = [Im −A Q0(Im + NQ0)
−1AT] (y

∼

−Aβ0) (30)

with the control formula
ATẽLSC = ν̂0

LSC . (31)

An optimal estimate of the variance component may now be obtained from

(σ̂2
0)LSC = n−1

· (ẽT
LSC · ẽLSC + (ν̂0

LSC)
TQ0 ν̂0

LSC) =

= n−1
· (y
∼

Ty
∼

− c
∼

Tx̃LSC − β
T
0 ν̂

0
LSC) . (32)

3. An Extension into the “Nonlinear World”

3.1. The Errors-In-Variables (EIV) Model

In this scenario, the Gauss-Markov Model (GMM) is further weakened by allowing some or all
of the entries in the coefficient matrix A to be observed. So, after introducing a corresponding n×m
matrix of unknown random errors EA, the original GMM (1) turns into the EIV-Model

y = (A− EA)︸    ︷︷    ︸
n×m

· ξ+ e , q := rk A = m < n , e ∼ (0, σ2
0In) , (33)

with the vectorized form of EA being characterized through

eA
nm×1

:= vec EA ∼ (0, σ2
0(Im ⊗ In) = σ2

0Imn) , C{e, eA} = 0 (assumed). (34)

Here, the vec operation transform a matrix into a vector by stacking all columns underneath each
other while ⊗ denotes the Kronecker-Zehfuss product of matrices, defined by

G
p×q
⊗ H

r×s
= [gi j ·H]pr×qs if G = [gi j]. (35)

In particular, the following key formula holds true:

vec (A B CT) = (C⊗A) · vec B (36)

for matrices of suitable size. Note that, in (34), the choice QA := Imn is a very special one. In general,
QA may turn out singular whenever some parts of the matrix A remain unobserved (i.e., nonrandom).

In any case, thanks to the term
EA · ξ = (ξT

⊗ In) eA, (37)

the model (33) needs to be treated in the “nonlinear world” even though the vector ξ may contain only
incremental parameters. From now on, A is assumed to have full column rank, rk A =: q = m.
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Following Schaffrin and Wieser [7], for instance, the “Total-Least Squares Solution (TLSS)” can be
based on the principle

eTe + eT
AeA = min s.t. (33-34), (38)

and the Lagrange function

Φ (e, eA, ξ,λ) : = eTe + eT
AeA + 2λT(y−A ξ− e + EAξ) =

= eTe + eT
AeA + 2λT[y−A ξ− e + (ξT

⊗ In) eA]
(39)

which needs to be made stationary. The necessary Euler-Lagrange conditions then read:

1
2
∂ Φ
∂ e

= ẽ− λ̂ � 0 ⇒ λ̂ = ẽ (40)

1
2
∂ Φ
∂ eA

= ẽA + (ξ̂TLS ⊗ In) λ̂ � 0 ⇒ ẼA = −λ̂ ξ̂T
TLS (41)

1
2
∂ Φ
∂ ξ

= −(A− ẼA)
T
λ̂ � 0 ⇒ ATλ̂ = ẼT

Aλ̂ = −ξ̂TLS · (λ̂
Tλ̂) (42)

1
2
∂ Φ
∂ λ

= y−A ξ̂TLS − ẽ + ẼA ξ̂TLS � 0 ⇒ y−A ξ̂TLS = λ̂ (1 + ξ̂T
TLS ξ̂TLS) (43)

⇒ c−Nξ̂TLS := AT(y−A ξ̂TLS) = ATλ̂ (1 + ξ̂T
TLS ξ̂TLS) = −ξ̂TLS · ν̂TLS (44)

for
ν̂TLS := (λ̂Tλ̂) · (1 + ξ̂T

TLS ξ̂TLS) = λ̂T(y−A ξ̂TLS) = (45)

= (1 + ξ̂T
TLS ξ̂TLS)

−1
· (y−A ξ̂TLS)

T
(y−A ξ̂TLS) = (46)

= (1 + ξ̂T
TLS ξ̂TLS)

−1
[yT(y−A ξ̂TLS) − ξ̂

T
TLS (c−N ξ̂TLS)] ≥ 0 (47)

⇒ (1 + ξ̂T
TLS ξ̂TLS) · ν̂TLS = yTy− cTξ̂TLS + (ξ̂T

TLS ξ̂TLS) · ν̂TLS

⇒ ν̂TLS = yTy− cTξ̂TLS (48)

which needs to be solved in connection with the “modified normal equations” from (44), namely

(N − ν̂TLSIm) ξ̂TLS = c . (49)

Due to the nonlinear nature of ξ̂TLS, it is not so easy to determine if it is an unbiased estimate, or
how its MSE-matrix may exactly look like. First attempts of a rigorous error propagation have recently
been undertaken by Amiri-Simkooei et al. [14] and by Schaffrin and Snow [15], but are beyond the
scope of this paper.

Instead, both the optimal residual vector ẽTLS and the optimal residual matrix (ẼA)TLS are readily
available through (40) and (43) as

ẽTLS = λ̂ = (y−A ξ̂TLS) · (1 + ξ̂T
TLS ξ̂TLS)

−1
, (50)

and through (41) as

(ẼA)TLS = −ẽTLS · ξ̂
T
TLS = −(y−A ξ̂TLS) · (1 + ξ̂T

TLS ξ̂TLS)
−1
· ξ̂TLS. (51)

As optimal variance component estimate, it is now proposed to use the formula

(σ̂2
0)TLS = (n−m)−1

· [ ẽT
TLS ẽTLS + (ẽA)

T
TLS (ẽA)TLS] =
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= (n−m)−1
· λ̂Tλ̂(1 + ξ̂T

TLS ξ̂TLS) = ν̂TLS/(n−m), (52)

in analogy to the previous estimates (11) and (32).

3.2. A New Model: The EIV-Model with Random Effects (EIV-REM)

In the following, the above EIV-Model (33-34) is strengthened by introducing stochastic prior
information (p. i.) on the parameters which thereby change their character and become “random
effects” as in (13-15). The EIV-REM can, therefore, be stated as

y
∼

= (A− EA)︸    ︷︷    ︸
n×m

· x + e , q := rk A ≤ min{m, n} , β0 = x + e0 (given), (53)

with 
e

eA = vec EA
e0

 ∼ (


0
0
0

 , σ2
0


In 0 0
0 Imn 0
0 0 Q0

 ) , Q0 symmetric and nnd. (54)

The first set of formulas will be derived by assuming that the weight matrix P0 := Q−1
0 exists

uniquely for the p. i. Then, the “TLS collocation (TLSC)” may be based on the principle

eTe + eT
AeA + eT

0 P0 e0 = min s.t. (53-54), (55)

resp. on the Lagrange function

Φ (e, eA, e0,λ) := eTe + eT
AeA + eT

0 P0 e0 + 2λT[(y
∼

−A β0 − e + (βT
0 ⊗ In) eA + A e0 −EA e0︸ ︷︷ ︸

=−(eT
0⊗ In)·eA

] (56)

which needs to be made stationary. The necessary Euler-Lagrange conditions then read:

1
2
∂ Φ
∂ e

= ẽ− λ̂ � 0 ⇒ λ̂ = ẽ (57)

1
2
∂ Φ
∂ eA

= ẽA + [(β0 − ẽ0) ⊗ In] λ̂ � 0 ⇒ ẼA = −λ̂ · (β0 − ẽ0)
T =: −λ̂ · x̃T

TLSC (58)

1
2
∂ Φ
∂ e0

= P0 ẽ0 + (A− ẼA)
T
λ̂ � 0 ⇒ ATλ̂ = ẼT

Aλ̂− P0 ẽ0 ⇒ (59)

⇒ ATλ̂ = −x̃TLSC · (λ̂
Tλ̂) + ν̂0

TLSC for ν̂0
TLSC := −P0 ẽ0 = P0(β0 − x̃TLSC) (60)

1
2
∂ Φ
∂ λ

= y
∼

−A (β0 − ẽ0) − ẽ + ẼA (β0 − ẽ0) � 0 ⇒ y
∼

−A x̃TLSC = λ̂ (1 + x̃T
TLSC x̃TLSC) ⇒ (61)

⇒ λ̂ = (y
∼

−A x̃TLSC) · (1 + x̃T
TLSC x̃TLSC)

−1
. (62)

Combining (60) with (62) results in

(c
∼
−N x̃TLSC) · (1 + x̃T

TLSC x̃TLSC)
−1

= ATλ̂ = −x̃TLSC(1 + x̃T
TLSC x̃TLSC)

−2
(y
∼

−A x̃TLSC)
T(y
∼

−A x̃TLSC) + ν̂0
TLSC, (63)

and finally in

(N + (1 + x̃T
TLSC x̃TLSC)P0 − ν̂TLSCIm) x̃TLSC = c

∼
+ P0 β0 · (1 + x̃T

TLSC x̃TLSC) (64)
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where
ν̂TLSC := (1 + x̃T

TLSC)
x̃TLSC)

−1(y
∼

−Ax̃TLSC)
T(y
∼

−Ax̃TLSC), and

ν̂0
TLSC := −P0(β0 − x̃TLSC) = −P0ẽ0, provided that P0 exists.

(65)

In the more general case of a singular matrix Q0, an approach similar to (20) can be followed,
leading to the equation system

[(1 + x̃T
TLSC x̃TLSC) · Im + Q0N − ν̂TLSC ·Q0] x̃TLSC = β0 · (1 + x̃T

TLSC x̃TLSC) + Q0c
∼

(66)

that needs to be solved in connection with (65). Obviously,

x̃TLSC 7−→ β0 if Q0 7−→ 0, and
x̃TLSC 7−→ x̃TLS if P0 7−→ 0.

(67)

Again, it is still unclear if x̃TLSC represents an unbiased prediction of the vector x of random effects.
Also, very little (if anything) is known about the corresponding MSE-matrix of x̃TLSC. The answers to
these open problems will be left for a future contribution. It is, however, possible to find the respective
residual vectors/matrices represented as follows:

ẽTLSC = λ̂ = (y
∼

−A x̃TLSC) · (1 + x̃T
TLSC x̃TLSC)

−1
, (68)

(ẼA)TLSC = −λ̂ · x̃T
TLSC = −(y

∼

−A x̃TLSC) · (1 + x̃T
TLSC x̃TLSC)

−1
· x̃T

TLSC, (69)

(ẽ0)TLSC = −Q0 · ν̂
0
TLSC = β0 − x̃TLSC, (70)

while a suitable formula for the variance component is suggested as

(σ̂2
0)TLSC = n−1

· [ ν̂TLSC + (ν̂0
TLSC)

T
Q0 (ν̂

0
TLSC)]. (71)

4. Conclusions and Outlook

Key formulas have been developed successfully to optimally determine the parameters and
residuals within the new ‘EIV-Model with p. i.’ (or EIV-REM) which turns out to be more general than
the other three models considered here (GMM, REM, EIV-Model). In particular, it is quite obvious that

• EIV-REM becomes the REM if D{eA} := 0,
• EIV-REM becomes the EIV-Model if P0 := 0,
• EIV-REM becomes the GMM if both P0 := 0 and D{eA} := 0.

Hence the new EIV-REM can indeed serve as a universal representative of the whole class of
models presented here.

Therefore, in a follow-up paper, it is planned to also cover more general dispersion matrices for e
and eA in (54), similarly to the work by Schaffrin et al. [16] for the EIV-Model with singular dispersion
matrices for eA.
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