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Abstract: Multistep methods for the numerical solution of ordinary differential equations are an
important class of applied mathematical techniques. This paper is motivated by recently reported
advances in semi-implicit numerical integration methods, multistep and extrapolation solvers.
Here we propose a novel type of multistep extrapolation method for solving ODEs based on
the semi-implicit basic method of order 2. Considering several chaotic systems and van der Pol
nonlinear oscillator as examples, we implemented a performance analysis of the proposed technique
in comparison with well-known multistep methods: Adams–Bashforth, Adams–Moulton and the
backward differentiation formula. We explicitly show that the multistep semi-implicit methods can
outperform the classical linear multistep methods, providing more precision in the solutions for
nonlinear differential equations. The analysis of stability regions reveals that the proposed methods
are more stable than explicit linear multistep methods. The possible applications of the developed
ODE solver are the long-term simulations of chaotic systems and processes, solving moderately stiff
differential equations and advanced modeling systems.

Keywords: numerical integration; multistep methods; semi-implicit methods; chaotic systems;
extrapolation; ODE solver

1. Introduction

In recent years, tools for computer simulation have become increasingly important in various fields
of science. Computational experiments allow one to obtain new knowledge about the properties and
dynamics of the object under investigation without the significant economic and time costs and risks
that attend a full-scale experiment. To study the continuous dynamical systems described by ordinary
differential equations (ODE), numerical integration methods are traditionally used. While the scale
and complexity of the systems under investigation increase, one needs more sophisticated and efficient
integration techniques [1]. Therefore, the advanced numerical methods used to simulate dynamical
systems should possess great stability, precision and low computational costs. In engineering
applications, especially while solving high-dimensional initial value problems (IVP), multistep
integration is widespread [2].

Being compared to their single-step counterparts, multistep methods employ one call to the
right-hand-side function per each integration step. To obtain the numerical solution with the desired
accuracy, such algorithms reuse values calculated at previous steps. Therefore, multistep algorithms
significantly exceed single-step integration in computational speed. However, the well-known problem
of such integration is a decrease in numerical stability with an increase in the accuracy order of the
chosen scheme. This property restricts the application of high-order multistep methods for solving
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stiff ODE systems excluding implicit methods, such as backward differentiation formulas (BDF) [3].
However, the application of implicit methods involves computationally expensive approximation of
the numerical solution at the next point using Newton’s method or some other iterative technique.
This fact eliminates one of the main advantages of multistep algorithms—their computational simplicity
and high efficiency.

Several approaches that circumvent the so-called Dahlquist order barrier, including the second
derivative multistep method [4], hybrid linear multistep methods [5–7], and extended backward
differentiation formulas [8], were recently proposed. Being applied to the stiff ODEs, such methods
have shown high numerical efficiency.

Recent studies also revealed the possibility to construct efficient implicit–explicit linear multistep
methods for stiff problems [5,6,9]. One of the prospective techniques combining the advantages of
implicit and explicit integration for the numerical solution of differential equations is semi-implicit
integration. High-performance compositional [10] ODE solvers based on semi-implicit single-step
calculations have been proposed. Efficient techniques for non-Hamiltonian systems [11] simulation were
developed based on Aitken–Neville extrapolation and the semi-implicit symmetric basic method [12].
It has been shown that, compared with other integration algorithms, semi-implicit methods demonstrate
good stability and low computational costs, which allows outperforming both explicit and implicit
techniques [13]. Thus, semi-implicit integration no longer remains a specialized tool for Hamiltonian
systems and can be efficiently applied to the general class of initial value problems (IVP).

One of the most efficient single-step numerical integration techniques is extrapolation solvers [4].
The well-known ODEx solver, based on the Gragg–Bulirsch–Stoer method, is one of the most
efficient explicit integration methods [14]. Being implemented with adaptive stepsize it can be
even more numerically efficient than embedded Runge-Kutta methods [15]. However, although the
first studies of extrapolation multistep schemes have been known since the 1970s [12], there are no
multistep extrapolation solvers presented in the modern simulation software. Thus, it is of interest to
develop semi-implicit multistep methods based on numerical extrapolation techniques. In this paper,
we suggest closing this gap by introducing a novel multistep ODE solver combining the advantages of
the extrapolation technique and the semi-implicit symmetric basic method.

The rest of the paper is organized as follows. In Section 2, a novel type of multistep integration
methods is described and tables of coefficients are given for solvers of order 3–6 in “full” and “short”
form. Section 3 represents the set of computational experiments. We introduce several nonlinear test
systems and estimate the computational efficiency of the compared methods through performance plots.
In Section 4, we investigate the stability and convergence of ESIMM methods. Finally, in Section 5,
some conclusions and discussion are given.

2. Materials and Methods

Consider a basic symmetric integration method for solving IVP of order p. A sequence of local
error terms after stepping from the point xn to xn+1 with a stepsize h reads

x(tn+1) = xn+1 + hp+1ep+1 + hp+2ep+2 + . . . (1)

A sequence of local error terms after stepping from the previous point xn−1 to xn+1 with a stepsize
2h reads

x(tn+1) = xn+1 + 2p+1hp+1ep+1 + 2p+2hp+2ep+2 + . . . (2)

Following the idea of extrapolation methods [4,12], let us combine the solution at the point n + 1
with the stepsize h (denote it as T1) and the solution at the same point with the stepsize 2h (denote it as
T2) as follows:

xn+1 = k1T1 + k2T2 (3)
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The dataflow representation of this combination is depicted in Figure 1. Keeping in mind
Aitken-Neville interpolation rule, let us select the coefficients k1 and k2 so as to satisfy the
following conditions: {

k1 + k2 = 1
k1 + 2p+1k2 = 0

(4)
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Figure 1. Graphical interpretation of the proposed multistep algorithm: solution T1 obtained with
stepsize h from the point xn and solution T2 obtained with stepsize 2h from the point xn−1 are combined
to obtain a higher-order solution. Basic integration methods are denoted as Φh and Φ2h with respect to
the stepsize.

The system of Equation (4) can be analytically solved as k1 = 2p+1

2p+1−1
k2 = −1

2p+1−1

For example, for the method of order 3 with p = 2 we have:

k1 =
8
7

, k2 =
−1
7

This allows eliminating the term by the error ep+1 and increasing the order by one.
Let us organize the computational process in a cascade manner as shown in Figure 2. The main

term Tij represents a component in the extrapolation table on i-th stage on the j-th line. Indices by
coefficients km

ij are the following: m denotes whether it is the coefficient by the first or the second term,
with the sum giving the term Tij.
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A general form for increasing an order can be obtained if we consider how the operation (3) affects
the error terms in (1) and (2). Introducing the matrix formalism, for the coefficients on the first stage
one can obtain

k12 =

(
k1

12
k2

12

)
;
(

1 1
1 2p+1

)(
k1

12
k2

12

)
=

(
1
0

)
(5)
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After the first stage of extrapolation, equations for two approximations of x(tn+1) denoted as T12

and T22, which are then multiplied by k1
13 and k2

13 respectively, are as follows:

T12 = xn+1 +
(
k1

12hp+2 + k2
12(2h)p+2

)
ep+2 + . . .

T22 = xn+1 +
(
k1

22hp+2 + k2
22(3h)p+2

)
ep+2 + . . .

Let us rewrite them using a vector form:

T12 = xn+1 + ( k1
12 k2

12)

(
1

2p+2

)
hp+2ep+2 + . . .

T22 = xn+1 + ( k1
22 k2

22)

(
1

3p+2

)
hp+2ep+2 + . . .

Similar to the Equation (5), the final equation for k13 reads:

k13 =

(
k1

13
k2

13

)
;


1 1

kT
12

(
1

2p+2

)
kT

13

(
1

3p+2

) 
(

k1
13

k2
13

)
=

(
1
0

)
(6)

Continuing such a sequence of operations, obtain an equation for k14:
1 1

k13


kT

12

(
1

2p+3

)
kT

13

(
1

3p+3

)
 k23


kT

12

(
1

2p+3

)
kT

14

(
1

4p+3

)



(

k1
14

k2
14

)
=

(
1
0

)
(7)

Continuing this process, we can derive the coefficients for the method of an arbitrary accuracy
order. For the basic symmetric method of order 2, the coefficients for the 6-order multistep extrapolation
method are given in Table 1.

Table 1. Coefficients of the 6th order multistep extrapolation method with 2nd order basic method.

Order Coefficient Value

3

k12 (8/7; −1/7) T

k22 (27/26; −1/26) T

k32 (64/63; −1/63) T

k42 (125/124; −1/124) T

4
k13 (189/85; −104/85) T

k23 (8/5; −3/5) T

k33 (875/627; −248/627) T

5
k14 (272/83; −189/83) T

k24 (10625/4982; −5643/4982) T

6 k15 (51875/12019; −39856/12019) T

Let us call the method illustrated by Figure 2 and Table 1, a “full” ESIMM method. However,
one can use a simplified (“short”) version of the same method:

xn+1 = xn +
s∑

i=1

kiTi1.



Mathematics 2020, 8, 943 5 of 18

In order to obtain coefficients ki for the “short” version of the method, consider the Taylor
expansion for kix(tn+1) through Ti1 up to the desired order of the error term s + p:

k1x(tn+1) = k1T11 + k1hp+1ep+1 + k1hp+2ep+2 + . . .+ k1hp+sep+s,
k2x(tn+1) = k2T21 + k2(2h)p+1ep+1 + k1(2h)p+2ep+2 + . . .+ k1(2h)p+sep+s,
ksx(tn+1) = ksTs1 + ks(sh)p+1ep+1 + ks(sh)p+2ep+2 + . . .+ ks(sh)p+sep+s

One can see, that that the sum of ki equals 1, while the sum of any other terms by any power of h
equals zero, which can be written as a system of linear algebraic equations:

1 1 1 . . . 1
1 2p+1 3p+1 . . . sp+1

1 2p+2 3p+2 . . . sp+2

...
1 2p+s 3p+s . . . sp+s





k1

k2

k3
...

ks


=



1
0
0
...
0


,

from where ki can be easily found. Table 2 represents the coefficients for the “short” method version.

Table 2. Coefficients for “short” ESIMM methods of order 3-6

Order 2 1 - - - -

Order 3 8
7

−1
7 - - -

Order 4 108
85

−27
85

4
85 - -

Order 5 576
415

−216
415

64
415

−9
415 -

Order 6 18000
12019

−9000
12019

4000
12019

−1125
12019

144
12019

One can obtain coefficients for methods of higher order following the general logic of this approach.
It should be noted that this technique is efficient only when a self-adjoint symmetric basic method is
chosen. In our study, we used the semi-implicit CD [11,12] method of order 2, but the implicit midpoint
method can be used as a basic method as well.

3. Results

In this section, we investigate the performance of two versions of the extrapolation semi-implicit
multistep (ESIMM) method. Let us recall, that the first version is labeled as “full” and obtains a
solution using a direct calculation scheme with the full set of coefficients per each solution step.
The second version, named “short”, uses pre-calculated coefficients values for each stage and sums the
weighted results, which results in an increased calculation speed at the cost of a possibly insignificant
decrease in accuracy compared to the “full” version due to the round-off error. All multistep methods
under investigation were used with the Dormand–Prince 8 (DOPRI8) method as a starting solver and
reference solution. All the experiments were performed in an NI LabVIEW 2018 environment with
double floating-point precision.

We have chosen several well-known nonlinear dynamical systems as a test set for the numerical
method investigation.

3.1. Rössler Attractor

The system was proposed by Otto E. Rossler [16], and can be described as follows:
dx
dt = −y− z
dy
dt = x + ay
dz
dt = b + z(x− c)

(8)
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where a, b and c are system parameters. The semi-implicit basic method of order 2 for the system (8)
can be formulated as [11–13]:

yn+0.5 = yn +
h
2
∗ (xn + a ∗ yn)

zn+0.5 = zn +
h
2
∗ (b + zn

∗ xn
− c ∗ zn)

xn+1 = xn + h
(
−yn+0.5

− zn+0.5
)

zn+1 =
zn+0.5 + h

2 ∗ b

1− h
2 ∗ xn+1 + c ∗ h

2

yn+1 =
yn+0.5 + h

2 ∗ xn+1

1− a ∗ h
2

We carried out experiments with the following parameter values: a = 0.2, b = 0.2, c = 5.7.
Other simulation parameters, including simulation time, stepsize values, initial conditions and number
of measurements are given in Table 3.

Table 3. Parameters used with the experiments with the Rossler system.

Order of Accuracy 3 4 5 6

Step values, sec.

0.02
0.015
0.01

0.008
0.006
0.003
0.002
0.001

0.02
0.015
0.01

0.008
0.006
0.003
0.002
0.0015

0.008
0.0075
0.006
0.005
0.004
0.003

0.0025
0.002

Initial conditions (1; 1; 1)

Simulation time, sec. 40

Number of code runs 50

One can see from Figure 3 that the proposed semi-implicit extrapolation multistep method
(ESIMM) possesses better performance than well-known linear multistep methods. The “short” version
of ESIMM provides a great balance between computational cost and accuracy, while the “full” version
is slightly more precise but requires more time to perform calculations. Classical explicit multistep
methods such as Adams–Bashforth tend to have closer performance in higher-order schemes but are
still significantly less accurate compared to the proposed method.
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3.2. Sprott System Case A and Case E

These two systems were proposed by J.C. Sprott in his famous paper [17] and can be written as
following initial value problems: 

dx
dt = ay
dy
dt = −x + yz
dz
dt = b− y2

(9)


dx
dt = yz
dy
dt = x2

− y
dz
dt = d− 4x

(10)

Sprott Case A is a conservative chaotic system and exhibits chaotic behavior with parameter
values a = 1, b = 1. The basic semi-implicit symmetric algorithm for the Sprott Case A system is
as follows:

xn+0.5 = xn +
h
2
∗ (a ∗ yn)

yn+0.5 = yn +
h
2
∗

(
yn
∗ zn
− xn+0.5

)
zn+1 = zn + h

(
b− yn+0.5

∗ yn+0.5
)

yn+1 =
yn+0.5

− xn+0.5
∗

h
2

1− h
2 ∗ zn+1
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xn+1 = xn+0.5 +
h
2
∗

(
a ∗ yn+1

)
The semi-implicit basic method for the Sprott Case E system can be written as:

xn+0.5 = xn +
h
2
∗ (yn

∗ zn)

yn+0.5 = yn +
h
2
∗

(
xn+0.5

∗ xn+0.5
− yn

)
zn+1 = zn + h

(
d− 4 ∗ xn+0.5

)
yn+1 =

yn+0.5 + h
2 ∗

(
xn+0.5

∗ xn+0.5
)

1 + h
2

xn+1 = xn+0.5 +
h
2
∗

(
yn+1

∗ zn+1
)

Parameter value d = 11 corresponds to the chaotic regime of oscillations. Figure 4 represents the
performance analysis for all investigated methods including the proposed ESIMM algorithms.

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 18 

 

 

Figure 4. Performance plots for simulating Sprott Case A system by various multistep methods with 
the accuracy of order 3, (b) order 4, (c) order 5 and (d) order 6. 

Thus, the numerical efficiency of the ESIMM algorithm decreases with the increase in accuracy 
order due to the one extra calculation of RHS function per order, unlike classical multistep methods. 

The simulation of the Sprott Case E system confirmed the preliminary results. One can see from 
Figure 5 that the performance gain of ESIMM methods over the Adams–Bashforth method decreases 
as the order of the scheme increases. However, the overall results are inspiring due to the known fact 
that the application of Adams–Bashforth method with orders of accuracy 6 and higher is rare due to 
the stability issues. Table 5 gives some information on the simulation parameters. 

Table 5. Parameters used in experiments with the Sprott Case E system. 

Order 3 4 5 6 

Step values, sec. 

0.085 
0.07 
0.055 
0.04 
0.03 
0.02 
0.01 
0.005 

0.02 
0.015 
0.01 

0.008 
0.006 
0.003 
0.0025 
0.002 

0.06 
0.055 
0.05 
0.04 
0.03 
0.02 
0.01 
0.005 

Parameter d value 1 
Initial conditions (1; 0; −2) 

Figure 4. Performance plots for simulating Sprott Case A system by various multistep methods with
the accuracy of order 3, (b) order 4, (c) order 5 and (d) order 6.

The rest of the parameters used to perform the numerical experiments with the system (9) are
given in Table 4. One can see from Figure 4 that the performance of the ESIMM methods in the case of
the conservative chaotic system Sprott Case A was unexpectedly lower despite the symmetry of the
underlying basic semi-implicit method.
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Table 4. Parameters used in experiments with the Sprott Case A system.

Order 3 4 5 6

Step values, sec.

0.04
0.03

0.025
0.02

0.015
0.012
0.01

0.008

Initial conditions (1; 1; 1)

Number of code runs 55

Thus, the numerical efficiency of the ESIMM algorithm decreases with the increase in accuracy
order due to the one extra calculation of RHS function per order, unlike classical multistep methods.

The simulation of the Sprott Case E system confirmed the preliminary results. One can see from
Figure 5 that the performance gain of ESIMM methods over the Adams–Bashforth method decreases
as the order of the scheme increases. However, the overall results are inspiring due to the known fact
that the application of Adams–Bashforth method with orders of accuracy 6 and higher is rare due to
the stability issues. Table 5 gives some information on the simulation parameters.
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Table 5. Parameters used in experiments with the Sprott Case E system.

Order 3 4 5 6

Step values, sec.

0.085 0.02 0.06
0.07 0.015 0.055

0.055 0.01 0.05
0.04 0.008 0.04
0.03 0.006 0.03
0.02 0.003 0.02
0.01 0.0025 0.01

0.005 0.002 0.005

Parameter d value 1

Initial conditions (1; 0; −2)

Simulation time, sec. 30

Number of code runs 40

By analyzing results shown in Figures 4 and 5, one can conclude that the semi-implicit ESIMM
methods perform well with both conservative (Sprott case A) and dissipative (Sprott case E) systems.
They are significantly faster than all other listed methods and give us a rather accurate representation of
systems behavior. However, implicit multistep methods such as Adams–Moulton can be more accurate
than ESIMM in higher-order schemes, but the proposed method proposes the best trade-off between
precision and simulation time, which is extremely important in long-term simulations. To investigate
the impact of stiffness on the investigated methods, we additionally considered one more system that
is well known as a testbench for numerical integration methods.

3.3. Van der Pol System

This classical nonlinear oscillator was proposed by Balthasar van der Pol [18] and can be written
as the following IVP:  dx

dt = y
dy
dt = m(1− x2)y− x

(11)

This system is important for our study because the value of parameter m determines the stiffness
of the system. The algorithm of the basic symmetric CD method for the system (11) is as follows:

yn+0.5 = yn +
h
2
∗ (m ∗ (1− xn

∗ xn) ∗ yn
− xn)

xn+1 = xn + h ∗ yn+0.5

yn+1 =
yn+0.5

−
h
2 ∗ xn+1

1− h
2 ∗m ∗ (1− xn+1 ∗ xn+1)

The simulation parameters are given in Table 6. The parameter m initially was set to 1, but for
higher-order schemes we reduced it to 0.5 to avoid the loss of stability of explicit methods.
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Table 6. The parameters used for experiments with the van der Pol system.

Order 3 4 5 6

Step values

0.02 0.01 0.01
0.015 0.008 0.008
0.01 0.007 0.007

0.008 0.006 0.006
0.006 0.005 0.0055
0.005 0.0045 0.005
0.0045 0.004 0.0045
0.004 0.0035 0.004

Parameter value 1 0.5

Initial conditions (1; 0) (5; 3) (2; 1)

Simulation time, sec. 30

Number of code runs 40

We varied the initial conditions during the experiments to ensure that they do not significantly
affect the obtained results. The performance plots for the van der Pol system are shown in Figure 6.
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One can see from Figure 6 that implicit linear multistep methods are slightly more accurate than
other considered algorithms. Explicit methods such as Adams–Bashforth are, on the other hand, as fast
as semi-implicit ones but they lose their accuracy due to less numerical stability. Further increase in m
leads to total stability loss for Adams–Bashforth methods. We illustrated this in the final experiment
with this system, the results of which are shown in Figure 7. One can see the higher stability of
semi-implicit multistep methods in comparison with their well-known explicit counterparts. However,
the Adams–Moulton method appears to be the most precise among the investigated algorithms, but the
“short” version of the ESIMM solver generally outperforms it due to lower computational costs.
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4. Stability Analysis

4.1. Order Plots and Convergence Test

To experimentally evaluate the convergence of the methods under investigation, we applied the
approach known as order plots. This type of analysis involves the definition of global truncation error
for a numerical method of order N, which can be generally described as E = O (h) N, where O is a
system-dependent constant and h is integration stepsize [19]. In our experiment, the truncation error
was estimated numerically through the simulation of the Rossler nonlinear oscillator by all methods
under investigation with stepsize h and h/2. Then, order plots can be constructed as E(h)/E (h/2) vs.
stepsize h. An order plot for an “ideal” numerical method of accuracy order 4 should be a horizontal
line equal to 16, or for order 5 equal to 32, etc. Thus, the investigated finite-difference scheme can be
considered more stable if its order plot is situated higher on the Y-axis and converges faster to the
“ideal” line while stepsize decreases. One should note that this method evaluates the convergence and
order preservation only empirically and for a certain test problem. We used the 2-norm of maximum
truncation errors of all state variables of the system to estimate E(h) and E(h/2).

Figures 8 and 9 show the order plots for all investigated solvers of order 4 and 5, respectively.
We omitted the plot for the “full” ESIMM method because it possesses minimal differences from the
“short” version in this experiment. One can see from Figure 8 that the proposed method outperforms
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both explicit and implicit linear multistep methods on the Rossler problem, being closer to the ideal
method of order 4 (E(h)/E(h/2) = 16). Figure 9 represents real order evaluation for multistep methods of
order 5. The left-hand part of the order plot can be used to roughly evaluate the convergence empirically.
One can see that the ESIMM method quickly converges to the “ideal” order 5 (E(h)/E(h/2) = 32) while
stepsize decreases. Other methods under investigation show similar convergence, but the explicit
Adams–Bashforth method loses stability at a certain stepsize value. Thus, we can conclude that
the proposed semi-implicit extrapolation methods can be more stable than explicit linear multistep
methods, and possess higher practical order of accuracy for a given set of problems. This confirms the
theoretically predicted properties of such methods. However, the analytical investigation of numerical
stability is still needed, including the plotting of stability regions.
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4.2. Stability Regions

To analytically evaluate the stability of ESIMM methods we will use a technique based on the
known approach with 2-dimensional test problems [11,20]. Let us recall that the semi-implicit methods
exist only for the initial value problems of dimension 2 or greater, and one needs a special technique
here. Consider a 2-dimensional autonomous test problem

.
x = Ax, A =

(
a b
c d

)
.

Let eigenvalues of the matrix A be
λ12 = σ± jω.

Then, the contents of the matrix can be determined by two free parameters, denote them r ≥ 0
(eccentricity coefficient) and k ≥ 0 (asymmetry coefficient):

a = kd,
b = rc,

c = −
√

1
r

(
λ2

1 − (1 + k)d λ1 + k d2
)

d = 2σ
1+k .

,

The shape of the stability region depends on k, reaching its maximal size when k = 1,
which corresponds to the Jordan normal form of the matrix, and minimal size when k = 0 or
k = ∞, which corresponds to the Frobenius normal form of the matrix. The stability region for the
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2-dimensional problem is the area in the complex plane where the absolute values of complex conjugate
eigenvalues of the matrix R(Ah) are not greater than 1.

Let stability region be Rh(Ah) for stepsize h , R2h(Ah) for stepsize 2h, and so on. Then, for the
two-dimensional test problem, the s-stage multistep semi-implicit method can be written in terms of a
shift operator z : xn+s = zsxn as follows:

zsx0 = k1Rh(Ah)zs−1x0 + k2R2h(Ah)zs−2x0 + . . .+ ksRsh(Ah)x0. (12)

From the recurrence equation (12), implying that x0 , (0 0)>, and denoting the identity matrix as
I, one can obtain the characteristic equation of the method:

det
(
Izs
− k1Rh(Ah)zs−1

− k2R2h(Ah)zs−2
− . . .− ksRsh(Ah)

)
= 0.

Then, the stability region of the ESIMM method is a region where the maximal absolute value
of the root zmax of the characteristic polynomial det

(
Izs
− k1Rh(Ah)zs−1

− . . .− ksRsh(Ah)
)

satisfies the
condition |zmax | ≤ 1.

Stability regions of “full” and “short” ESIMM methods are almost the same and are given in
Figures 10 and 11. For comparison, we provide stability regions of explicit Adams-Bashforth and
implicit Adams-Moulton linear multistep methods as Figures 12 and 13, respectively.
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Observing the results of stability analysis, one can see that theoretically predicted properties of
the ESIMM methods and the results of the order plot analysis were successfully confirmed. ESIMM
methods possess numerical stability that is comparable with implicit Adams-Moulton methods and is
far superior to the stability of explicit Adams-Bashforth methods. Despite the fact that the numerical
stability of semi-implicit methods strongly depends on the symmetry of the investigated system, we
can declare that even in a worth case (full asymmetry of the simulated system) their stability is better
than the stability of explicit linear multistep methods which allows implementing these methods with
larger stepsizes.

5. Conclusions and Discussion

In this paper, we proposed novel multistep extrapolation methods based on semi-implicit
symmetric integration. We explicitly show that the proposed ESIMM integration technique in many
cases of nonlinear systems possesses greater performance then well-known multistep ODE solvers.
We investigated the order and convergence of the investigated methods experimentally through the
order plots using Rossler chaotic system as a testbench. One of the important research questions
was the analytical estimation of the numerical stability of ESIMM methods. The investigation of the
numerical stability of semi-implicit methods is rather complicated due to their non-trivial call to the
right-hand-side function. We used a technique based on second-order linear test problems [11,20]
which allowed plotting stability regions for ESIMM and comparing them with stability regions of
linear multistep methods.

We explicitly show that the proposed ESIMM solvers are more numerically stable than explicit
Adams–Bashforth methods, and, in some cases, implicit Adams-Moulton methods. Moreover,
the stepsize range where the order of ESIMM methods preserves, theoretically allows constructing
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highly efficient multistep extrapolation solvers with adaptive stepsize. Being based on numerical
extrapolation, ESIMM methods possess the same capacity to construct built-in estimators of local
truncation error as single-step extrapolation solvers. Besides, the ESIMM ODE solvers do not
need the concatenation procedure for output data obtained during the starting method and main
solution, which also simplifies and fastens the algorithm. The computational cost of the proposed
methods was estimated experimentally and is visualized through the performance plots. The program
implementation of the proposed methods is significantly simpler than for implicit multistep solvers.
Speaking generally, the ESIMM methods are almost as simple as explicit multistep methods, being
almost as precise as implicit multistep methods. One of the main drawbacks of the ESIMM method is
the necessity to increase the number of basic method calculations by 1 per each increase in the accuracy
order. Therefore, high-order solvers, based on the proposed technique, can be less efficient.

In our further studies we plan to implement ESIMM solvers with adaptive stepsize, which requires
the development of special step control and coefficient recalculation techniques. ESIMM methods
based on other symmetric integrators, e.g., implicit midpoint method or composition solvers [10],
are also to be studied.
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