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Abstract: The main objective of this paper is to construct the various shapes and font designing of
curves and to describe the curvature by using parametric and geometric continuity constraints of
generalized hybrid trigonometric Bézier (GHT-Bézier) curves. The GHT-Bernstein basis functions
and Bézier curve with shape parameters are presented. The parametric and geometric continuity
constraints for GHT-Bézier curves are constructed. The curvature continuity provides a guarantee of
smoothness geometrically between curve segments. Furthermore, we present the curvature junction
of complex figures and also compare it with the curvature of the classical Bézier curve and some
other applications by using the proposed GHT-Bézier curves. This approach is one of the pivotal
parts of construction, which is basically due to the existence of continuity conditions and different
shape parameters that permit the curve to change easily and be more flexible without altering its
control points. Therefore, by adjusting the values of shape parameters, the curve still preserve its
characteristics and geometrical configuration. These modeling examples illustrate that our method
can be easily performed, and it can also provide us an alternative strong strategy for the modeling of
complex figures.

Keywords: generalized hybrid trigonometric basis functions; generalized hybrid trigonometric
Bézier curves; shape parameters; parametric and geometric continuity; curvature profile;
geometric modeling

1. Introduction

Mathematical modeling, construction of curves and surfaces, and shape preserving [1–6] are very
significant areas of research in computer-aided geometric design, computer-aided manufacturing,
and computer graphics. Traditional Bézier curves, which is formed by the classical Bernstein basis
functions and control points, have many excellent properties like symmetry, terminal properties,
partition of unity, non-negativity, linear precision, integral property, convex hull property, etc. We can
easily construct any shape by using parametric and geometric continuity constraints of the classical
Bézier curve, but its drawback is that we cannot modify and cannot make a small adjustment in the
shape of the curves design without changing the control points. To overcome this problem, we move
towards those basis functions that possess shape parameters that help us to make small modifications
in the shape of the curves according to our chosen values of the shape parameters. These shape
parameters do not affect the physical and geometrical configuration of the curves.
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In [7], Hering defined C2 and C3 continuous Bézier and B-spline curves with their tangent
polygons. He considered the planner segmented Bézier curves and B-spline curves to present their
parametric and geometric continuities. Yan [8] presented a particular family of Bézier curves with three
different shape parameters, which are also known as adjustable Bézier curves. Those curves have same
shape and structure like the traditional quartic Bézier curve. Schneider et al. [9] described the discrete
fairing of curves and surfaces, which is based on linear curvature distribution. In [10], geometric
and parametric continuities with arc length parametrization and smoothness were presented. Here,
the basic results of the geometric continuity of the curve were also discussed in a self-contained way.
Hu et al. [11] presented the modeling of free-form complex curves by using geometric continuities
of SG-Bézier (shape-adjustable generalized Bézier) curves and also presented their properties and
applications. In [12], Bashir et al., presented the C2 and G2 continuity conditions with their applications
by using the rational quadratic trigonometric Bézier curve. They also constructed a conic section-like
circle and ellipse by using this rational quadratic trigonometric Bézier curve. Usman et al. [13]
constructed a new trigonometric cubic Bézier-like curve for free-form complex curve modeling with
some applications in engineering. Qin et al., gave the parametric and geometric continuity conditions
of GE Bézier curves and also presented the geometric significance of shape parameters in [14].

In [15], BiBi et al. presented the modeling of symmetric curves and surfaces in the 2D and 3D
plane. They developed a new technique for the modeling of symmetric figures, which is very useful in
our daily life. Misro et al. [16] presented a new quintic trigonometric Bézier curve with two shape
parameters. Its parametric, as well as curvature continuity were also discussed in this work. In [17],
Veltkamp presented the survey of the parametric and geometric continuities of curves and surfaces and
also established the visibility of continuities and graphic algorithms. Hu et al., developed a method
for geometric continuity constraints and different modelings by using developable λ-Bézier surfaces
in [18]. In [19–21], the modeling of different curves and surfaces by using B-spline curves and Bézier
curves was presented. The techniques and algorithms were also discussed in these literature works.
Sharma et al. [22] developed the shapes and modeling of the cubic trigonometric Bézier curve with
two different shape parameters. In [23,24], the basis functions and their geometric and parametric
continuities were presented. Moreover, the various modelings by different curves and surfaces were
also presented here. Qin et al. [25] presented quartic trigonometric Bézier curves and also discussed
their properties and presented their practical applications in the CAD/CAM field. In this research, the
broad concept about geometric and solid modeling was also given. In [26], Han et al., presented the
cubic trigonometric Bézier curve with two different shape parameters and its properties, and they also
discussed the continuity constraints with the curve modeling. Hu et al., constructed the SG-Bézier
curve with multiple shape parameters, and various modelings of engineering surfaces like swung
surface, swept surface, rotation surface, etc., by the SG-Bézier basis were also discussed in [27]. In [28],
Reenu Sharma constructed the quartic trigonometric Bézier (QTB) curve with two different shape
parameters and discussed the properties of the QTB curve with shape modeling and the shape control
of the curves.

Bashir et al. [29] designed various curves by the class of quasi-trigonometric Bézier curves having
two shape parameters. Similarly, Yang et al. [30] also discussed the class of quasi-trigonometric
Bézier curves. In [31], the quadratic trigonometric spline curve with multiple shape parameters was
discussed, where each segment of the spline curve was obtained by four consecutive control points.
The necessary and sufficient conditions were derived in [32] for introducing the separate Bézier part
in order to represent some regular curves like the cycloid, etc. In [33], the rational Bézier model was
generated by mixing polynomial and trigonometric functions. The shape preserving properties were
also discussed in this work. Liang [34] introduced new Bernstein basis functions and Bézier curves
with their properties. Liu et al. [35] presented a class of generalized Bézier curves and surfaces with
multiple shape parameters. They also presented different modelings by using these Bézier curves and
surfaces. In [36], a new formulation by the class of polynomial basis functions was presented for the
construction of curves and surfaces. The properties of PHcurves in geometric modeling were presented
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in [37]. These PH curves could be computed at a speed similar to the polynomial curves. In [38],
Wang et al., described the three conditions for the analysis of the curvature distribution. They also
showed the significance of monotone curvature in CAGD/CAM. In [39], Yahya et al., presented the
automatic generation of Arabic characters and font designing by using G1 continuity conditions.
A Bézier curve with shape parameters was presented by Wang in [40]. Furthermore, its significance
and properties were also discussed in this work. In [41], Han et al., presented the shape analysis of
the cubic trigonometric Bézier curve with its shape parameters and also its geometric significance
and continuity conditions. Hu et al. [42] introduced Q-Bézier curves with their beneficial properties
and shape adjustment with its multi-valued shape parameters. Pelosi et al., presented geometric
Hermite interpolation depending on the orientation of the end tangents relative to the end point
displacement vector in [43]. The problem of assigning tangents to a sequence of points compatible with
a G1 piecewise-PH-cubic spline interpolating of those points was also briefly addressed. Least squares
approximation of Bézier coefficients with factored Hahn weights [44] provided the best constrained
polynomial degree reduction with respect to the Jacobi L2-norm. This result afforded generalizations
to many previous findings in the field of polynomial degree reduction. Various designs and models of
C2 algebraic-trigonometric Pythagorean hodograph splines with shape parameters were presented by
González et al. [45]. Here, the curvature profile of some algebraic-trigonometric Pythagoreans was
also presented.

This paper defines the curvature continuity of GHT-Bézier curves of order n, (n ≥ 2), which are
described by taking a set of hybrid trigonometric Bernstein basis functions of degree two with three
shape parameters, with identical characteristics to the classical Bernstein basis functions. In order to
resolve the problem of not being able to construct complex curves using a single curve, we study the
parametric and geometric continuity conditions for GHT-Bézier curves of degree n. Here, we join
the various GHT-Bézier curves of the same/different degrees to obtain our required shape. Finally,
the comparison of the curvature junction by GHT-Bézier curves and classical Bézier curves and some
applications by different complex modelings (by using continuity conditions) are also presented.

In this work, we make the following technical contributions:

• C3 continuity of the 2D GHT-Bézier curves.
• Gk (k ≤ 3) geometric continuity of the 2D GHT-Bézier curves.
• a set of algorithms explaining how to enforce these constraints in practice.

This paper is organized into eight sections: In Section 2, the basic preliminaries and notations
about the curvature, derivative of curvature, GHT-Bernstein basis functions, and the GHT-Bézier curve
with its properties are discussed. In Section 3, the geometric significance of shape parameters and the
relationship between the fixed point and GHT-Bézier curve are described. Similarly, the parametric
and geometric continuity of GHT-Bézier curves with their mathematical and graphical results are given
in Section 4. The comparison of the curvature junction of the GHT-Bézier curve and classical Bézier
curve by G2 and G3 continuity with their valid results is presented in Sections 5 and 6, respectively.
Some applications of font designing and sketching by C3 and G3 continuity of GHT-Béezier curves are
given in Section 7. Finally, a summarized conclusion is given in Section 8.

2. Preliminaries and Notations

We usually consider the Cartesian coordinate system to draw any curve. That is why we consider
the control points in two tuples.

Similarly, boldface is used for points, as well as vectors. e.g.,

a =

(
ax

ay

)
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and the Euclidean norm of a vector a can be defined as ||a|| =
√

a2
x + a2

y, where a||b represents that

the vectors a and b are parallel. The derivative of a function f (θ) can be represented as f
′
(θ).

2.1. Curvature

In mathematics, curvature is a very strong concept of geometry. Basically, curvature is the amount
by which any curve deviates about its position from being a straight line. For any parametric curve
S(θ), the curvature with its mathematical expression can be written as follows,

κ(θ) =
S
′
(θ)× S

′′
(θ)

||S′(θ)||3 . (1)

For any two-dimensional curve, its parametric equation can also be written as follows:

κ(θ) =
x
′
y
′′ − y

′
x
′′

[(x′)2 + (y′)2]
3
2

. (2)

In brief, the rate of change of curvature κ(θ) is defined by taking the first derivative of Equation (1),
and we have:

κ
′
(θ) =

||S′(θ)||2{S′(θ)× S
′′′
(θ)} − 3{S′(θ)× S

′′
(θ)}{S′(θ).S′′(θ)}

||S′(θ)||5 (3)

where ||S′(θ)|| is the magnitude of the tangent vector. Therefore, for any curvature, the radius of
curvature is its reciprocal. By taking the first derivative of Equation (2), we obtain:

κ
′
(θ) =

(x
′2 + y

′2)(x
′
y
′′′ − y

′
x
′′′
)− 3(x

′
y
′′ − y

′
x
′′
)(x

′
x
′′
+ y

′
y
′′
)

((x′)2 + (y′)2)
5
2

(4)

2.2. GHT-Bernstein Basis Functions of Degree n

Definition 1. For any integer n, where n = 2, the quadratic hybrid trigonometric (QHT) Bernstein basis
functions in terms of variable θ ∈ [0, 1] are defined as follows,

q0,2(θ) = (1− sin(π
2 θ))(1− νsin(π

2 θ))eγθ

q1,2(θ) = 1− q0,2(θ)− q2,2(θ)

q2,2(θ) = (1− cos(π
2 θ))(1− βcos(π

2 θ))e(1−γ)θ .

For n ≥ 3, the function qi,n(θ) where (i = 0, 1, 2...., n), is recursively defined by:

qi,n(θ) = (1− θ)qi,n−1(θ) + θqi−1,n−1(θ) (5)

and is known as GHT-Bernstein basis functions as in [15]. Moreover, the function qi,n(θ) = 0 if and only if
i = −1 or i > n and ν, β, γ ∈ [−1, 1] are the shape parameters defined in the given domain.

Remark 1. It is noted that the expressions given in Definition 1 differ from the ones we introduced in our
earlier work [15] in that we explicitly removed the λ parameter (i.e., λ is set to zero in the current paper).
We found in our experiments that this parameter was not intuitive enough for the users to control, while
resulting in unnecessarily complex computations. As we prove in this work, we were able to derive sufficiently
high order derivative constraints (up to C3 and G3) while keeping this parameter set to zero. We advocate
therefore Definition 1 from now on.
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Figure 1 illustrates the graphs for GHT-Bernstein basis functions with different values of n and by
the alteration of shape parameters. The black (solid), blue (dashed), orange (dash + dotted), and green
(solid) lines were obtained by varying the values of shape parameters. These four figures also depict
that the GHT-Bernstein basis functions gives us the same graphical representation as the traditional
Bernstein basis functions. Therefore, they must possess all basic properties of traditional Bernstein
basis functions.

0.2 0.4 0.6 0.8 1.0
x - axis

0.2
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y - axis

(a) Quartic HT-Bernstein basis function

0.2 0.4 0.6 0.8 1.0
x - axis
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0.8

1.0
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(b) Quintic HT-Bernstein basis function

0.2 0.4 0.6 0.8 1.0
x - axis

0.2
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0.6

0.8
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y - axis

(c) Hexic HT-Bernstein basis function

0.2 0.4 0.6 0.8 1.0
x - axis

0.2

0.4

0.6

0.8

1.0

y - axis

(d) Nonic HT-Bernstein basis function

Figure 1. GHT-Bernstein basis functions of various degrees. (a) Quartic HT-Bernstein basis function;
(b) quintic HT-Bernstein basis function; (c) hexic HT-Bernstein basis function; (d) nonic HT-Bernstein
basis function.

Theorem 1. The GHT-Bernstein basis functions have the basic properties like symmetry, positivity, partition of
unity, and terminal properties.

1. Partition of unity: The GHT-Bernstein basis functions satisfy the partition of unity, i.e.,

n

∑
i=0

qi,n(θ) = 1.

2. Positivity: In the given domain of shape parameters ν, β, and γ, the GHT-Bernstein basis functions are
non-negative or qi,n(θ) ≥ 0 for i = 0, 1, 2, 3, ..., n.

3. Symmetry: For the fixed values of shape parameters ν = β = γ, the function qi,n(θ) where (i =

0, 1, 2, 3, ..., n) is symmetric, i.e.,

qi,n(θ, ν, β, γ) = qn−i,n(1− θ, ν, β, γ).
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4. End point interpolation property: For the shape parameters ν, β, γ and for given variable θ, the function
satisfies the end point interpolation properties as:

qi,n(0) = 1, i = 0

qi,n(0) = 0, i = 1, 2, 3, . . . , n

qn,n(1) = 1, i = n

qi,n(1) = 0, i = 0, 1, 2, 3, . . . , n− 1

(6)

and the first derivatives of these functions at their end points are:

q′i,n(0) =
1
2 [−π(1 + ν)− 2((n− 2)− γ)], i = 0

q′i,n(0) = (n− 2) + 1
2 π(1 + ν)− γ, i = 1

q′i,n(0) = 0, i = 2, 3, 4, . . . , n

q′i,n(1) = 0, i = 0, 1, 2, 3, . . . , n− 2

q′i,n(1) =
1
2 [−π(1 + β)− 2((n− 2) + γ)], i = n− 1

q′i,n(1) = (n− 2) + 1
2 π(1 + β)− γ, i = n.

(7)

Proof. The proof of the above results is as described in [15].

2.3. GHT-Bézier Curves of Degree n

Definition 2. A class of parametric GHT-Bézier curves with the given set of control points P∗i , where (i =
0, 1, 2, 3, ....., n) and shape parameters ν, β, and γ are defined in Equation (8):

{Πn,θ} : S(θ; ν, β, γ) =
n

∑
i=0

P∗i qi,n(θ), 0 ≤ θ ≤ 1. (8)

where qi,n(θ) are called GHT-Bernstein basis functions.

Consider a cubic HT-Bézier curve with the control points P∗0 = (0, 0), P∗1 = (2, 1), P∗2 = (3, 0),
and P∗3 = (5, 1) and shape parameters ν, β and γ.

Since, the GHT-Bézier curve possesses three different shape parameters, by varying these three
shape parameters, we can see the beautiful influence on the red, blue, green, and purple (thin) lines.
The black dots on these curves show the linearity of the curves. Hence, Figure 2 depicts the influence
of shape parameters on the GHT-Bézier curve.

Ν= -0.6

Ν=0.5
Ν= -0.1

Ν=0.95

1 2 3 4 5
x - axis

0.2

0.4

0.6

0.8

1.0
y - axes

(a) ν = (0.95, 0.5,−0.1,−0.6), γ = 1, β = 0

Ν= -0.5
Ν= 0

Ν=0.5Ν=1

1 2 3 4 5
x - axis

0.2

0.4

0.6

0.8

1.0
y - axis

(b) ν = (−0.5, 0, 0.5, 1), γ = 0.5, β = 0

Figure 2. Cont.



Mathematics 2020, 8, 967 7 of 30

Ν=Γ=0
Ν=Γ= -0.25
Ν=Γ= -0.65
Ν=Γ= -1

1 2 3 4 5
x - axis

0.2

0.4

0.6

0.8

1.0
y - axis

(c) γ = µ = (0,−0.25,−0.65,−1), β = 0

Γ= -1
Γ= -0.5
Γ=0.5
Γ=0

1 2 3 4 5
x - axis

0.2

0.4

0.6

0.8

1.0
y - axis

(d) γ = (0, 0.5,−0.5,−1), ν,= 1, β = 1

Figure 2. Cubic HT-Bézier curves with distinct shape parameters. (a) ν = (0.95, 0.5,−0.1,−0.6), γ =

1, β = 0; (b) ν = (−0.5, 0, 0.5, 1), γ = 0.5, β = 0; (c) γ = µ = (0,−0.25,−0.65,−1), β = 0; (d) γ =

(0, 0.5,−0.5,−1), ν,= 1, β = 1.

Theorem 2. GHT-Bézier curves possess the various properties like the convex hull property, symmetry,
shape adjustable property, and variation diminishing property.

Proof. The proof of these properties is as described in [15].

3. The Geometric Significance of Shape Parameters

3.1. Correlation between a Fixed Point on the Curves and Shape Parameters

By using the definition of GHT-Bernstein basis functions and GHT-Bézier curves, we know
that the cubic HT-Bézier curve S(θ; ν, β, γ) = ∑3

i=0 P∗i qi,n(θ) is a function having shape parameters.
Therefore, we have:

∂S(θ)
∂ν

= eγθ(1− sin(
π

2
θ))sin(

π

2
θ)((−1 + θ)P∗0 + (1− 2θ)P∗1 + θP∗2 )

∂S(θ)
∂β

= eγ(1−θ)(−1 + cos(
π

2
θ))cos(

π

2
θ)((−1 + θ)P∗1 + (1− 2θ)P∗2 + θP∗3 )

∂S(θ)
∂γ

=

{
e−γθ(−e2γθθ(1− sin(π

2 θ))(−1 + νsin(π
2 θ))((−1 + θ)P∗0 + (1− 2θ)P∗1 + θP∗2 )

+2eγ(−1 + θ)(−1 + βcos(π
2 θ))sin2(πθ

4 )((−1 + θ)P∗1 + (1− 2θ)P∗2 + θP∗3 )).

By concluding the above relationship, we can see that by changing the shape parameters, the fixed
point on the curves change linearly for an unmovable control polygon. Figure 2 depicts the graph on
which the black dots are given. These points corresponds to S(0.3) on the left-hand side and S(0.7) on
right-hand side. We can see that by changing the shape parameters, the points on these curves change
in a linear way.

3.2. Affiliation between GHT-Bézier Curves and Shape Parameters

It was already described that the above-mentioned properties of GHT-Bézier curves illustrate
that these remarkable curves can be attained according to our own desire by varying different shape
parameters in their domain. Therefore, the alteration of these shape parameters can afford us an
extraordinary beautification and attraction in the figures. Figure 3 shows the affiliation between the
shape parameters and GHT-Bézier curves. By considering the minimum value of shape parameters,
all the curves will be very close to the origin, but as we increase the values of these parameters,
the curves will move away from the origin and near to the control polygon. Since GHT-Bézier curves
have three distinct shape parameters, we can adjust and beautify the figures according to our own
choice. Figure 3 represents the beautification of multiple colored GHT-Bézier curves of various degrees
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having distinct shape parameters and the influence of these shape parameters, and the shape control of
the curves is also obvious in these figures. All these figures lie in the convex hull of the control polygon.

-1.0 -0.5 0.0 0.5 1.0

x - axis

-2

-1

1

2

y - axis

(a) ν = (1, 0.2,−1, 0.75), γ = (0.5, 0.5, 0, 0.5), β =
(0.8, 0.5,−0.8, 0.5)

-3 -2 -1 0 1
x - axis

-4

-2

0

2

4

y - axis

(b) ν = (1, 0.2,−1, 0.75), γ = (0.5, 0.5, 0, 0.5), β =
(1, 0.2,−1, 0.75)

-0.2 -0.1 0.0 0.1
x - axis

-2

-1

1

2

y - axis

(c) ν = (0.8, 0.2,−1, 0.75), γ = (0.5, 0.5, 0.3, 0.7), β =
(1, 0.3,−1, 0.75)

-2 -1 0 1

x - axis

-4

-2

0

2

4

y - axis

(d) ν = (1, 0.2,−1, 0.75), γ = (0.5, 0.5, 0, 0.5), β =
(1, 0.2,−1, 0.75)

Figure 3. Shape control of GHT-Bézier curves with distinct shape parameters. (a) ν =

(1, 0.2,−1, 0.75), γ = (0.5, 0.5, 0, 0.5), β = (0.8, 0.5,−0.8, 0.5); (b) ν = (1, 0.2,−1, 0.75), γ =

(0.5, 0.5, 0, 0.5), β = (1, 0.2,−1, 0.75); (c) ν = (0.8, 0.2,−1, 0.75), γ = (0.5, 0.5, 0.3, 0.7), β =

(1, 0.3,−1, 0.75); (d) ν = (1, 0.2,−1, 0.75), γ = (0.5, 0.5, 0, 0.5), β = (1, 0.2,−1, 0.75).

4. Continuity Constraints of GHT-Bézier Curves

In CAD/CAM systems, the construction of complex curves and figures is a very difficult process
by using the C2 and G2 continuity conditions of traditional Bézier curves. While the GHT-Bézier curve
has three different shape parameters, has great smoothness, and can be easily bent by adjusting the
shape parameters according to our choice, it helps us to construct various complex curves by using
parametric and geometric continuity constraints, which cannot be executed by classical Bézier curves.

Consider any two adjacent GHT-Bézier curves, which can be defined as:{
S1(θ; ν1, β1, γ1) = ∑n

i=0 P∗i qi,n(θ), 0 ≤ θ ≤ 1, n ≥ 3

S2(θ; ν2, β2, γ2) = ∑m
j=0 Q∗j qj,m(θ), 0 ≤ θ ≤ 1, m ≥ 3

(9)

where P∗i , (i = 0, 1, 2, 3, ....., n) and Q∗j , (j = 0, 1, 2, 3, ...., m) are the control points of these two
adjacent GHT-Bézier curves, qi,n(θ) and qj,m(θ) are GHT-Bernstein basis functions of degree n and m,
respectively, and ν1, β1, γ1 and ν2, β2, γ2 are the shape parameters of curves.

4.1. Parametric Continuity Constraints of GHT-Bézier Curves

Theorem 3. Given two GHT-Bézier curves S1(θ) = ∑n
i=0 P∗i qi,n(θ) and S2(θ) = ∑m

j=0 Q∗j qj,m(θ) of the same
degree, the necessary and sufficient conditions for parametric continuity at the joints are given as follows:
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1. For C0 continuity:
Q∗0 = P∗n (10)

2. For C1 continuity: Q∗0 = P∗n
Q∗1 = P∗n + (2n−4)+π(1+β1)−2γ1

(2n−4)+π(1+ν2)−2γ2 (P∗n − P∗n−1)
(11)

3. For the C2 continuity condition, we have:

Q∗0 = P∗n ,

Q∗1 = P∗n + (2n−4)+π(1+β1)−2γ1
(2n−4)+π(1+ν2)−2γ2

(P∗n − P∗n−1),

Q∗2 = [{−4(n− 2)(n− 3) + 8(n− 2)γ1 − 4(n− 2)(β1 + 1)π + eγ1 π2(ν1 − 1)}P∗n−2

−{4π(1 + β1)(γ1 − 4(n− 2))− 4(γ1(γ1 − 4(n− 2)) + 2(n− 2)(n− 3)) + π2(−2β1 + eγ1

(ν1 − 1))}P∗n−1 + {−4(n− 2)πβ1 − 2π2β1 + 8(n− 2)γ1 + 4πγ1 + 4πβ1γ1 − 4γ2
1 − 8(n− 2)γ2

−4πγ2 + 4γ2
2 + 4(n− 2)πν2 + 2π2ν2 − 4πγ2ν2}P∗n + 1

a ]b

where

a = (2(n− 2) + π − 2γ2 + πν2)[−4(2(n− 2)(n− 3) + (γ2 − 4(n− 2))γ2) + π2(eγ2(β2 − 1)

−2ν2) + 4π(γ2 − 2(n− 2))(1 + ν2)](−(2(n− 2) + π + πβ1 − 2γ1)P∗n−1 + (−2(−2(n− 2) + γ1

+γ2) + π(2 + β1 + ν2))P∗n )

and

b = 1
(8(n−2)γ2−4(n−2)(n−3)−4(n−2)π(1+ν2)+π2eγ2 (β2−1))

(12)

4. For C3 continuity conditions, we used C2 continuity constraints and also obtained a new fourth control
point Q∗3 in C3 continuity. Therefore, we have:



Q∗3 = −e−γ2
6π2(1−β2)

[−6eγ1 π2(−1 + ν1)P∗0 + 6(−2π2β1 + 4π(1 + β1)γ1 − 4γ2
1 + eγ1 π2(2 + γ1)(−1

+ν1))P∗1 − (π3(1 + β1) + 12π2β1(−2 + γ1)− 12π(1 + β1)(−4 + γ1)γ1 + 8(−6 + γ1)γ
2
1 + 6eγ1

π2(1 + γ1)(−1 + ν1))P∗2 + (2π3 − 12π2β1 + π3β1 + 24πγ1 + 24πβ1γ1 + 12π2β1γ1 − 24γ2
1

−12πγ2
1 − 12πβ1γ2

1 + 8γ3
1 + 24πγ2 − 24γ2

2 − 12πγ2
2 + 8γ3

2 − 12π2ν2 + π3ν2 + 24πγ2ν2+

12π2γ2ν2 − 12πγ2
2ν2)P∗3 − 1

η1
]

where

η1 = (2 + π +−2γ2 + πν2)[8γ2
2(−6 + γ2) + 6eγ2 π2(−1 + β2)(1 + γ2) + 12π2(−2 + γ2)ν2 + π3

(1 + ν2)− 12π(−4 + γ2)γ2(1 + ν2)](−(2 + π + πβ1 − 2γ1)P∗2 + (−2(−2 + γ1 + γ2) + π

(2 + β1 + ν2)))P∗3 + a
eγ2 π2(−1+β2)+8γ2−4π(1+ν2)

,

a = 6(−4γ2
2 + eγ2 π2(−1 + β2)(2 + γ2)− 2π2ν2 + 4πγ2(1 + ν2)){(−4π(1 + β1) + 8γ1 + eγ1 π2

(−1 + ν1))P∗1 − (4π(1 + β1)(−2 + γ1)− 4(−4 + γ1)γ1 + π2(−2β1 + eγ1(−1 + ν1)))P∗2 + (−4πβ1

−2π2β1 + 8γ1 + 4πγ1 + 4πβ1γ1 − 4γ2
1 − 8γ2 − 4πγ2 + 4γ2

2 + 4πν2 + 2π2ν2 − 4πγ2ν2)P∗3 + 1
b},

b = (2 + π − 2γ2 + πν2)(−4(−4 + γ2)γ2 + π2(eγ2(−1 + β2)− 2ν2) + 4π(−2 + γ2)(1 + ν2)){−(2
+π + πβ1 − 2γ1)P∗2 + (−2(−2 + γ1 + γ2) + π(2 + β1 + ν2))P∗3 }.

(13)

Proof. For the C0 continuity of GHT-Bézier curves, we keep both the first and second curves equal at
the final and initial point of the domain respectively as S1(1) = S2(0) to obtain the control point Q∗0 .

Similarly, for C1, C2, and C3 continuity conditions, we consider the first, second, and third
derivative of both curves equal like S

′
1(1) = S

′
2(0), S

′′
1(1) = S

′′
2(0) as in [15] and S

′′′
1 (1) = S

′′′
2 (0) to

obtain the control points Q∗1 , Q∗2 , and Q∗3 given in Equations (12) and (13), respectively.

4.2. Algorithm for the Construction of Curves by Parametric Continuity Constraints

A brief algorithm about the construction of complex curves by using continuity constraints is
given in this section. As we know that the smooth curves by using continuity conditions can be easily
obtained and by adjusting the shape parameters, we can easily modify the curve according to our own
choice as in [42].
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The procedure for the construction of complex figures by parametric continuity between two
GHT-Bézier curve segments is given as follows:

1. For any curve of degree n, we consider an initial curve like S1(θ; ν1, β1, γ1) with its shape
parameters and n + 1 control points.

2. For C0 continuity by keeping S1(1; ν1, β1, γ1) and S2(0; ν2, β2, γ2) equal, we have P∗n = Q∗0 , and the
remaining control points are left to the designer’s choice.

3. For C1 continuity, tangent vectors of both the initial and final curve segment will be equal at the
first and last point, respectively. Then, we obtain a new control point Q∗1 of the second curve
segment, and remaining control points will be left to the designer’s choice.

4. Similarly, for C2 continuity constraints, we also keep the second derivative of both curve segments
equal along with C1 continuity conditions and obtain the control point Q∗2 of the final curve while
remaining control points are left to the designer’s choice.

5. Finally, for C3 continuity conditions, we consider the third derivative of both curves equal along
with C2 continuity constraints to obtain the control point Q∗3 , and remaining control points will
be taken as the designer’s choice.

Hence, by using the above algorithm, any graphical figure can be obtained by using continuity
conditions. Some constructions of figures are given below, which were obtained by using the above
brief discussion.

1. C1 continuity of GHT-Bézier curves:

It is well known that the GHT-Bézier curve has three shape parameters, and we can construct
various figures by using the continuity of any two curves. Therefore, consider any two quartic
GHT-Bézier curves named as W1(θ) and W2(θ) containing shape parameters ν1, β1, γ1 and
ν2, β2, γ2, respectively.{

W1(θ; ν1, β1, γ1) = ∑4
i=0 P∗i qi,4(θ), 0 ≤ θ ≤ 1

W2(θ; ν2, β2, γ2) = ∑4
j=0 Q∗j qj,4(θ), 0 ≤ θ ≤ 1

(14)

Example 1. Figure 4 represents the GHT-Bézier curves that satisfy the parametric smooth continuity
constraints at their joints.

Here, in Figure 4, we consider the control points P∗0 = (0.04, 0.2), P∗1 = (0.05, 0.24), P∗2 = (0.075, 0.26),
P∗3 = (0.1, 0.24), and P∗4 = (0.11, 0.2) to construct the thin curves, then the dotted curves will be obtained
by C1 continuity conditions; where Q∗0 and Q∗1 were obtained from continuity conditions and the last
three control points could be adjusted according to our own choice. All these multiple thin and dotted
curves could be attained by the variation of shape parameters. The different values of shape parameters are
mentioned underneath the figures.

2. C2 continuity of GHT-Bézier curves:

As we discussed above the C1 continuity of the curves, now were turn to elaborate on the C2

continuity of the curves. For this continuity, we again consider two quartic GHT-Bézier curves
given in Equation (14) with three different shape parameters. We can also construct various
complex curves by using C2 continuity constraints. All the conditions are described above in
Theorem 3.

Example 2. In Figure 5, we chose these values of control points P∗0 = (0.04, 0.2), P∗1 = (0.05, 0.24),
P∗2 = (0.075, 0.26), P∗3 = (0.1, 0.24), and P∗4 = (0.08, 0.2) to obtain the various curves. Now, by using
C2 continuity conditions, the graphical representation of curves is presented. The last two control points of
the second curve have to be taken according to our own choice.
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All the thin lines were obtained by adjusting the control points of curve W1(θ) while the dotted lines were
obtained by using C2 continuity conditions and the control points of the curve W2(θ). Here, the last two
control points of these curves could be adjusted according to our own choice. The shape parameters of
each figure are given in the form of three tuples. The first four values under each figure are the values of
(ν1, γ1, β1), while the next four values are of (ν2, γ2, β2).

0.06 0.08 0.10 0.12

0.14

0.16

0.18

0.22

0.24

0.26

(a) (0, 0, 0), (1, 0, 0), (0.5, 0, 0), (0, 1, 0):
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0.5, 0)

0.06 0.08 0.10 0.12

0.14

0.16

0.18

0.22

0.24

0.26

(b) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0):
(0, 0,−0.5), (1, 0, 0), (1, 0, 0), (0,−1, 0)

0.06 0.08 0.10 0.12

0.14

0.16

0.18

0.22

0.24

0.26

(c) (0, 0.2, 0), (0.7,−0.5, 0), (0.2, 0, 0), (0.2,−1, 0):
(1, 0.2, 1), (1, 0.75, 1), (1,−0.2, 1), (1,−1, 1)

0.06 0.08 0.10 0.12

0.14

0.16

0.18

0.22

0.24

0.26

(d) (0,−0.5, 0), (1, 1, 0), (0.5, 0.5, 0), (0,−0.5, 0):
(0,−0.5, 0), (1, 1, 0), (0.5, 0.5, 0), (0,−0.5, 0)

Figure 4. C1 continuity of the GHT-Bézier curve by multi-valued shape parameters. (a) (0, 0, 0),
(1, 0, 0), (0.5, 0, 0), (0, 1, 0): (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0.5, 0); (b) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0):
(0, 0,−0.5), (1, 0, 0), (1, 0, 0), (0,−1, 0); (c) (0, 0.2, 0), (0.7,−0.5, 0), (0.2, 0, 0), (0.2,−1, 0): (1, 0.2, 1),
(1, 0.75, 1), (1,−0.2, 1), (1,−1, 1); (d) (0,−0.5, 0), (1, 1, 0), (0.5, 0.5, 0), (0,−0.5, 0): (0,−0.5, 0), (1, 1, 0),
(0.5, 0.5, 0), (0,−0.5, 0).
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(a) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0):
(0,−0.5, 0), (1, 0, 0), (0.5, 0.5, 0), (0,−1, 0)
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0.12

0.14

0.16

0.18

0.22

0.24

0.26

(b) (0, 0, 0), (1,−0.5, 0), (0.5, 0.5, 0), (0,−1, 0):
(0,−0.5, 0), (1, 0, 0), (0.5, 0, 0), (0, 0.5, 0)

-0.020.00 0.02 0.06 0.08 0.10

0.10

0.15

0.25

(c) (0,−0.5, 0), (1,−0.8, 0), (0.5, 0.5, 0), (0,−1, 0):
(0, 0, 0), (0, 0, 0), (0, 0, 0), (0,−1, 0)

-0.020.00 0.02 0.06 0.08 0.10

0.10

0.15

0.25

(d) (0,−0.5, 0), (1,−1, 0), (1, 0, 0), (0, 1, 0):
(0,−0.3, 0), (1,−1, 0), (1, 0.5, 0), (0, 1, 0)

Figure 5. Graphical representation of the C2 continuity of the GHT-Bézier curve. (a) (0, 0, 0),
(0, 0, 0), (0, 0, 0), (0, 0, 0): (0,−0.5, 0), (1, 0, 0), (0.5, 0.5, 0), (0,−1, 0); (b) (0, 0, 0), (1,−0.5, 0), (0.5, 0.5, 0),
(0,−1, 0): (0,−0.5, 0), (1, 0, 0), (0.5, 0, 0), (0, 0.5, 0); (c) (0,−0.5, 0), (1,−0.8, 0), (0.5, 0.5, 0), (0,−1, 0):
(0, 0, 0), (0, 0, 0), (0, 0, 0), (0,−1, 0); (d) (0,−0.5, 0), (1,−1, 0), (1, 0, 0), (0, 1, 0): (0,−0.3, 0),
(1,−1, 0), (1, 0.5, 0), (0, 1, 0).

3. C3 continuity of GHT-Bézier curves:

Example 3. Consider any two quartic GHT-Bézier curves named as W1(θ) and W2(θ) given in
Equation (14) having three different shape parameters. All thin curves were obtained by using the
definition of the first curve, and the second curve was obtained by using continuity conditions. We just
needed to adjust the last control point of the second curve. Moreover, multi-valued shape parameters are
given underneath the figures, which helped us to attain various curves at different positions. Figure 6
depicts the C3 continuity of curves by varying different shape parameters, and the shape parameters are
mentioned under each figure.
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(a) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, , 0):
(0,−0.5, 0), (1,−1, 0), (0, 0.5, 0), (0, 0.5, 0)
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(b) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0):
(0, 0, 0), (1, 0, 0), (0.5, 0.5, 0), (0, 0.6, 0)

0.04 0.06 0.08 0.10 0.12
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0.10

0.15

0.25

(c) (0.2, 0, 0), (0.7,−0.5, 0), (0.2, 0.5, 0), (0.2,−1, 0):
(0.2,−0.5, 0), (0,−1, 0), (−0.5, 0.2, 0), (0.3, 0.5, 0)

0.040.060.080.100.12

0.05
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0.15

0.25

(d) (0.2, 0, 0), (1,−1, 0), (0.2, 0, 0), (0.2, 1, 0):
(0, 0.2, 0), (0, 0.1, 0), (0.5,−0.2, 0), (0, 0.5, 0)

Figure 6. Graphical representation of the C3 continuity of the GHT-Bézier curve by various shape parameters.
(a) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, , 0): (0,−0.5, 0), (1,−1, 0), (0, 0.5, 0), (0, 0.5, 0); (b) (0, 0, 0), (0, 0, 0),
(0, 0, 0), (0, 0, 0): (0, 0, 0), (1, 0, 0), (0.5, 0.5, 0), (0, 0.6, 0); (c) (0.2, 0, 0), (0.7,−0.5, 0), (0.2, 0.5, 0), (0.2,−1, 0):
(0.2,−0.5, 0), (0,−1, 0), (−0.5, 0.2, 0), (0.3, 0.5, 0); (d) (0.2, 0, 0), (1,−1, 0), (0.2, 0, 0), (0.2, 1, 0): (0, 0.2, 0),
(0, 0.1, 0), (0.5,−0.2, 0), (0, 0.5, 0).

Example 4. As discussed above, we can construct various GHT-Bézier curves of the same/different degrees
by the procedure given in the above algorithms for the construction of curves by parametric continuity. Here,
Figure 7 represents the C2 and C3 continuity between a cubic and quartic GHT-Bézier curve (curves of
different degrees) with shape parameters β1 = β2 = β, γ1 = γ2 = γ and ν1 = ν2 = ν. For C2 continuity,
the control points for the initial cubic GHT-Bézier curve are P∗0 = (0.04, 0.2), P∗1 = (0.05, 0.24),
P∗2 = (0.075, 0.26), and P∗3 = (0.1, 0.24), while the first three control points for the second quartic
GHT-Bézier curve can be obtained by C2 continuity condition, and the remaining two control points can
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be taken according to our own choice such as Q∗3 = (0.1, 0.15) and Q∗4 = (0.05, 0.14). Similarly, for C3

continuity conditions, the control points for the initial cubic GHT-Bézier curve are P∗0 = (0.02, 0.2),
P∗1 = (0.05, 0.24), P∗2 = (0.1, 0.24), and P∗3 = (0.11, 0.2), while the second GHT-Bézier curve was
obtained by applying the C3 continuity condition only on the last control point taken as Q∗4 = (0.02, 0.14).
Variation in the curves could be obtained by varying the values of shape parameters as mentioned with
the figures.
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(a) C2 continuity between cubic and
quartic GHT-Bézier curves
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Β = Ν = Γ = -0.7 (Black Solid)

0.04 0.06 0.08 0.10
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0.14
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0.24

(b) C3 continuity between cubic and
quartic GHT-Bézier curves

Figure 7. C2 and C3 continuity between GHT-Bézier curves having different degrees. (a) C2

continuity between cubic and quartic GHT-Bézier curves; (b) C3 continuity between cubic and quartic
GHT-Bézier curves.

4.3. Geometric Continuity Constraints of GHT-Bézier Curves

Just like parametric continuity, geometric continuity also helps us to construct different complex
figures. It is superior to parametric continuity because it gives us more smoothness due to the
scale factor.

Theorem 4. Consider any two GHT-Bézier curves S1(θ; ν1, β1, γ1) and S2(θ; ν2, β2, γ2) of the same degree
with their shape parameters and control points P∗i and Q∗j , respectively. These curves meet to the geometric
continuity constraints if and only if:



Q∗0 = P∗n
Q∗1 = P∗n + ((2n−4)+π(1+β1)−2γ1)

((2n−4)+π(1+ν2)−2γ2)φ
(P∗n − P∗n−1)

Q∗2 = [{−4(n− 2)(n− 3) + 8(n− 2)γ1 − 4(n− 2)(β1 + 1)π + eγ1 π2(ν1 − 1)}P∗n−2

−{4π(1 + β1)(γ1 − 2(n− 2))− 4(γ1(γ1 − 4(n− 2)) + 2(n− 2)(n− 3)) + π2(−2β1 + eγ1(ν1 − 1))}P∗n−1

−2{2(n− 2) + π + πβ1 − 2γ1}(P∗n−1 − P∗n )− 4(n− 2)(n− 3)P∗n − 4(n− 2)πP∗n
−4(n− 2)πβ1P∗n − 2π(πβ1 − 4(n− 2)γ1)P∗n + (4πβ1γ1 − 4γ2

1 + 4πγ1)P∗n + 4(n− 2)(n− 3)ξP∗n
+4(n− 2)πξP∗n − 8(n− 2)γ2ξP∗n + (−4πγ2ξ + 4γ2

2ξ + 4(n− 2)πξν2 + 2π2ξν2 − 4πξγ2ν2)P∗n + 1
J ]ε

where

J = (2(n− 2) + π − 2γ2 + πν2)φ[−4(2(n− 2)(n− 3) + (γ2 − 4(n− 2))γ2) + π2(eγ2(β2 − 1)− 2ν2)

+4π(γ2 − 2(n− 2))(1 + ν2)]ξ(−(2(n− 2) + π + πβ1 − 2γ1)P∗n−1 + (2(n− 2) + π + πβ1 − 2γ1

+(2(n− 2) + π − 2γ2 + πν2)φ)P∗n )

and

ε = 1
(8(n−2)γ2−4(n−2)(n−3)−4(n−2)π(1+ν2)+π2eγ2 (β2−1))ξ

(15)

where φ is any positive real number and ε and J are the terms that are used to generalize the control point Q∗2 in
G2 continuity.
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Similarly, for G3 continuity conditions and for both curves having degree three, we have:

Q∗3 = −e−γ2
6π2ψ(1−β2)

[−6eγ1 π2(−1 + ν1)P∗0 + 6(−2π2β1 + 4π(1 + β1)γ1 − 4γ2
1 + eγ1 π2(2 + γ1)(−1 + ν1))

P∗1 − (π3(1 + β1) + 12π2β1(−2 + γ1)− 12π(1 + β1)(−4 + γ1)γ1 + 8(−6 + γ1)γ
2
1 + 6eγ1 π2(1 + γ1)

(−1 + ν1))P∗2 − 4(2 + π(1 + β1)− 2γ1)(P∗2 − P∗3 ) + π3P∗3 + (−12π2β1 + π3β1 + 24πγ1 + 24πβ1γ1−
24γ2

1 + 12π2β1γ1 − 12πγ2
1 − 12πβ1γ2

1 + 8γ3
1 + π3ψ + 24πγ2ψ− 24ψγ2

2 − 12πψγ2
2 + 8γ2

2ψ− 12π2ν2ψ

+π3ν2ψ + 24πγ2ν2ψ + 12π2γ2ν2ψ− 12πγ2
2ν2)P∗3 − 1

η1
− 1

η2
]

(16)



where,

η1 = 6ξφ2((−4π(1 + β1) + 8γ1 + eγ1 π2(−1 + ν1))P∗1 + (−2π(1 + β1)(−3 + 2γ1) + 4(−1− 3γ1 + γ2
1)

+π2(eγ1(1− ν1) + 2β1))P∗2 − 2(π2β1 − π(1 + β1)(−1 + 2γ1) + 2(−1− γ1 + γ2
1))P∗3 ),

η2 = (2 + π +−2γ2 + πν2)φ(8γ2
2(−6 + γ2) + 6eγ2 π2(−1 + β2)(1 + γ2) + 12π2(−2 + γ2)ν2 + π3(1 + ν2)

−12π(−4 + γ2)γ2(1 + ν2))ψ(−(2 + π + πβ1 − 2γ1)P∗2 + (−2(−1 + γ1 + (−1 + γ2)φ) + π(1 + β1 + φ

(1 + ν2)))P∗3 ) +
a

ξ(eγ2 π2(−1+β2)+8γ2−4π(1+ν2))
,

a = 6(−4γ2
2 + eγ2 π2(−1 + β2)(2 + γ2)− 2π2ν2 + 4πγ2(1 + ν2))ψ{(−4π(1 + β1) + 8γ1 + eγ1 π2(−1+

ν1))P∗1 − (4π(1 + β1)(−2 + γ1)− 4(−4 + γ1)γ1 + π2(−2β1 + eγ1(−1 + ν1)))P∗2 − 2(2 + π + πβ1 − 2γ1)

(P∗2 − P∗3 ) + (−4π − 4πβ1 − 2π2β1 + 8γ1 + 4πγ1 + 4πβ1γ1 − 4γ2
1 + 4πξ − 8γ2ξ − 4πγ2ξ + 4γ2

2ξ+

4πν2ξ + 2π2ν2ξ − 4πγ2ν2ξ)P∗3 + 1
b},

b = (2 + π − 2γ2 + πν2)φ(−4(−4 + γ2)γ2 + π2(eγ2(−1 + β2)− 2ν2) + 4π(−2 + γ2)(1 + ν2))ξ{−(2 + π

+πβ1 − 2γ1)P∗2 + (−2(−1 + γ1 + (−1 + γ2)φ) + π(1 + β1 + φ + ν2φ))P∗3 }.

(17)

where η1, η2, a, and b are the terms used to define the large value of control point Q∗3 in G3 continuity.

Proof. For the G0 continuity condition, we keep both curves equal, i.e.,

S1(1; ν1, β1, γ1) = S2(0; ν2, β2, γ2)

and obtained the first control point of the second curve, i.e.,

Q∗0 = P∗n .

For G1 continuity constraints, we keep both curves equal and also the first derivative of both
curves involving a scale factor such as,{

S1(1; ν1, β1, γ1) = S2(0; ν2, β2, γ2)

S
′
1(1; ν1, β1, γ1) = φS

′
2(0; ν2, β2, γ2), φ > 0.

By solving the above equation, we get:

Q∗1 = P∗n +
((2n− 4) + π(1 + β1)− 2γ1)

((2n− 4) + π(1 + ν2)− 2γ2)φ
(P∗n − P∗n−1)

Now, for G2 continuity, first we should fulfil the G1 continuity conditions. One more necessary
condition for the G2 continuity condition is that the curvature of first curve at the last point and the
second curve at the first point should be equal, i.e., κ1(1) = κ2(0).

Suppose that the curvature of S1(θ; ν1, β1, γ1) at the final point is κ1(1) and the curvature of
S2(θ; ν2, β2, γ2) at the initial point is κ2(0), which is described as:

κ1(1) =
S
′
1(1;ν1,β1,γ1)×S

′′
1 (1;ν1,β1,γ1)

|S′1(1;ν1,β1,γ1)|3

κ2(0) =
S
′
2(0;ν1,β1,γ1)×S

′′
2 (0;ν1,β1,γ1)

|S′2(0;ν1,β1,γ1)|3
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Therefore, the reverse normal vector L1 = S
′
1(1)× S

′′
1(1) of S1(θ) and, vice versa, the normal

vector L2 = S
′
2(0)× S

′′
2(0) of S2(θ) have the same direction. Therefore, these four vectors S

′
1(1), S

′
2(0),

S
′′
2(0) and S

′′
1(1) are in same plane (coplanar) such that we have S

′′
1(1) = ξS

′′
2(0) + φS

′
2(0), where ξ is

any positive real number and ξ = φ2. As:

κ1(1) =
S
′
1(1)× S

′′
1(1)

||S′1(1)||3
=

ξφ(S
′
2(0)× S

′′
2(0))

φ3||S′2(0)||3
=

S
′
2(0)× S

′′
2(0)

||S′2(0)||3
= κ2(0)

we meet the G2 continuity condition as described in [42].
After the derivation of the G2 continuity condition, now we move to find the G3 continuity

condition at which the derivative of the curvature of the first curve at the final point and the second
curve at the initial point will be the same, i.e., κ

′
1(1) = φκ

′
2(0). The first derivative of the curvature is:

κ
′
1(1) =

||S′1(1)||2{S
′
1(1)× S

′′′
1 (1)} − 3{S′1(1)× S

′′
1(1)}{S

′
1(1).S

′′
1(1)}

||S′1(1)||5
(18)

and:

κ
′
2(0) =

||S′2(0)||2{S
′
2(0)× S

′′′
2 (0)} − 3{S′2(0)× S

′′
2(0)}{S

′
2(0).S

′′
2(0)}

||S′2(0)||5
. (19)

We consider the conditions given as follows:
S
′
1(1) = φS

′
2(0),

S
′′
1(1) = ξS

′′
2(0) + φS

′
2(0),

S
′′′
1 (1) = ψS

′′′
2 (0) + 3φ2S

′′
2(0) + φS

′
(0)

(20)

where ψ = φ3 and ξ = φ2 meet the G3 continuity constraints. Consider,

κ
′
1(1) =

ϑ

||φ5S′1(0)||5
(21)

where:

ϑ = ||φS
′
2(0)||2{φS

′
2(0)× (ψS

′′′
2 (0) + 3φ2S

′′
2(0) + φS

′
2(0))}

− 3{φS
′
2(0)× (ξS

′′
2(0) + φS

′
2(0))}{φS

′
2(0).(ξS

′′
2(0) + φS

′
2(0))}

Since ||ϕz(θ)|| = |ϕ|||z(θ)||, we will obtain:

ϑ = ψφ3||S′2(0)||2
(

S
′
2(0)× S

′′′
2 (0)

)
− 3φ6

(
S
′
2(0)× S

′′
2(0)

) (
S
′
2(0).S

′′
2(0)

)
and by substituting this value of ϑ in (21), we have:

κ
′
1(1) = φ

{
||S′2(0)||2{S

′
2(0)× S

′′′
2 (0)} − 3{S′2(0)× S

′′
2(0)}{S

′
2(0).S

′′
2(0)}

||S′2(0)||5

}
= φκ

′
2(0). (22)

4.4. Algorithm for the Construction of Curves by Geometric Continuity Constraints

Like parametric continuity, a brief algorithm about the construction of complex curves by using
geometric continuity conditions is given in this section. The procedure for the construction of figures
by geometric smooth continuity between two GHT-Bézier curves is given as follows:
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1. For any curve of degree n, we consider an initial curve like S1(θ; ν1, β1, γ1) with its shape
parameters and n + 1 control points.

2. Like C0 continuity, by keeping S1(1; ν1, β1, γ1) and S2(0; ν2, β2, γ2) equal, we obtain the control
point Q∗0 for G0 continuity, i.e., P∗n = Q∗0 , and remaining control points of the second curve will
be left to the designer’s choice.

3. For G1 continuity, both the initial and final curve segments with their tangent vectors will be
equal at the last and first point of the domain, respectively, and an extra positive scale factor will
be added with the tangent vector of the second curve as S

′
1(1) = φS

′
2(0) to obtain Q∗1 in the G1

continuity. The remaining control points will be left to the designer’s choice. The new curve will
be obtained smoothly by using this condition.

4. Similarly, for G2 continuity conditions, a new point Q∗2 will be obtained by using S
′′
1(1) =

φ2S
′′
2(0) + φS

′
2(0) as in [42] along with G1 continuity conditions while remaining control points

should be taken according to our own choice to construct any complex curve.
5. Finally, for the construction of any curve by using G3 continuity conditions, consider S

′′′
1 (1) =

ψS
′′′
2 (0) + 3φ2S

′′
2(0) + φS

′
2(0) along with G2 continuity conditions to obtain the control point Q∗3 ,

and the remaining control points of any complex figure will be left to the designer’s choice.

Some constructions of complex figures by using the above algorithm are given as follows:

1. G1 continuity of GHT-Bézier curves:

Example 5. Figure 8 depicts the graphical representation of the G1 smooth continuity between two quartic
GHT-Bézier curves (the same as defined above for parametric continuity).

The thin colored lines were obtained by using the definition of the initial curve, while dotted colored lines
were constructed by using the curve, which were obtained after using continuity conditions. In Figure 8,
the control points are to be taken as P∗0 = (0.04, 0.2), P∗1 = (0.05, 0.24), P∗2 = (0.075, 0.26), P∗3 =

(0.1, 0.24), and P∗4 = (0.1, 0.2), and the shape parameters for each curve are given under those figures.
Now, by applying the continuity constraints, which are described in Theorem 4, we can obtain the dashed
curves having the shape parameters ν2, β2, and γ2. φ is the scale factor, which has a positive value, and
it has great worth to modify the shape of the curve. By the G1 continuity conditions, we only obtained
Q∗0 and Q∗1 , while the remaining control points would be taken according to our own will. Therefore,
by varying the values of shape parameters, we can see the variation in the curves given in Figure 8.

2. G2 continuity of GHT-Bézier curves:

Example 6. The G2 continuity of the curve as described in [42] has much more smoothness as compared
the G1 continuity. Figure 9 represents the G2 smooth continuity between two quartic GHT-Bézier
curves. Here, in this figure, the control points P∗0 = (0.04, 0.2), P∗1 = (0.05, 0.24), P∗2 = (0.075, 0.26),
P∗3 = (0.1, 0.24), and P∗4 = (0.1, 0.2) were chosen to construct the thin colored lines of Figure 9, while the
dashed colored curves were constructed by the G2 continuity condition. Multiple shape parameters were
used to construct the various curves given in Figure 9.

3. G3 continuity of GHT-Bézier curves:

Example 7. Figure 10 represents the G3 continuity between two quartic GHT Bézier curves given in (14).
We can see the influence on the curves by altering the values of three different shape parameters. Here,
we constructed the first curve by using Equation (14), and the second curve was constructed by using
the G3 continuity condition given in Theorem 4, while the last control point was taken according to our
own choice.
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Example 8. As described in the above algorithm for the construction of curves by geometric continuity, various
figures by using the G1, G2, or G3 continuity of curves of different degrees can also be constructed. Figure 11a
represents the G2 and G3 continuity between a quartic and cubic GHT-Bézier curve. For G2 continuity, we
considered a quartic S1(θ; ν1, β1, γ1) and cubic GHT-Bézier curve S2(θ; ν2, β2, γ2). Here, in this figure, the
control points P∗0 = (−0.1, 0.4), P∗1 = (0.1, 0.75), P∗2 = (0.35, 0.9), P∗3 = (0.55, 0.9), and P∗4 = (0.7, 0.65)
were chosen to construct the initial curves of the figure, while the curves after the joint point were constructed by
the G2 continuity condition as discussed in above algorithm. The values of multiple shape parameters and scale
factors were used to construct the various curves given in the figure.
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0.16

0.18

0.22

0.24

0.26

(a) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0):
(0, 0,−0.5), (1, 0.5, 0), (0.5, 0, 0), (0, 0.5, 0)

0.02 0.06 0.08 0.10

0.16

0.18

0.22

0.24

0.26

(b) (0, 0, 0), (1, 0, 0), (0.5, 0, 0), (0, 0.5, 0):
(0,−0.5, 0), (1, 0, 0), (0.5, 0, 0), (0, 0.5, 0)

0.02 0.06 0.08 0.10

0.16

0.18

0.22

0.24

0.26

(c) (0, 1, 0), (1,−0.75, 0), (0, 0, 0), (0,−0.5, 0):
(0, 1, 0), (1,−0.75, 0), (0.5, 0, 0), (0,−0.5, 0)

0.02 0.06 0.08 0.10

0.16

0.18

0.22

0.24

0.26

(d) (0.2, 0.15, 0), (0.7, 0.4, 0), (0.2,−0.2, 0), (0.2, 0.2, 0):
(0.2,−0.2, 0), (0.3,−0.2, 0), (−0.5, 0.2, 0), (0.3, 0.3, , 0)

Figure 8. G1 smooth continuity of the GHT-Bézier curve with multiple shape parameters.
(a) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0): (0, 0,−0.5), (1, 0.5, 0), (0.5, 0, 0), (0, 0.5, 0); (b) (0, 0, 0), (1, 0, 0),
(0.5, 0, 0), (0, 0.5, 0): (0,−0.5, 0), (1, 0, 0), (0.5, 0, 0), (0, 0.5, 0); (c) (0, 1, 0), (1,−0.75, 0), (0, 0, 0), (0,−0.5, 0):
(0, 1, 0), (1,−0.75, 0), (0.5, 0, 0), (0,−0.5, 0); (d) (0.2, 0.15, 0), (0.7, 0.4, 0), (0.2,−0.2, 0), (0.2, 0.2, 0):
(0.2,−0.2, 0), (0.3,−0.2, 0), (−0.5, 0.2, 0), (0.3, 0.3, , 0).
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(a) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0):
(0,−0.5, 0), (1,−1, 0), (0.5, 0, 0), (0.5,−1, 0)
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(b) (1, 1, 1), (0, 0, 0.5), (0,−1,−0.5), (0, 0, 0):
(1, 1, 0), (1, 0, 0), (0, 1, 0), (0, 1, 0)
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(c) (0, 1, 0), (1,−0.7, 0), (0, 0, 0), (0,−0.5, 0):
(0, 1, 0), (1,−0.7, 0), (0.5, 0, 0), (0,−0.5, 0)

0.050.060.070.080.090.10

0.14

0.16

0.18
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(d) (0,−1, 0), (1, 0, 0), (0.5, 0, 0), (0, 1, 0):
(0,−0.5, 0), (1, 0.5, 0), (1, 0, 0), (0,−1, 0)

Figure 9. G2 smooth continuity of the GHT-Bézier curve with various shape parameters.
(a) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0): (0,−0.5, 0), (1,−1, 0), (0.5, 0, 0), (0.5,−1, 0); (b) (1, 1, 1), (0, 0, 0.5),
(0,−1,−0.5), (0, 0, 0): (1, 1, 0), (1, 0, 0), (0, 1, 0), (0, 1, 0); (c) (0, 1, 0), (1,−0.7, 0), (0, 0, 0), (0,−0.5, 0):
(0, 1, 0), (1,−0.7, 0), (0.5, 0, 0), (0,−0.5, 0); (d) (0,−1, 0), (1, 0, 0), (0.5, 0, 0), (0, 1, 0): (0,−0.5, 0),
(1, 0.5, 0), (1, 0, 0), (0,−1, 0).
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(a) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0):
(0, 0.5, 0), (1,−1, 0), (1, 0, 0), (0, 0.5, 0)
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(0,−1, 0), (1, 1, 0), (1, 0, 0), (0, 1, 0)
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(c) (0, 1, 0), (0,−1, 0), (0, 0, 0), (0,−1, 0):
(1,−1, 0), (1, 1, 0), (0.5, 0, 0), (0, 0, 0)
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(d) (0.2,−1, 0), (0.7, 0, 0), (0.2, 0, 0), (0.2, 0.5, 0):
(0.2, 0, 0), (0.3, 0, 0), (−0.2, 1,−1), (0.3, 1, 0)

Figure 10. G3 smooth continuity of the GHT-Bézier curve with multiple shape parameters.
(a) (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0): (0, 0.5, 0), (1,−1, 0), (1, 0, 0), (0, 0.5, 0); (b) (0, 0, 0), (1,−1, 0),
(‘0, 0, 0), (0, 1, 0): (0,−1, 0), (1, 1, 0), (1, 0, 0), (0, 1, 0); (c) (0, 1, 0), (0,−1, 0), (0, 0, 0), (0,−1, 0):
(1,−1, 0), (1, 1, 0), (0.5, 0, 0), (0, 0, 0); (d) (0.2,−1, 0), (0.7, 0, 0), (0.2, 0, 0), (0.2, 0.5, 0): (0.2, 0, 0), (0.3, 0, 0),
(−0.2, 1,−1), (0.3, 1, 0).
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(a) G2 continuity between two
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Figure 11. Geometric continuity between two GHT-Bézier curves of different degrees. (a) G2 continuity
between two GHT-Bézier curves of different degrees; (b) G3 continuity between two GHT-Bézier curves
of different degrees.

The control points of the second curve can be obtained by the following procedure.

4

∑
i=0

P∗i qi,4(1) =
3

∑
j=0

Q∗j qj,3(0)

Q∗0 = P∗4 .

Similarly,
4

∑
i=0

P∗i q
′
i,4(1) = φ

3

∑
j=0

Q∗j q
′
j,3(0)

−1
2
(4 + π(1 + β1)− 2γ1)(P∗3 − P∗4 ) = −

1
2

φ(2 + π + πν2 − 2γ2)(P∗4 −Q∗1)

then by further simplification,

Q∗1 = 1
φ(2+π+πν2−2γ2)

− (4 + π(1 + β1)− 2γ1)P∗3 + [π(1 + β1 + φ(1 + ν2))− 2(−2 + γ1 + φ(−1 + γ2))]P∗4 . (23)

Now, for control point Q∗2 , we use this relation:

S
′′
1(1; ν1, β1, γ1) = ξS

′′
2(0; ν2, β2, γ2) + φS

′
2(0; ν2, β2, γ2), (24)
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whose values are,

S
′′
1 (1; ν1, β1, γ1) =

4

∑
i=0

P∗i qi,4(1) =
1
2
[(8 + 8π(1 + β1)− eγ1 π2(−1 + ν1)− 16γ1)P∗2 + (π2(−2β1 + eγ1 (−1 + ν1))

+ 4π(1 + β1)(−4 + γ1)− 4(4 + (−8 + γ1)γ1))P∗3 + 2(πβ1 − 2π(1 + β1)(−2 + γ) + 2(2 + (−4 + γ1)γ1))P∗4 ],

and

ξS
′′
2 (0; ν2, β2, γ2) + φS

′
2(0; ν2, β2, γ2) =

1
4
[−2φ(2 + π + πν2 − 2γ2)(P∗4 −Q∗1) + ξ(2(π2ν2 − 2π(1 + ν2)

(−2 + γ2) + 2(−4 + γ2)γ2)Q∗1 + eγ2 π2(−1 + β2)(Q∗1 −Q∗2) + 4(π + πν2 − 2γ2)Q∗2)]. (25)

By substituting Equation (25) into Equation (24), we get control point Q∗2 for G2 continuity as follows:

Q∗2 =
1

ξ(eγ2 π2(−1 + β2)− 4π(1 + ν2) + 8γ2)
− [−(−8− 8π(1 + β1) + eγ1)π2(−1 + ν1)

+16γ1)P∗2 + (π2(−2β1 + eγ1(−1 + ν1)) + 4π(1 + β1)(−4 + γ1)− 4(4 + (−8 + γ1)γ1))P∗3
+2(4 + π(1 + β1)− 2γ1)(P∗3 − P∗4 ) + (8 + 8π(1 + β1) + 2π2β1 − 4πξ − 4πν2ξ − 2π2ν2ξ

−16γ1 − 4πγ1 − 4πβ1γ1 + 4γ2
1 + 8ξγ2 + 4πξγ2 + 4πξγ2ν2 − 4ξγ2

2)P∗4 +
1
$
]

where

$ =
1

φ(2 + π(1 + ν2)− 2γ2)
ξ(π2(−eγ2(−1β2) + 2ν2)− 4π(1 + ν2)(−2 + γ2) + 4(−4 + γ2)

γ2)(−(4 + π + πβ1 − 2γ1)P∗3 + (π(1 + β1 + φ + ν2φ)− 2(−2 + γ1 + φ(−1 + γ2)))P∗4 ).

Similarly, for G3 continuity, we follow the same procedure given in the above algorithm for the construction
of curves by geometric continuity. Here, in Figure 11b, we consider cubic and quartic GHT-Bézier curves
(curves of different degrees) having the control points P∗0 = (0.4, 2), P∗1 = (0.5, 2.4), P∗2 = (0.75, 2.6), and
P∗3 = (1.1, 2.4) for initial curves, and by using G3 continuity conditions, we obtained the control points for
the final curve. Only the fourth control point can be taken according to our own choice as Q∗4 = (0.8, 1.6). The
variation of curves given in the figure was obtained by varying the values of the control points mentioned with
the figure.

5. Curvature Junction of GHT-Bézier Curves by G2 Continuity

We already know that for the G0 continuity condition, two curves meet with each other at joints,
while for G1 and G2 continuity conditions, both curves (first and second) had the same tangent and
curvature at the final and initial points, respectively. Similarly, for the G3 continuity condition, the
derivative of the curvature of both curves at the final and initial points was the same. Let us consider
any two cubic GHT-Bézier curves g(θ) = ∑n

i=0 g∗i qi,n(θ) and r(θ) = ∑n
i=0 r∗i qi,n(θ). The curve g(θ)

has the control points g∗0 = (8, 15.5), g∗1 = (10, 20.5), g∗2 = (18.5, 18.5), and g∗3 = (20.05, 10.89), while
the curve r(θ) can be obtained by the G2 continuity condition given in Theorem 4. The control point
r∗3 = (8, 8) can be taken according to our own choice. It is also mentioned in Theorem 4 that the
curvature of the first curve at the final point and the curvature of the second curve at initial point are
the same.

Here, in Figure 12a, the red and blue curves are connected with each other by G2 continuity,
while in Figure 12b, the comparison of the curvature by the GHT-Bézier curve and classical Bézier
curve is given. The solid lines represent the curvature of the classical Bézier curve, while dashed
lines represent the curvature of the GHT-Bézier curve. The curvature values for the classical Bézier
curve and GHT-Bézier curve are given in Tables 1 and 2, respectively. It is obvious from the tables
that the curvature values for the first (red) curve at the final point and the second (blue) curve at
the initial point are identical i.e, (for classical Bézier curve the curvature values are identical as
κ1(1) = κ2(0) = −0.0876496, while for GHT-Bézier curve the values of curvature are identical as
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κ1(1) = κ2(0) = −1.0008) and it can also be deduced that the curves preserve the curvature continuity
from one curve to another.

Table 1. Curvature values for G2 continuity by the classical Bézier curve.

θ Curvature κ1(θ) (for Red Curve) Curvature κ2(θ) (for Blue Curve)

0 −0.198502 −0.0876496
0.1 −0.242583 −0.125836
0.2 −0.238606 −0.193501
0.3 −0.202376 −0.295431
0.4 −0.165009 −0.37619
0.5 −0.138967 −0.326819
0.6 −0.123578 −0.198955
0.7 −0.114671 −0.104602
0.8 −0.107853 −0.0549636
0.9 −0.0994784 −0.0303936
1 −0.0876496 −0.178419
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Table 2. Curvature values for G2 continuity by the GHT-Bézier curve.

θ Curvature κ1(θ) (for Red Curve) Curvature κ2(θ) (for Blue Curve)

0 −0.228373 −1.0008
0.1 −0.246228 −0.156137
0.2 −0.241362 −0.246303
0.3 −0.212292 −0.343455
0.4 −0.175553 −0.343828
0.5 −0.145325 −0.23556
0.6 −0.125209 −0.135007
0.7 −0.113296 −0.0788477
0.8 −0.106581 −0.0519528
0.9 −0.102661 −0.0410629
1 −1.0008 −0.0416751

6. Curvature Junction of GHT-Bézier Curves by G3 Continuity

As we are already familiar with the fact that the conventional Ck continuity cannot provide us
with an extra parameter, Gk continuity provides us an additional parameter for further optimization.
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Just like G2 continuity behaves as curvature continuity, G3 continuity represents the derivative of
curvature continuity. For G3 continuity conditions, the derivative of the curvature of the first curve
at the final point and the derivative of the curvature of the second curve at the initial point will
be the same, i.e., κ

′
1(1) = φκ

′
2(0). Consider any two quartic GHT-Bézier curves named as g(θ) and

r(θ), respectively. The control points of the first curve are given as g∗0 = (5, 15.5), g∗1 = (10, 20.5),
g∗2 = (15, 25.5), g∗3 = (20, 20.5), and g∗4 = (20.05, 10.89), while the control points of the second curve
were obtained by using G3 continuity conditions described in Theorem 4, and the last control point
was r∗4 = (8, 5). Here, in Figure 13a, the green and black curves are joined by G3 continuity conditions,
while in Figure 13b, the comparison of the derivative of curvature by the classical Bézier curve and
GHT-Bézier curve is given. The solid and dashed lines represent the derivative of the curvature
of the classical Bézier curve and GHT-Bézier curve, respectively. It is obvious from Figure 13 and
Tables 3 and 4 that the derivative of the curvature of the first curve at the final point and the second
curve at the initial point is identical. For the classical Bézier curve, κ

′
1(1) = φκ

′
2(0) = 0.0934709, while

for the GHT-Bézier curve, κ
′
1(1) = φκ

′
2(0) = 0.0767506.
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Figure 13. Graphical representation of the G3 continuity for the GHT-Bézier curve and classical
Bézier curve. (a) G3 continuity between two quartic GHT-Bézier curve segments; (b) comparison of the
derivative of curvature between the classical Bézier curve and GHT-Bézier curve.

Table 3. Curvature values for G3 continuity by the classical Bézier curve.

θ Values of κ
′
1(θ) (for Green Curve) Values of κ

′
2(θ) (for Black Curve) Values of φκ

′
2(θ)

0 −0.212132 0.0467354 0.0934709
0.1 −0.220298 −0.020342 −0.040684
0.2 −0.332911 −0.114935 −0.22987
0.3 −0.584367 −0.281849 −0.563698
0.4 −0.867004 −0.627451 −1.254902
0.5 −0.408314 −1.21847 −2.43694
0.6 0.680648 −0.850415 −1.70083
0.7 0.754765 1.42099 2.84198
0.8 0.420498 1.23211 2.46422
0.9 0.202457 0.499801 0.999602
1 0.0934709 0.190699 0.381398
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Table 4. Curvature values for G3 continuity by the GHT Bézier curve.

θ Values of κ
′
1(θ) (for Green Curve) Values of κ

′
2(θ) (for Black Curve) Values of φκ

′
2(θ)

0 −0.180035 0.0383753 0.0767506
0.1 −0.233158 −0.0738331 −0.1476662
0.2 −0.442069 −0.211072 −0.422144
0.3 −0.894591 −0.459873 −0.919746
0.4 −1.09659 −0.921015 −1.84203
0.5 0.305785 −1.21166 −2.42332
0.6 1.00343 0.351962 0.703924
0.7 0.610066 1.45387 2.90774
0.8 0.296791 0.80677 1.61354
0.9 0.148436 0.324799 0.649598
1 0.0767506 0.125541 0.1535012

Main Result

From the above discussion of curvature junction, we concluded that the GHT-Bézier curve was
superior to the classical Bézier curve due to the significance that the curvature junction value for the
GHT-Bézier curve could be changed as we varied the values of the shape parameter in their domain,
but the curvature junction values for the classical Bézier curve always remained the same.

7. Applications

As an extension of the traditional Bézier curve, the GHT-Bézier curve provides a new way of
mathematical theory for the excellence of CAGD and CAD. Its application range includes computer
graphics, image processing, font designing, modeling of complex figures, computer vision, etc. If we
need to design any complex shape by GHT-Bézier curves, then we must consider it as a piecewise
curve composed of multiple ones. Those piecewise curves will be worthier if we join them by using
various continuity conditions as given in Figures 14 and 15. In recent years, we have seen beautiful
buildings and roads constructed by using computer technology. Therefore, currently, we can compose
multiple maps of buildings, bridges, highway designs, and also sketching and various designing by
the help of GHT-Bézier curves, which are very useful in daily life. As font designing and sketching are
difficult to fit due to having various curves and cusps, as an application of continuity conditions, the
construction of multiple complex figures is given below.

Construction of Free-Form Complex Figures by Parametric and Geometric Continuity Constraints

In order to resolve the problem of the construction of complex figures (which cannot be executed
by a single curve), the C3 and G3 continuity conditions were derived. Since GHT-Bézier curves are
capable of designing any curve of n degrees, by using any two adjacent GHT-Bézier curves having the
same degrees and the above continuity conditions, multiple shapes can be constructed.

Example 9. In Figure 14a–c, a beautiful graph of a fish is composed by using two adjacent quartic Bézier curves,
which meets the C1 continuity conditions.

Here, the green curve is obtained by using the initial curve having the control points P∗0 = (0.193, 0.24),
P∗1 = (0.176, 0.253), P∗2 = (0.158, 0.26), P∗3 = (0.15, 0.23), and P∗4 = (0.15, 0.23), while the blue curve is
obtained by the C1 continuity condition given in Equation (11). Here, the control points Q∗2 = (0.147, 0.173),
Q∗3 = (0.155, 0.166), and Q∗4 = (0.155, 0.166) of the second curve are adjusted according to our own will.
Similarly, the purple curve is constructed by using the initial quartic Bézier curve, and the red curve is attained
when we met the continuity conditions. Here, in Figure 14a, the blue circle shows the joint point between the
initial and final curve (obtained by C1 continuity), while in Figure 14c, the dashed and dotted-dashed curves are
obtained by varying multiple shape parameters in their domain. Figure 14d–f presents the most complex graph
of a rabbit by joining various segments obtained by the continuity constraints of GHT-Bézier curves. This graph
also ensures that the GHT-Bézier curves have the capability to construct any complex figure as we desired. Here,
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in Figure 14d, the blue circle shows the joint point between two GHT-Bézier curves connected by C2 continuity
constraints. Similarly, Figure 14e shows the complete graph of the GHT-Bézier curve, while in Figure 14f, the
multi-colored dashed and dashed-dotted lines are obtained by varying the multiple shape parameters in their
given domain. Just like the C1 and C2 continuity conditions, we can also construct various complex figures with
great smoothness by using the C3 continuity conditions of the GHT-Bézier curves. In Figure 14g–i, the graph
of the English letter e is presented. In Figure 14g, multiple curves are joined to make the smooth graph, and
the joint points are highlighted with tiny blue circles. Figure 14h presents the complete figure, while Figure 14i
shows the beautiful figure with dashed lines, which have been obtained by varying the multiple shape parameters.
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Figure 14. Modeling by the C1, C2, and C3 smooth continuity of GHT-Bézier curves by varying
shape parameters. (a) Joints by C1 continuity; (b) connected graph by C1 continuity; (c) graph of
C1 continuity by varying shape parameters; (d) joints by C2 continuity; (e) connected graph by C2

continuity; (f) graph of C2 continuity by variation of shape parameters; (g) joints by C3 continuity;
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Figure 14. Modeling by the C1, C2, and C3 smooth continuity of GHT-Bézier curves by varying
shape parameters. (a) Joints by C1 continuity; (b) connected graph by C1 continuity; (c) graph of
C1 continuity by varying shape parameters; (d) joints by C2 continuity; (e) connected graph by C2

continuity; (f) graph of C2 continuity by variation of shape parameters; (g) joints by C3 continuity;
(h) connected graph by C3 continuity; (i) graph of C3 continuity by variation of shape parameters.

Example 10. It is well known that in geometric continuity, the tangents are collinear, and they may not have
the same magnitude, while in parametric continuity, the magnitudes of the vectors are always equal. Due to
these distinctions, the curves obtained by geometric continuity have more smoothness as compared to the curves
obtained by parametric continuity.
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these distinctions, the curves obtained by geometric continuity have more smoothness as compared to the curves
obtained by parametric continuity.
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Figure 15 displays the disparate shapes constructed by G1, G2, and G3 continuity conditions. In Figure 15a,
a beautiful shape of a duck is constructed by G1 continuity constraints. The blue circles in this figure highlight
the junction between the two curves (initial curve and the curve obtained after applying continuity conditions).
Similarly, Figure 15b shows the spliced graph of a duck, while the variation in curves by varying the shape
parameters can be seen in Figure 15c as dashed and dashed-dotted lines.

The shape of an elephant wasis constructed by using G2 continuity conditions. Just like Figure 15a, the
tiny blue circles demonstrate the continuity conditions between the initial and final curve (the curve obtained

Figure 15. Modeling of complex figures by G1, G2, and G3 smooth continuity, respectively,
of GHT-Bézier curves with multiple shape parameters. (a) Joints by G1 continuity; (b) connected
graph of G1 continuity; (c) connected graph of G1 continuity by varying shape parameters; (d) joints by
G2 continuity; (e) connected graph by G2 continuity; (f) graph of G2 continuity by variation of shape
parameters; (g) joints by G3 continuity; (h) connected graph of G3 continuity; (i) graph of G3 continuity
by variation of shape parameters.

Figure 15 displays the disparate shapes constructed by G1, G2, and G3 continuity conditions. In Figure 15a,
a beautiful shape of a duck is constructed by G1 continuity constraints. The blue circles in this figure highlight
the junction between the two curves (initial curve and the curve obtained after applying continuity conditions).
Similarly, Figure 15b shows the spliced graph of a duck, while the variation in curves by varying the shape
parameters can be seen in Figure 15c as dashed and dashed-dotted lines.

The shape of an elephant wasis constructed by using G2 continuity conditions. Just like Figure 15a, the tiny
blue circles demonstrate the continuity conditions between the initial and final curve (the curve obtained after
continuity conditions) segments given in Figure 15d. The very next figure gives us the splicing graph of the
elephant obtained by G2 continuity and Figure 15e shows the spliced graph. The dashed and dashed-dotted lines
demonstrate the variation in the values of the shape parameters.

After G1 and G2 continuity conditions, now we turn to construct any figure by using G3 continuity
conditions to show the efficiency of GHT-Bézier curves in modeling and shape preserving processes. Here,
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in Figure 15g–i, the modeling of a natural number three is presented by using G3 continuity conditions,
which shows that sketching and modeling can also be possible by using GHT-Bézier curves with the continuity
constraints. In Figure 15g, the blue circles show the joint points of the initial and final curves. Here, four different
curves are joined with each other and compiled in Figure 15h. In Figure 15i, the dashed curves are obtained by
varying multiple shape parameters. The control points for all these figures are mentioned as follows. In this
figure, the continuity conditions between the magenta curve of degree three and the green curve of degree
four are presented. For the magenta curve, the control points are P∗0 = (0.02, 0.0103), P∗1 = (0.02, 0.0103),
P∗2 = (0.039, 0.0115), and P∗3 = (0.0293, 0.01918), while the first three control points of the green curve
are obtained by continuity conditions, and the last control point is adjusted by our own choice and taken as
Q∗4 = (0.026, 0.0194). The shape parameters can also be adjusted to obtain the desired curve. Similarly, yellow,
red, and purple curves are the initial curves, while pink, blue, and orange curves are obtained by using continuity
conditions. Their control points are adjusted to obtain the required shape. Finally, by joining all these curves,
we obtained a perfect shape of a natural number three. To beautify this shape, we altered the values of the shape
parameters in their domain and obtained a beautiful graph given in Figure 15i.

8. Conclusions

We know that GHT-Bézier curves, as well as classical Bézier curves are very useful for image
processing, graphics, and font designing. By using two points, we can only draw a straight line.
However, as we increase the number of control points, we can obtain any curved shape. However,
when we talk about the modeling of complex figures and font designing, only a single GHT-Bézier
curve is not sufficient. To solve this issue, the parametric and geometric continuity conditions up to
degree three (C3 and G3 continuity) between any two GHT-Bézier curves were derived in this research
paper. The curvature junction by using the G2 and G3 continuity of GHT-Bézier curves and classical
Bézier curves was also discussed. Further, we mentioned the parametric and geometric continuity
conditions of GHT-Bézier curves along with curvature junction. However, the new approach given
in this research paper was the derivation of the G3 continuity condition for geometric modeling of
complex figures, and as far as we are aware, it has never been employed for this purpose before.

Moreover, by using (C3 and G3) continuity conditions, we mentioned some useful applications
by the construction of some complex figures and font designing as well. The variation in the figures
with multiple shape parameters was also given. The technique proposed in this study could develop
curves whose mathematical complication is not increased, which makes it more useful in practical
applications. Some curve design examples exhibited that this scheme was more convenient, flexible,
and effective for both curve and surface interaction modeling and had significant mathematical and
applied applications. Additionally, this scheme could be applied in the future to generate trigonometric
surfaces over triangles with multiple shape parameters.
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The following abbreviations are used in this manuscript:

CAGD computer-aided geometric design
CAM computer-aided manufacturing
GHT generalized hybrid trigonometric
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C1 parametric continuity of degree one
C2 parametric continuity of degree two
C3 parametric continuity of degree three
G1 geometric continuity of degree one
G2 geometric continuity of degree two
G3 geometric continuity of degree three
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