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Abstract: We first consider a second order coupled differential system with nonlinearities involved
two unknown functions and their derivatives, subject to a new kinds of multi-point and multi-strip
boundary value conditions. Since the coupled system contains two dependent variables and their
derivatives, the classical method of upper and lower solutions on longer applies. So we adjust and
redefine the forms of upper and lower solutions, to establish the existence results. Secondly, we study
a Caputo fractional order coupled differential system with discrete multi-point and integral multi-strip
boundary value conditions which are very popular recently, and can accurately describe a lot of
practical dynamical phenomena, such as control theory, biological system, electroanalytical chemistry
and so on. In this part the existence and uniqueness results are achieved via the Leray-Schauder’s
alternative and the Banach’s contraction principle. Finally, an example is presented to illustrate the
main results.

Keywords: coupled system; multi-point and multi-strip; lower and upper solutions; fractional order;
the fixed point theorems

1. Introduction

In this paper, we study the existence results to a coupled systems of nonlinear differential
equations with multi-point and multi-strip boundary conditions. In the first part, we consider the
following second-order coupled differential system{

u′′(t) + f (t, u(t), v(t), u′(t), v′(t)) = 0, t ∈ (0, 1),

v′′(t) + g(t, u(t), v(t), u′(t), v′(t)) = 0, t ∈ (0, 1),
(1)

equipped with the following boundary value conditions

u(0)−
m

∑
i=1

µ1iu(θ1i) =
m

∑
i=1

λ1i

∫ ξ1i

0
u(s)ds,

u(1) +
m

∑
i=1

γ1iu(ϑ1i) =
m

∑
i=1

δ1i

∫ η1i

0
u(s)ds,

v(0)−
m

∑
i=1

µ2iv(θ2i) =
m

∑
i=1

λ2i

∫ ξ2i

0
v(s)ds,

v(1) +
m

∑
i=1

γ2iv(ϑ2i) =
m

∑
i=1

δ2i

∫ η2i

0
v(s)ds,

(2)
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where 0 ≤ θji, ξ ji, ϑji, ηji ≤ 1, µji, λji and δji are nonnegative constants, γji is negative constant,
for i = 1, 2, . . . , m, j = 1, 2, f , g : [0, 1]×R4 → R are continuous. We come to the results by applying
the method of upper and lower solutions.

Coupled differential systems are one of the most potential fields since a variety of extensive
application in the real word such as physics, chemistry, aerodynamics, rheology, viscoelasticity and so
on. For some recent research achievement, readers are referred to a series of books and papers [1–12].

It is generally known that the method of upper and lower solutions is a classical and powerful
mechanism that offers existence criterion conditions, for instance, see References [13–22].

In Reference [13], by using the method of upper and lower solutions, authors established an
existence results of solutions to a second order coupled differential systems integral boundary value
problems in which the nonlinear terms of the system are only related to the unknown functions. Further,
in Reference [14], by the same way, authors also studied an existence criterion to a fractional differential
equations in which the nonlinear terms depends on unknown functions and its lower derivatives.
However, the model in Reference [14] is only a fractional differential equation, not a coupled differential
system. Compared with the existing literature [15–17], it is not difficult to find that by using the upper
and lower solution method to prove the existence results, the left boundary conditions of boundary
value problems discussed are usually equal to zero, which makes straightforward to prove that the
solution of the auxiliary truncation function is just between the upper and lower solutions.

In this paper, problem (1) is not only a coupled system with two differential equations in which
nonlinear functions depends on all the lower derivative functions, but also boundary conditions (2)
is bilateral symmetric, which are nonlocal multi-point and multi-strip boundary conditions. For this
reason, problem (1) and (2) is more extensive, meanwhile it leads to more details and difficulties in the
proof, which also reflects the value of our conclusion. Accordingly, we will devote our efforts to seek
suitable definitions of upper and lower solutions to problem (1) and (2), to establish the criterion of the
existence results by the virtue of the Schauder fixed point theorem.

In the second part, we extend our model to the fractional case by considering the following
coupled system {cDα1

0+u(t) + f (t, u(t), v(t), cDα1−1
0+ u(t), cDα2−1

0+ v(t)) = 0, t ∈ (0, 1),
cDα2

0+v(t) + g(t, u(t), v(t), cDα1−1
0+ u(t), cDα2−1

0+ v(t)) = 0, t ∈ (0, 1),
(3)

with the multi-point fractional derivatives and multi-strip fractional integral boundary conditions

u(0)−
m

∑
i=1

µ1i
cDq1

0+u(θ1i) =
m

∑
i=1

λ1i I
p1
0+u(ξ1i),

u(1) +
m

∑
i=1

γ1i
cDq1

0+u(ϑ1i) =
m

∑
i=1

δ1i I
p1
0+u(η1i),

v(0)−
m

∑
i=1

µ2i
cDq2

0+v(θ2i) =
m

∑
i=1

λ2i I
p2
0+v(ξ2i),

v(1) +
m

∑
i=1

γ2i
cDq2

0+v(ϑ2i) =
m

∑
i=1

δ2i I
p2
0+v(η2i),

(4)

where 0 ≤ θji, ξ ji, ϑji, ηji ≤ 1, µji, λji, γji and δji are nonnegative constants, for i = 1, 2, . . . , m, j = 1, 2.
cDαi

0+, cDαi−1
0+ and cDqi

0+ are the Caputo fractional derivatives of order 1 < αi ≤ 2, 0 < qi < αi − 1, pi > 0,
i = 1, 2. f , g : [0, 1]×R4 → R are continuous.

Fractional order differential systems have been shown to be more realistic and accurate than
integer order differential systems [23–33]. Especially, coupled systems of fractional differential
equations appear often in investigations connected with anomalous diffusion [27], ecological
models [28] and disease models [29–31]. Driven by the wide range of the applications, it is essential
to theoretically establish the existence results of solutions. Recently, in Reference [32], Ahmad
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and Ntouyas considered a coupled system of Hadamard type fractional equations. The authors
of Reference [33] studied the existence and uniqueness of solutions to a coupled system of nonlinear
fractional differential equations with fractional integral conditions.

In Reference [34], authors considered the existence and uniqueness conclusions to the coupled
Riemann-Liouville’s fractional order differential systems:{

Dα1
0+u(t) + f1(t, u(t), v(t)) = 0, t ∈ (0, 1),

Dα2
0+v(t) + f2(t, u(t), v(t)) = 0, t ∈ (0, 1),

with the multi-point and multi-strip integral boundary conditions:
u(0) = u′(0) = 0, u(1) =

n

∑
i=1

∫ ηi

ξi

v(s)dAi(s) +
m−2

∑
i=1

biv(σi),

v(0) = v′(0) = 0, v(1) =
n

∑
i=1

∫ ηi

ξi

u(s)dAi(s) +
m−2

∑
i=1

biu(σi),

where 2 < αk ≤ 3, Dαk , and αk, k = 1, 2; 0 < ξi < ηi < 1, Ai(s) is an nondecreasing function of bounded
variation in [0, 1], i = 1, 2, . . . , n; 0 < σi < 1, bi ≥ 0, i = 1, 2, . . . , m− 2.

Compared to [34], the couple differential system (3) and (4) is concerned with the Caputo fractional
order derivative definition. The equations in (3) are coupled and depend on the two unknown functions
and their lower derivatives, the boundary conditions (4) possess the nonlocal form of left and right
equilibrium which are different from [34]. Because of the complexity of the form of the problem
(3) and (4), we have encountered a lot of resistance in calculating the related Green’s functions and
discussing their properties. In this part, the existence results are obtained by applying Leray-Schauder’s
alternative, while the uniqueness of solution is established via Banach’s contraction principle.

The structure of this paper is organized as follows. In Section 2, we give some necessary
definitions and preliminaries, which are used to prove the existence results to the integer order
coupled differential system via the upper and lower solutions method. In Section 3, we establish the
existence and uniqueness results of solutions to the fractional order coupled differential system via the
Leray-Schauder’s alternative, and the Banach’s contraction principle. In this section, we illustrate an
example to demonstrate the main results. In Section 4, conclusions of this work are outlined.

2. A Coupled System of Second-Order Differential Equations

In this section, we consider the existence results of solutions to second-order differential system
(1) with multi-point and multi-strip boundary conditions (2). We present here the definitions of upper
and lower solutions and Nagumo conditions that will be used to prove our main results.

Definition 1. Functions (α(t), p(t)), (β(t), q(t)) are called lower solutions and upper solutions of boundary
value problem (1.1) and (1.2) if α(t), p(t), β(t) and q(t) satisfied:
(1) for t ∈ [0, 1], α(t) ≤ β(t), p(t) ≤ q(t);
(2) for t ∈ [0, 1], α(t), β(t), p(t) and q(t) satisfied

α′′(t) + f (t, α(t), p(t), α′(t),−M2) ≥ 0,

α(0)−
m

∑
i=1

µ1iα(θ1i) ≤
m

∑
i=1

λ1i

∫ ξ1i

0
α(s)ds,

α(1) +
m

∑
i=1

γ1iα(ϑ1i) ≤
m

∑
i=1

δ1i

∫ η1i

0
α(s)ds,

(5)
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β′′(t) + f (t, β(t), q(t), β′(t), M2) ≤ 0,

β(0)−
m

∑
i=1

µ1iβ(θ1i) ≥
m

∑
i=1

λ1i

∫ ξ1i

0
β(s)ds,

β(1) +
m

∑
i=1

γ1iβ(ϑ1i) ≥
m

∑
i=1

δ1i

∫ η1i

0
β(s)ds,

(6)



p′′(t) + g(t, α(t), p(t),−M1, p′(t)) ≥ 0,

p(0)−
m

∑
i=1

µ2i p(θ2i) ≤
m

∑
i=1

λ2i

∫ ξ2i

0
p(s)ds,

p(1) +
m

∑
i=1

γ2i p(ϑ2i) ≤
m

∑
i=1

δ2i

∫ η2i

0
p(s)ds,

(7)



q′′(t) + g(t, β(t), q(t), M1, q′(t)) ≤ 0,

q(0)−
m

∑
i=1

µ2iq(θ2i) ≥
m

∑
i=1

λ2i

∫ ξ2i

0
q(s)ds,

q(1) +
m

∑
i=1

γ2iq(ϑ2i) ≥
m

∑
i=1

δ2i

∫ η2i

0
q(s)ds,

(8)

where

M1 = max
{

max
0≤t≤1

|β′(t)|, max
0≤t≤1

|α′(t)|, N1 + 1
}

,

M2 = max
{

max
0≤t≤1

|p′(t)|, max
0≤t≤1

|q′(t)|, N2 + 1
} (9)

and

N1 = max
0≤t≤1

β(t)− min
0≤t≤1

α(t), N2 = max
0≤t≤1

q(t)− min
0≤t≤1

p(t). (10)

Definition 2. Functions f and g are called satisfied Nagumo conditions: if f (t, u(t), v(t), u′(t), v′(t)) and
g(t, u(t), v(t), u′(t), v′(t)) are continuous and the following conditions are satisfied:

f (t, u(t), v(t), u′(t), v′(t)) ≤ h1(|u′(t)|)
g(t, u(t), v(t), u′(t), v′(t)) ≤ h2(|v′(t)|)

where hi(s) ∈ C(R+, (0,+∞)), i = 1, 2, and

∫ M1

N1

s
h1(s)

ds > N1,
∫ M2

N2

s
h2(s)

ds > N2.

Let us introduce the following hypotheses which are used after:

Hypothesis 1 (H1). f is nondecreasing with respect to the third variable and fifth variable; g is nondecreasing
with respect to the second variable and forth variable.

Hypothesis 2 (H2). Problem (1) and (2) has a pair of lower and upper solutions (α(t), p(t)) and (β(t), q(t)),
respectively, with α(t) ≤ β(t) and p(t) ≤ q(t), for t ∈ [0, 1].

Hypothesis 3 (H3). f and g satisfy the Nagumo conditions.

Hypothesis 4 (H4). µji, λji, δji ≥ 0, γji ≤ 0 and
m
∑

i=1
µji +

m
∑

i=1
λjiξ ji < 1,

m
∑

i=1
δjiηji −

m
∑

i=1
γji < 1, for j = 1, 2

and i = 1, 2, . . . , m.
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Considering the following modified differential system:{
u′′(t) + F(t, u(t), v(t), u′(t), v′(t)) = 0, t ∈ (0, 1),

v′′(t) + G(t, u(t), v(t), u′(t), v′(t)) = 0, t ∈ (0, 1),
(11)

where

F(t, u(t), v(t), u′(t), v′(t)) = f (t, r1(u), r2(v), s1(u′), s2(v′))−
u(t)− r1(u)

1 + |u(t)− r1(u)|
,

G(t, u(t), v(t), u′(t), v′(t)) = g(t, r1(u), r2(v), s1(u′), s2(v′))−
v(t)− r2(v)

1 + |v(t)− r2(v)|
,

(12)

and

r1(u) =


α(t), u(t) < α(t),

u(t), α(t) ≤ u(t) ≤ β(t),

β(t), u(t) > β(t),

r2(v) =


p(t), v(t) < p(t),

v(t), p(t) ≤ v(t) ≤ q(t),

q(t), v(t) > q(t),

s1(u′) =


−M1, u′(t) < −M1,

u′(t), |u′(t)| ≤ M1,

M1, u′(t) > M1,

s2(v′) =


−M2, v′(t) < −M2,

v′(t), |v′(t)| ≤ M2,

M2, v′(t) > M2.

Obviously, functions F and G are bounded.

Theorem 1. If conditions H1–H4 hold, then boundary value problem (11) and (2) has at least one pair of
solutions (u(t), v(t)) such that α(t) ≤ u(t) ≤ β(t) and p(t) ≤ v(t) ≤ q(t), for t ∈ [0, 1].

Proof. Since F and G defined by (12) are continuous and bounded, applying the Leray-schauder
fixed point theorem, we can easily obtain that boundary value problem (11) and (2) has at least one
pair of solutions (u(t), v(t)). In what follows we need to show that the solutions (u(t), v(t)) satisfy
α(t) ≤ u(t) ≤ β(t), p(t) ≤ v(t) ≤ q(t) for t ∈ [0, 1].

Supposing that u(t) ≥ α(t) on [0, 1] is not true, then ω(t) = u(t)− α(t) has a negative minimum
at some t0 ∈ [0, 1], that is mean, ω(t0) = min{u(t)− α(t)| t ∈ [0, 1]} < 0.

If t0 = 0, then u(0) < α(0). Together (1.2) with the definition of the lower solution, we can get

u(0)− α(0) ≥
m

∑
i=1

µ1iu(θ1i) +
m

∑
i=1

λ1i

∫ ξ1i

0
u(s)ds−

m

∑
i=1

µ1iα(θ1i)−
m

∑
i=1

λ1i

∫ ξ1i

0
α(s)ds

=
m

∑
i=1

µ1i[u(θ1i)− α(θ1i)] +
m

∑
i=1

λ1i

∫ ξ1i

0
[u(s)− α(s)]ds

≥[u(0)− α(0)]
( m

∑
i=1

µ1i +
m

∑
i=1

λ1iξ1i

)
,

which yields that

[u(0)− α(0)]

[
1−

( m

∑
i=1

µ1i +
m

∑
i=1

λ1iξ1i

)]
≥ 0.

From H4, we find that there is a contradiction.
If t0 ∈ (0, 1), that is, u(t0) < α(t0). Obviously, we have ω′′(t0) ≥ 0 and ω′(t0) = 0. Meanwhile,

from H1, we notice
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ω′′(t0) =u′′(t0)− α′′(t0)

≤− F(t0, u(t0), v(t0), u′(t0), v′(t0)) + f (t0, α(t0), p(t0), α′(t0),−M2)

=− f
(
t0, α(t0), r2(v(t0)), α′(t0), s2

(
v′(t0)

))
+

u(t0)− r1
(
u(t0)

)
1 +

∣∣u(t0)− r1
(
u(t0)

)∣∣
+ f (t0, α(t0), p(t0), α′(t0),−M2)

<0,

(13)

which contradicts ω′′(t0) ≥ 0. Thus, we know that the minimum point t0 satisfying u(t) < α(t) does
not occur on (0,1).

If t0 = 1, then u(1) < α(1). From (2), (5) and H4, we can get

u(1)− α(1) ≥−
m

∑
i=1

γ1iu(ϑ1i) +
m

∑
i=1

δ1i

∫ η1i

0
u(s)ds +

m

∑
i=1

γ1iα(ϑ1i)−
m

∑
i=1

δ1i

∫ η1i

0
α(s)ds

=−
m

∑
i=1

γ1i[u(ϑ1i)− α(ϑ1i)] +
m

∑
i=1

δ1i

∫ η1i

0
[u(s)− α(s)]ds

≥[u(1)− α(1)]

[
m

∑
i=1

δ1iη1i −
m

∑
i=1

γ1i

]
,

which yields that

[u(1)− α(1)]

[
1−

( m

∑
i=1

δ1iη1i −
m

∑
i=1

γ1i

)]
≥ 0.

From H4, we find that there is a contradiction.
Consequently, we finally come to the conclusion that α(t) ≤ u(t) for t ∈ [0, 1]. Similarly we show

u(t) ≤ β(t), p(t) ≤ v(t) ≤ q(t) for t ∈ [0, 1].

Theorem 2. If H1–H4 hold, then solutions (u(t), v(t)) of boundary value problem (11) and (2) satisfy |u′(t)| ≤
M1 and |v′(t)| ≤ M2, where M1 and M2 defined by (9).

Proof. Now we show that u′(t) ≤ M1 for t ∈ [0, 1].
Suppose that u′(t) ≤ M1 on [0, 1] is not true, then there exists t1 ∈ [0, 1] such that u′(t1) > M1.

Due to the fact that α(t) ≤ u(t) ≤ β(t), by the mean value theorem, there exists t2 ∈ (0, 1) satisfying

u′(t2) = u(1)− u(0) ≤ N1 < M1 < u′(t1).

Hence there exist [t3, t4] ⊂ [0, 1] such that u′(t3) = N1, u′(t4) = M1. Further it holds that N1 < u′(t) <
M1, for t ∈ (t3, t4). From H3, we have

|u′′(t)| = | f (t, u(t), v(t), u′(t), v′(t))| ≤ h1(|u′(t)|), f or t ∈ (t3, t4),

which yields that |u′′(t)|
h1(|u′(t)|)

≤ 1. Moreover,

∣∣∣∣ ∫ t4

t3

u′(t)u′′(t)
h1(|u′(t)|)

dt
∣∣∣∣ ≤ ∫ t4

t3

|u′(t)||u′′(t)|
h1(|u′(t)|)

dt

≤
∫ t4

t3

|u′(t)|dt =
∫ t4

t3

u′(t)dt

=u(t4)− u(t3) ≤ N1.

However, according Nagumo condition, it is easy to see that
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∣∣∣∣ ∫ t4

t3

u′(t)u′′(t)
h1(|u′(t)|)

dt
∣∣∣∣ = ∣∣∣∣ ∫ u′(t4)

u′(t3)

u′(t)
h1(u′(t))

d(u′(t))
∣∣∣∣ = ∫ M1

N1

s
h1(s)

ds > N1,

which is a contradiction. Hence, we have that u′(t) ≤ M1 for t ∈ [0, 1].
Similarly, we can show u′(t) ≥ −M1 and |v′(t)| ≤ M2 for t ∈ [0, 1].

From Theorem 1 and Theorem 2, the solutions of the modified problem (11) and (2) exist and
satisfy α(t) ≤ u(t) ≤ β(t), p(t) ≤ v(t) ≤ q(t), |u′(t)| ≤ M1 and |v′(t)| ≤ M2 in the conditions H1–H4.
That is to say, the solutions of the modified problem (11) and (2) are the solutions of the original
problem (1) and (2).

3. A Coupled System of Fractional Differential Equations

In this section, we consider the existence and uniqueness of solution to the fractional differential
system (3) with multi-point and multi-strip boundary conditions (4). Some definitions and lemmas
are presented here originate from the theory of fractional calculus which will be used for our
main theorems.

Definition 3. ([35]) The Riemann-Liouville fractional integral of order α > 0 of a function f : (0, ∞)→ R is
given by

Iα
0+ f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds,

provided the right-hand side is pointwise defined on (0, ∞), where Γ(α) is the Euler gamma function defined by
Γ(α) =

∫ ∞
0 tα−1e−tdt, for α > 0.

Definition 4. ([29]) The Caputo fractional derivative of order α > 0 for a function f : (0, ∞)→ R is given by

cDα
0+ f (t) =

1
Γ(n− α)

∫ t

0
f (n)(s)(t− s)n−α−1ds,

where n = [α] + 1 and [α] stands for the largest integer not greater than α.

Lemma 1. Assume that u ∈ C[0, ∞) with a Caputo fractional derivative of order α > 0 that belongs to
u ∈ Cn[0, ∞), then

Iα
0+(

cDα
0+u(t)) = u(t) + c1 + c2t + · · ·+ cntn−1,

for some ci ∈ R, i = 1, 2, . . . , n.

Lemma 2. Let α, β > 0, f ∈ L1[a, b]. Then Iα
0+ Iβ

0+ f (t) = Iα+β
0+ f (t) and cDα

0+ Iα
0+ f (t) = f (t), for all

t ∈ [a, b], where a, b > 0.

Lemma 3. Let β > α > 0, f ∈ L1[a, b]. Then cDα
0+ Iβ

0+ f (t) = Iβ−α
0+ f (t), f or all t ∈ [a, b], where a, b > 0.

In addition, this result is always true if the fractional derivative is Riemann-Liouville one.

Lemma 4. For h(t) ∈ L1(0, 1), the solutions of the fractional equation cDq
0+u(t) + h(t) = 0, 0 < t < 1 are

u(t) = − 1
Γ(q)

∫ t

0
(t− s)q−1h(s)ds + c1 + c2t + · · ·+ cntn−1, 0 < t < 1,

where c1, c2, . . . , cn are arbitrary real constants.
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For convenience, we denote

Dj1 =
1

Γ(1 + pj)

m

∑
i=1

λjiξ
pj
ji , Ej1 =

1
Γ(2− qj)

m

∑
i=1

µjiθ
1−qj
ji +

1
Γ(2 + pj)

m

∑
i=1

λjiξ
1+pj
ji ,

Dj2 =
1

Γ(1 + pj)

m

∑
i=1

δjiη
pj
ji , Ej2 =

1
Γ(2− qj)

m

∑
i=1

γjiϑ
1−qj
ji − 1

Γ(2 + pj)

m

∑
i=1

δjiη
1+pj
ji ,

∆j = (1 + Ej2)(1− Dj1) + Ej1(1− Dj2),

(14)

and
ϕj(t) =

1
∆j

[Ej1 + (1− Dj1)t], ψj(t) =
1
∆j

[−(1 + Ej2) + (1− Dj2)t], for t ∈ [0, 1], (15)

where j = 1, 2. In what follows, we always assume that 0 < Dji, Eji < 1, for i, j = 1, 2. Obviously, ∆j >

0, ϕj(t) > 0, it is easy to get the continuity of ϕj(t) and ψj(t), for j = 1, 2.

Lemma 5. Let 1 < αj < 2, 0 < qj < αj − 1, pj > 0, for j = 1, 2. For h(t) ∈ L1(0, 1), then the
following problem

cD
αj
0+w(t) + h(t) = 0, t ∈ (0, 1), (16)

w(0)−
m

∑
i=1

µji
cD

qj
0+w(θji) =

m

∑
i=1

λji I
pj
0+w(ξ ji),

w(1) +
m

∑
i=1

γji
cD

qj
0+w(ϑji) =

m

∑
i=1

δji I
pj
0+w(ηji)

(17)

has an integral representation

w(t) =
∫ 1

0
Gj(t, s)h(s)ds + Aj(h)ψj(t) + Bj(h)ϕj(t), (18)

where

Gj(t, s) =
1

Γ(αj)

{
− (t− s)αj−1 + ϕj(t)(1− s)αj−1, 0 ≤ s ≤ t ≤ 1,

ϕj(t)(1− s)αj−1, 0 ≤ t ≤ s ≤ 1,
(19)

Aj(h) =
m

∑
i=1

(
µji I

αj−qj
0+ h(θji) + λji I

αj+pj
0+ h(ξ ji)

)
,

Bj(h) =
m

∑
i=1

(
γji I

αj−qj
0+ h(ϑji)− δji I

αj+pj
0+ h(ηji)

)
.

(20)

Proof. According to Lemma 4, (16) can be reduced to the following equivalent integral expression,

w(t) = −I
αj
0+h(t) + C0 + C1t = − 1

Γ(αj)

∫ t

0
(t− s)αj−1h(s)ds + C0 + C1t, (21)

where C0 and C1 are arbitrary real constants.
From (17) with (21), it holds that

w(0) = C0 =
m

∑
i=1

µji
cD

qj
0+w(θji) +

m

∑
i=1

λji I
pj
0+w(ξ ji),

w(1) = −I
αj
0+h(1) + C0 + C1 = −

m

∑
i=1

γji
cD

qj
0+w(ϑji) +

m

∑
i=1

δji I
pj
0+w(ηji).

(22)
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Since Lemmas 2 and 3, we get

cD
qj
0+w(t) = −I

αj−qj
0+ h(t) + C1

t1−qj

Γ(2− qj)
,

I
pj
0+w(t) = −I

αj+pj
0+ h(t) + C0

tpj

Γ(1 + pj)
+ C1

t1+pj

Γ(2 + pj)
.

(23)

According to (21)–(23), we can get

C0 =
1
∆j

[
Ej1

(
I

αj
0+h(1) + Bj(h)

)
− (1 + Ej2)Aj(h)

]
,

C1 =
1
∆j

[
(1− Dj1)

(
I

αj
0+h(1) + Bj(h)

)
+ (1− Dj2)Aj(h)

]
,

(24)

where ∆j is introduced by (14), Aj(h), Bj(h) are denoted by (20).
Taking (24) into (21), we obtain

w(t) =− I
αj
0+h(t) + C0 + C1t

=− I
αj
0+h(t) +

1
∆j

[
Ej1 + (1− Dj1)t

]
I

αj
0+h(1)

+
1
∆j

[
Ej1 + (1− Dj1)t

]
Bj(h) +

1
∆j

[
−(1 + Ej2) + (1− Dj2)t

]
Aj(h)

=− I
αj
0+h(t) + ϕj(t)I

αj
0+h(1) + ψj(t)Aj(h) + ϕj(t)Bj(h)

=
∫ 1

0
Gj(t, s)h(s)ds + Aj(h)ψj(t) + Bj(h)ϕj(t),

where Gj(t, s), ψj(t) and ϕj(t) are defined by (19) and (15), respectively.

Lemma 6. For j = 1, 2, the functions Gj(t, s), Aj(h) and Bj(h) admit the following properties:
(1) |Gj(t, s)| ≤ ej(s), where ej(s) = 1

∆jΓ(αj)
(1− s)αj−1 (∆j + Ej1 + 1− Dj1

)
, for t, s ∈ [0, 1];

(2) | ∂
∂t Gj(t, s)| ≤ ēj, where ēj =

1
∆jΓ(αj+1)

(
1− Dj1 + αj∆j

)
;

(3) |Aj(h)| ≤ Āj(h), |Bj(h)| ≤ B̄j(h), f or h(t) ≥ 0, where

Āj(h) =
m

∑
i=1

µji I
αj−qj
0+ h(1) +

m

∑
i=1

λji I
αj+pj
0+ h(1),

B̄j(h) =
m

∑
i=1

γji I
αj−qj
0+ h(1) +

m

∑
i=1

δji I
αj+pj
0+ h(1).

Proof. (1) For 0 ≤ s ≤ t ≤ 1, we have

|Gj(t, s)| = 1
Γ(αj)

∣∣− (t− s)αj−1 + ϕj(t)(1− s)αj−1∣∣
≤ 1

Γ(αj)

[
(1− s)αj−1 + ϕj(1)(1− s)αj−1

]
=

1
∆jΓ(αj)

(1− s)αj−1 [∆j + Ej1 + 1− Dj1
]
= ej(s).
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For 0 ≤ t ≤ s ≤ 1, we have

|Gj(t, s)| = 1
Γ(αj)

∣∣ϕj(t)(1− s)αj−1∣∣
≤ 1

Γ(αj)

∣∣ (ϕj(1) + 1
)
(1− s)αj−1∣∣

=
1

∆jΓ(αj)
(1− s)αj−1 [∆j + Ej1 + 1− Dj1

]
= ej(s).

(2) From (19), we have∣∣∣∣ ∂

∂t
Gj(t, s)

∣∣∣∣ ≤ αj − 1
Γ(αj)

(t− s)αj−2 +
|ϕ′j(t)|
Γ(αj)

(1− s)αj−1

=
1

Γ(αj + 1)
(
αjt

αj−1 + |ϕ′j(t)|
)

≤ 1
Γ(αj + 1)

(
1− Dj1

∆j
+ αj

)
= ēj.

(3) From (20), for h(t) ≥ 0, we have

|Aj(h)| ≤
m

∑
i=1

∣∣∣µji I
αj−qj
0+ h(θji) + λji I

αj+pj
0+ h(ξ ji)

∣∣∣
=

m

∑
i=1

(
µji

Γ(αj − qj)

∫ θji

0
(θji − s)αj−qj−1h(s)ds +

λji

Γ(αj + pj)

∫ ξ ji

0
(ξ ji − s)αj+pj−1h(s)ds

)

≤
m

∑
i=1

(
µji

Γ(αj − qj)

∫ 1

0
(1− s)αj−qj−1h(s)ds +

λji

Γ(αj + pj)

∫ 1

0
(1− s)αj+pj−1h(s)ds

)
=Āj(h).

Similarly, for h(t) ≥ 0, we have

|Bj(h)| ≤
m

∑
i=1

∣∣∣γji I
αj−qj
0+ h(ϑji)− δji I

αj+pj−1
0+ h(ηji)

∣∣∣
=

m

∑
i=1

∣∣∣∣∣ γji

Γ(αj − qj)

∫ ϑji

0
(ϑji − s)αj−qj−1h(s)ds−

δji

Γ(αj + pj)

∫ ηji

0
(ηji − s)αj+pj−1h(s)ds

∣∣∣∣∣
≤

m

∑
i=1

(
γji

Γ(αj − qj)

∫ 1

0
(1− s)αj−qj−1h(s)ds +

δji

Γ(αj + pj)

∫ 1

0
(1− s)αj+pj−1h(s)ds

)
=B̄j(h).

Lemma 7. (the Leray-Schauder’s Alternative) Let F : E→ E be a completely continuous operator (i.e., a map
that restricted to any bounded set in E is compact). Let

ε(F) = {x ∈ E : x = λF(x), 0 < λ < 1}.

Then either the set ε(F) is unbounded, or F has at least one fixed point.
Define the space X = {u(t) | u(t) ∈ C[0, 1] and cDα1−1

0+ u(t) ∈ C[0, 1]} endowed with the norm
‖u‖X = max

t∈[0,1]
|u(t)| + max

t∈[0,1]
|cDα1−1

0+ u(t)|, and Y = {v(t) | v(t) ∈ C[0, 1] and cDα2−1
0+ v(t) ∈ C[0, 1]}
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endowed with the norm ‖v‖Y = max
t∈[0,1]

|v(t)| + max
t∈[0,1]

|cDα2−1
0+ v(t)|. It is easy to see that (X, ‖ · ‖X) and

(Y, ‖ · ‖Y) are Banach spaces. Further, the product space (X×Y, ‖(u, v)‖X×Y) is also a Banach space with the
norm ‖(u, v)‖X×Y = ‖u‖X + ‖v‖Y.

Let T : X×Y → X×Y be the operator defined by

T(u, v)(t) =
(
T1(u, v)(t), T2(u, v)(t)

)
, (25)

where

T1(u, v)(t) =
∫ 1

0
G1(t, s) f

(
s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s)

)
ds

+ A1( fs(u, v))ψ1(t) + B1( fs(u, v))ϕ1(t),

T2(u, v)(t) =
∫ 1

0
G2(t, s)g

(
s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s)

)
ds

+ A2(gs(u, v))ψ2(t) + B2(gs(u, v))ϕ2(t).

(26)

Lemma 8. T : X×Y → X×Y is completely continuous.

Proof. The operator T is continuous owing to the continuities of Gj(t, s), A1( f ), B1( f ), A2(g), B2(g),
ϕj(t), ψj(t), for j = 1, 2, f and g.

Denote Ω ⊂ X×Y is a bounded set. Hence there is a positive constant L such that

| f (t, u(t), v(t), cDα1−1
0+ u(t), cDα2−1

0+ v(t))| ≤ L, f or (u, v) ∈ Ω.

For convenience, we denote ψ1M = max{|ψ1(0)|, |ψ1(1)|}. For any (u, v) ∈ Ω, we get

|T1(u, v)(t)| =
∣∣∣∣ ∫ 1

0
G1(t, s) f (s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s))ds + A1( f )ψ1(t) + B1( f )ϕ1(t)

∣∣∣∣
≤
∣∣∣∣ ∫ 1

0
e1(s) f (s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s))ds

∣∣∣∣+ |A1( f )ψ1(t)|+ |B1( f )ϕ1(t)|

≤L
ϕ1(1) + 1
Γ(α1 + 1)

+ LĀ1(1)ψ1M + LB̄1(1)ϕ1(1),

|T′1(u, v)(t)| =
∣∣∣∣ ∫ 1

0

∂

∂t
G1(t, s) f (s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s))ds + A1( f )ψ′1(t) + B1( f )ϕ′1(t)

∣∣∣∣
≤
∣∣∣∣ ∫ 1

0
ē1 f (s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s))ds

∣∣∣∣+ |A1( f )ψ′1(t)|+ |B1( f )ϕ′1(t)|

≤Lē1 + LĀ1(1)
1− D12

∆1
+ LB̄1(1)

1− D11

∆1
.

Further, we have

|cDα1−1
0+ T1(u, v)(t)| ≤

∫ t

0

(t− s)1−α1

Γ(2− α1)
|T′1(u, v)(s)|ds

≤ t2−α1

Γ(3− α)

(
Lē1 + LĀ1(1)

1− D12

∆1
+ LB̄1(1)

1− D11

∆1

)
≤ 1

Γ(3− α1)

(
Lē1 + LĀ1(1)

1− D12

∆1
+ LB̄1(1)

1− D11

∆1

)
,
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which implies that

‖T1(u, v)(t)‖X = max
t∈[0,1]

|T1(u, v)(t)|+ max
t∈[0,1]

|cDα1−1
0+ T1(u, v)(t)|

≤L
ϕ1(1) + 1
Γ(α1 + 1)

+ LĀ1(1)ψ1M + LB̄1(1)ϕ1(1)

+
1

Γ(3− α1)

(
Lē1 + LĀ1(1)

1− D12

∆1
+ LB̄1(1)

1− D11

∆1

)
.

Therefore, the above inequalities implies that the operator T1 is uniformly bounded. In a similar
manner, T2 is also uniformly bounded. Thus, the operator T is uniformly bounded.

Next step, we prove that T is equicontinuous. Let t1, t2 ∈ [0, 1] with t1 ≤ t2. Then we get

|T1(u, v)(t2)− T1(u, v)(t1)| =
∣∣∣∣ ∫ t2

t1

T′1(u, v)(s)ds
∣∣∣∣ ≤ ∫ t2

t1

|T′1(u, v)(s)|ds

≤
(

Lē1 + LĀ1(1)
1− D12

∆1
+ LB̄1(1)

1− D11

∆1

)
(t2 − t1),

and

|cDα1−1
0+ T1(u, v)(t2)− cDα1−1

0+ T1(u, v)(t1)|

=
1

Γ(2− α1)

∣∣∣∣ ∫ t2

0
(t2 − s)1−α1 T′1(u, v)(s)ds−

∫ t1

0
(t1 − s)1−α1 T′1(u, v)(s)ds

∣∣∣∣
≤ 1

Γ(2− α1)

∣∣∣∣ ∫ t2

0
(t2 − s)1−α1 T′1(u, v)(s)ds−

∫ t1

0
(t2 − s)1−α1 T′1(u, v)(s)ds

∣∣∣∣
+

1
Γ(2− α1)

∣∣∣∣ ∫ t1

0
(t2 − s)1−α1 T′1(u, v)(s)ds−

∫ t1

0
(t1 − s)1−α1 T′1(u, v)(s)ds

∣∣∣∣
≤ 1

Γ(2− α1)

∣∣∣∣ ∫ t2

t1

(t2 − s)1−α1 |T′1(u, v)(s)|ds
∣∣∣∣

+
1

Γ(2− α1)

∣∣∣∣ ∫ t1

0

(
(t2 − s)1−α1 − (t1 − s)1−α1

)
|T′1(u, v)(s)|ds

∣∣∣∣
≤ L

Γ(2− α1)

(
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

)
×
(∣∣∣∣ ∫ t2

t1

(t2 − s)1−α1 ds
∣∣∣∣+ ∣∣∣∣ ∫ t1

0

(
(t2 − s)1−α1 − (t1 − s)1−α1

)
ds
∣∣∣∣)

≤ L
Γ(3− α1)

(
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

)(
2(t2 − t1)

2−α1 + t2−α1
2 − t2−α1

1

)
.

So, we can get

‖T1(u, v)(t2)− T1(u, v)(t1)‖X

≤
(

Lē1 + LĀ1(1)
1− D12

∆1
+ LB̄1(1)

1− D11

∆1

)
(t2 − t1)

+
L

Γ(3− α1)

(
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

)(
2(t2 − t1)

2−α1 + t2−α1
2 − t2−α1

1

)
,

which implied that ‖T1(u, v)(t2)− T1(u, v)(t1)‖X → 0 as t2 → t1. In a similar way, we can obtain that
‖T2(u, v)(t2)− T2(u, v)(t1)‖Y → 0 as t2 → t1. Therefore, the operator T is equicontinuous. Thus T is
completely continuous.
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Let us give some assumptions which are used later.

Hypothesis 5 (H5). Suppose that there is real constants ρ0 ≥ 0, $0 ≥ 0, ρi > 0 and $i > 0, i = 1, 2, 3, 4,
such that for t ∈ [0, 1] and xi yi ∈ R, we have

| f (t, x1, x2, x3, x4)| ≤ ρ0 + ρ1|x1|+ ρ2|x2|+ ρ3|x3|+ ρ4|x4|;

|g(t, y1, y2, y3, y4)| ≤ $0 + $1|y1|+ $2|y2|+ $3|y3|+ $4|y4|.

Hypothesis 6 (H6). Suppose that f , g : [0, 1] × R4 → R are continuous, and there are real constants
ni, mi, i = 1, 2, 3, 4, such that for all t ∈ [0, 1] and u1, v1 ∈ R, we have

| f (t, u1, u2, u3, u4)− f (t, v1, v2, v3, v4)|
≤n1|u1 − v1|+ n2|u2 − v2|+ n3|u3 − v3|+ n4|u4 − v4|,
|g(t, u1, u2, u3, u4)− g(t, v1, v2, v3, v4)|
≤m1|u1 − v1|+ m2|u2 − v2|+ m3|u3 − v3|+ m4|u4 − v4|.

Set

N̄1 =
ϕ1(1) + 1
Γ(α1 + 1)

+ Ā1(1)ψ1M + B̄1(1)ϕ1(1)

+
1

Γ(3− α1)

(
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

)
,

N̄2 =
ϕ2(1) + 1
Γ(α2 + 1)

+ Ā2(1)ψ2M + B̄2(1)ϕ2(1)

+
1

Γ(3− α2)

(
ē2 + Ā2(1)

1− D22

∆2
+ B̄2(1)

1− D21

∆2

)
,

(27)

N3 = max
{

N̄1 max{ρ1, ρ3}+ N̄2 max{$1, $3}, N̄1 max{ρ2, ρ4}+ N̄2 max{$2, $4}
}

. (28)

M3 = max
{

N̄1 max{n1, n3}+ N̄2 max{m1, m3}, N̄1 max{n2, n4}+ N̄2 max{m2, m4}
}

. (29)

The following conclusion is based on the Leray-Schauder’s alternative.

Theorem 3. Suppose that H5 is satisfied. In addition, suppose that N3 < 1. Then the boundary value
problem (3) and (4) has at least one solution.

Proof. It will be checked that ε = {(u, v) ∈ X×Y | (u, v) = λT(u, v), 0 ≤ λ ≤ 1} is bounded.
Let (u, v) ∈ ε, then (u, v) = λT(u, v). For t ∈ [0, 1], we obtain

u(t) = λT1(u, v)(t).

From H5, we have
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|u(t)| =λ|T1(u, v)(t)|

≤
∣∣∣∣ ∫ 1

0
G1(t, s) f (s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s))ds + A1( f )ψ1(t) + B1( f )ϕ1(t)

∣∣∣∣
≤
∫ 1

0

∣∣G1(t, s) f (s, u(s), v(s), cDα1−1
0+ u(s), cDα2−1

0+ v(s))
∣∣ds + |A1( f )ψ1(t)|+ |B1( f )ϕ1(t)|

≤(ρ0 + ρ1|u(t)|+ ρ2|v(t)|+ ρ3|cDα1−1
0+ u(t)|+ ρ4|cDα2−1

0+ v(t)|)

×
[∫ 1

0
e1(s)ds + Ā1(1)ψ1M + B̄1(1)ϕ1(1)

]
≤(ρ0 + max{ρ1, ρ3}‖u‖X + max{ρ2, ρ4}‖v‖Y)

[
ϕ1(1) + 1
Γ(α1 + 1)

+ Ā1(1)ψ1M + B̄1(1)ϕ1(1)
]

,

|u′(t)| =λ|T′1(u, v)(t)|

≤
∣∣∣∣ ∫ 1

0

∂

∂t
G1(t, s) f (s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s))ds + A1( f )ψ′1(t) + B1( f )ϕ′1(t)

∣∣∣∣
≤(ρ0 + max{ρ1, ρ3}‖u‖X + max{ρ2, ρ4}‖v‖Y)

[
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

]
,

and

|cDα1−1
0+ u(t)| =λ|cDα1−1

0+ T1(u, v)(t)|

≤
∣∣∣∣ ∫ t

0

(t− s)1−α1

Γ(2− α1)
T′1(u, v)(s)ds

∣∣∣∣
≤(ρ0 + max{ρ1, ρ3}‖u‖X + max{ρ2, ρ4}‖v‖Y)

× 1
Γ(3− α1)

[
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

]
.

Hence we have

‖u‖X ≤(ρ0 + max{ρ1, ρ3}‖u‖X + max{ρ2, ρ4}‖v‖Y)

[
ϕ1(1) + 1
Γ(α1 + 1)

+ Ā1(1)ψ1M

+ B̄(1)ϕ1(1) +
1

Γ(3− α1)

(
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

)]
=(ρ0 + max{ρ1, ρ3}‖u‖X + max{ρ2, ρ4}‖v‖Y)N̄1.

(30)

Similarly, we can get

‖v‖Y ≤($0 + max{$1, $3}‖u‖X + max{$2, $4}‖v‖Y)N̄2. (31)

Combining (30) with (31), we obtain

‖(u, v)‖X×Y =‖u‖X + ‖v‖Y

≤(ρ0 + max{ρ1, ρ3}‖u‖X + max{ρ2, ρ4}‖v‖Y)N̄1

+ ($0 + max{$1, $3}‖u‖X + max{$2, $4}‖v‖Y)N̄2

≤N3(‖u‖X + ‖v‖Y) + ρ0N̄1 + $0N̄2

=N3‖(u, v)‖X×Y + ρ0N̄1 + $0N̄2,
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as a result

‖(u, v)‖X×Y ≤
ρ0N̄1 + $0N̄2

1− N3
,

where N̄1, N̄2 and N3 are defined by (27) and (28), which show that the set ε is bounded. Therefore,
from Lemma 7, T has at least one fixed point which implies problem (3) and (4) has at least one pair of
solutions.

In what follows, we show the uniqueness result of solutions to problem (3) and (4) based on the
Banach’s contraction principle.

Theorem 4. Suppose that H6 holds. In addition, suppose that M3 < 1. Then problem (3) and (4) has a unique
pair of solutions.

Proof. Define
sup

t∈[0,1]
| f (t, 0, 0, 0, 0)| = H1 < ∞,

sup
t∈[0,1]

|g(t, 0, 0, 0, 0)| = H2 < ∞,

such that

r ≥ N̄1H1 + N̄2H2

1−M3
.

We show that TBr ⊂ Br, where Br = {(u, v) ∈ X×Y : ‖(u, v)‖X×Y ≤ r} . For (u, v) ∈ Br, we have

|T1(u, v)(t)|

≤ max
0≤t≤1

∣∣∣∣ ∫ 1

0
G1(t, s)

[
f (s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s))− f (s, 0, 0, 0, 0) + f (s, 0, 0, 0, 0)

]
ds

+ A1
[

f (s, u(s), v(s), cDα1−1
0+ u(s), cDα2−1

0+ v(s))− f (s, 0, 0, 0, 0) + f (s, 0, 0, 0, 0)
]
ψ1M

+ B1
[

f1(s, u(s), v(s), cDα1−1
0+ u(s), cDα2−1

0+ v(s))− f (s, 0, 0, 0, 0) + f (s, 0, 0, 0, 0)
]
ϕ1(1)

∣∣∣∣
≤
(

max{n1, n3}‖u‖X + max{n2, n4}‖v‖Y + H1
)( ϕ1(1) + 1

Γ(α1 + 1)
+ Ā1(1)ψ1M + B̄1(1)ϕ1(1)

)
,

∣∣T′1(u, v)(t)
∣∣

≤ max
0≤t≤1

∣∣∣∣ ∫ 1

0

∂

∂t
G1(t, s)

[
f (s, u(s), v(s), cDα1−1

0+ u(s), cDα2−1
0+ v(s))− f (s, 0, 0, 0, 0) + f (s, 0, 0, 0, 0)

]
ds

+ A1
[

f (s, u(s), v(s), cDα1−1
0+ u(s), cDα2−1

0+ v(s))− f (s, 0, 0, 0, 0) + f (s, 0, 0, 0, 0)
]
ψ′1(t)

+ B1
[

f (s, u(s), v(s), cDα1−1
0+ u(s), cDα2−1

0+ v(s))− f (s, 0, 0, 0, 0) + f (s, 0, 0, 0, 0)
]
ϕ′1(t)

∣∣∣∣
≤
(

max{n1, n3}‖u‖X + max{n2, n4}‖v‖Y + H1
)(

ē1 + Ā1(1)
1− D12

∆1
+ B̄1(1)

1− D11

∆1

)
.
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Moreover, we have∣∣∣cDα1−1
0+ T1(u, v)(t)

∣∣∣
≤ max

0≤t≤1

∣∣∣∣ ∫ t

0

(t− s)1−α1

Γ(2− α1)
T′1(u, v)(s)ds

∣∣∣∣
≤
(

max{n1, n3}‖u‖X + max{n2, n4}‖v‖Y + H1
) 1

Γ(3− α1)

(
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

)
.

Hence we have

‖T1(u, v)(t)‖X

≤(max{n1, n3}‖u‖X + max{n2, n4}‖v‖Y + H1)

[(
ϕ1(1) + 1
Γ(α1 + 1)

+ Ā1(1)ψ1M + B̄1(1)ϕ1(1)
)

+
1

Γ(3− α1)

(
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

)]
≤N̄1 max{n1, n3}‖u‖X + N̄1 max{n2, n4}‖v‖Y + N̄1H1.

Similarly, we can get

‖T2(u, v)(t)‖Y = max
t∈[0,1]

|T2(u, v)(t)|+ max
t∈[0,1]

|cDα2−1
0+ T2(u, v)(t)|

≤N̄2 max{m1, m3}‖u‖X + N̄2 max{m2, m4}‖v‖Y + N̄2H2.

Thus, we have

‖T(u, v)(t)‖X×Y ≤
(

N̄1 max{n1, n3}+ N̄2 max{m1, m3}
)
‖u‖X

+
(

N̄1 max{n2, n4}+ N̄2 max{m2, m4}
)
‖v‖Y + N̄1H1 + N̄2H2

≤M3‖(u, v)‖X×Y + N̄1H1 + N̄2H2.

Consequently, ‖T(u, v)(t)‖X×Y ≤ r.
Now for u1, u2 ∈ X and v1, v2 ∈ Y, for any t ∈ [0, 1], we get

|T1(u2, v2)(t)− T1(u1, v1)(t)|

≤
∫ 1

0

∣∣G1(t, s)
∣∣| f (s, u2(s), v2(s), cDα1−1

0+ u2(s), cDα2−1
0+ v2(s))

− f (s, u1(s), v1(s), cDα1−1
0+ u1(s), cDα2−1

0+ v1(s))|ds

+ |A1( f2)− A1( f1)|ψM + |B1( f2)− B1( f1)|ϕ1(1)

≤ max
s∈[0,1]

(
n1|u2 − u1|+ n2|v2 − v1|+ n3|cDα−1

0+ u2 − cDα−1
0+ u1|+ n4|cD

β−1
0+ v2 − cDβ−1

0+ v1|
)

×
[

ϕ1(1) + 1
Γ(α + 1)

+ Ā1(1)ψM + B̄1(1)ϕ1(1)
]

,
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∣∣T′1(u2, v2)(t)− T′1(u1, v1)(t)
∣∣

≤
∫ 1

0

∂

∂t
|G1(t, s)|| f (s, u2(s), v2(s), cDα1−1

0+ u2(s), cDα2−1
0+ v2(s))

− f (s, u1(s), v1(s), cDα1−1
0+ u1(s), cDα2−1

0+ v1(s))|ds

+ |A1( f2)− A1( f1)|ψ′1(t) + |B1( f2)− B1( f1)|ϕ′1(t)

≤ max
s∈[0,1]

(
n1|u2 − u1|+ n2|v2 − v1|+ n3|cDα1−1

0+ u2 − cDα1−1
0+ u1|+ n4|cDα2−1

0+ v2 − cDα2−1
0+ v1|

)
×
[

ē1 + Ā1(1)
1− D12

∆1
+ B̄1(1)

1− D11

∆1

]
,

further, ∣∣∣cDα1−1
0+ T1(u2, v2)(t)− cDα1−1

0+ T1(u1, v1)(t)
∣∣∣

≤ max
s∈[0,1]

(
n1|u2 − u1|+ n2|v2 − v1|+ n3|cDα1−1

0+ u2 − cDα1−1
0+ u1|+ n4|cDα2−1

0+ v2 − cDα2−1
0+ v1|

)
× 1

Γ(3− α1)

[
ē1 + Ā1(1)

1− D12

∆1
+ B̄1(1)

1− D11

∆1

]
and consequently we obtain

‖T1(u2, v2)− T1(u1, v1)‖X

≤ max
s∈[0,1]

(
n1|u2 − u1|+ n2|v2 − v1|+ n3|cDα1−1

0+ u2 − cDα1−1
0+ u1|+ n4|cDα2−1

0+ v2 − cDα2−1
0+ v1|

)
N̄1

≤ [max{n1, n3}‖u2 − u1‖X + max{n2, n4}‖v2 − v1‖Y] N̄1.

(32)

Similarly to the above discussion, we can obtain

‖T2(u2, v2)− T2(u1, v1)‖Y

≤ max
s∈[0,1]

(
m1|u2 − u1|+ m2|v2 − v1|+ m3|cDα1−1

0+ u2 − cDα1−1
0+ u1|+ m4|cDα2−1

0+ v2 − cDα2−1
0+ v1|

)
N̄2

≤ [max{m1, m3}‖u2 − u1‖X + max{m2, m4}‖v2 − v1‖Y] N̄2,

(33)

Combing (32) with (33), we can get

‖T(u2, v2)− T(u1, v1)‖X×Y

≤
(

max{n1, n3}N̄1 + max{m1, m3}N̄2
)
‖u2 − u1‖X

+
(

max{n2, n4}N̄1 + max{m2, m4}N̄2
)
‖v2 − v1‖Y

≤M3
(
‖u2 − u1‖X + ‖v2 − v1‖Y

)
=M3‖(u2 − u1, v2 − v1)‖X×Y.

(34)

Since M3 < 1, the operator T is contractive. By applying the Banach’s contraction principle, T has
a unique fixed point, which is the unique solution of problem (3) and (4).

Example 1. Consider the following fractional order coupled differential system{
cD1.5

0+u(t) + f (t, u(t), v(t), cD0.5
0+u(t), cD0.5

0+v(t)) = 0, t ∈ (0, 1),
cD1.5

0+v(t) + g(t, u(t), v(t), cD0.5
0+u(t), cD0.5

0+v(t)) = 0, t ∈ (0, 1),
(35)
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with multi-point and multi-strip boundary conditions

u(0)−
2

∑
i=1

µ1i
cD0.2

0+u(θ1i) =
2

∑
i=1

λ1i I1.5
0+u(ξ1i),

u(1) +
2

∑
i=1

γ1i
cD0.2

0+u(ϑ1i) =
2

∑
i=1

δ1i I1.5
0+u(η1i),

v(0)−
2

∑
i=1

µ2i
cD0.2

0+v(θ2i) =
2

∑
i=1

λ2i I1.5
0+v(ξ2i),

v(1) +
2

∑
i=1

γ2i
cD0.2

0+v(ϑ2i) =
2

∑
i=1

δ2i I1.5
0+v(η2i),

(36)

where

f (t, u(t), v(t), cD0.5
0+u(t), cD0.5

0+v(t))

=
1

12(t + 1)2 u(t) +
1

12(t + 1)2 v(t) +
1

12(t + 1)2
cD0.5

0+u(t) +
1

12(t + 1)2
cD0.5

0+v(t) +
1

12

g(t, u(t), v(t), cD0.5
0+u(t), cD0.5

0+v(t))

=
1

8(t + 2)2 u(t) +
1

8(t + 2)2 v(t) +
1

8(t + 2)2
cD0.5

0+u(t) +
1

8(t + 2)2
cD0.5

0+v(t) +
1
16

θj1 = ϑj1 = λj1 =
1
2

, ξ j1 = ηj1 =
1
3

, µj1 =
1
8

, γj1 =
1
4

, δj1 =
1
3

,

θj2 = ϑj2 = λj2 =
3
4

, ξ j2 = ηj2 =
5
6

, µj2 =
1

16
, γj2 =

1
3

, δj2 =
1
5

, j = 1, 2.

It is easy to see that α1 = α2 = p1 = p2 = 1.5, q1 = q2 = 0.2 and∣∣∣ f (t, u, v, cDα1−1
0+ u, cDα2−1

0+ v)
∣∣∣ ≤ 1

12
+

1
12
|u|+ 1

12
|v|+ 1

12

∣∣∣cDα1−1
0+ u

∣∣∣+ 1
12

∣∣∣cDα2−1
0+ v

∣∣∣ ,∣∣∣g(t, u, v, cDα1−1
0+ u, cDα2−1

0+ v)
∣∣∣ ≤ 1

16
+

1
16
|u|+ 1

16
|v|+ 1

16

∣∣∣cDα1−1
0+ u

∣∣∣+ 1
16

∣∣∣cDα2−1
0+ v

∣∣∣ .

Hence, condition (H5) holds. Further, we have Dj1 = 0.5016, Dj2 = 0.1627, Ej1 = 0.2831, Ej2 = 0.3939
j = 1, 2 and

| f (t, u1, u2, u3, u4)− f (t, v1, v2, v3, v4)|

≤ 1
12
|u1 − v1|+

1
12
|u2 − v2|+

1
12
|u3 − v3|+

1
12
|u4 − v4|,

|g(t, u1, u2, u3, u4)− g(t, v1, v2, v3, v4)|

≤ 1
16
|u1 − v1|+

1
16
|u2 − v2|+

1
16
|u3 − v3|+

1
16
|u4 − v4|.

So condition (H6) holds.
By simple computation, for j = 1, 2, we have ∆j = 0.9318, ϕj(1) = 0.8387, ψjM = 1.4959, ēj = 1.5307 and

Nj =
ϕj(1) + 1
Γ(αj + 1)

+ Āj(1)ψjM + B̄j(1)ϕj(1)

+
1

Γ(3− αj)

(
ēj + Āj(1)

1− Dj2

∆j
+ B̄j(1)

1− Dj1

∆j

)
= 4.8858.
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Therefore,
N1 max{ρ1, ρ3}+ N2 max{$1, $3} ≈ 0.7125 < 1,

N1 max{ρ2, ρ4}+ N2 max{$2, $4} ≈ 0.7125 < 1.

By Theorem 3, boundary value problem (35) and (36) has at least one solution. We also have

N1 max{n1, n3}+ N2 max{m1, m3} ≈ 0.7125 < 1,

N1 max{n2, n4}+ N2 max{m2, m4} ≈ 0.7125 < 1.

By Theorem 4, boundary value problem (35) and (36) has a unique solution.
In Example 1, by applying the Leray-Schauder’s Alternative and Banach’s constraction principle,

we establish the existence and uniqueness conclusions to problem (35) and (36), respectively. It is important to
note that this example is not fixed, it represents a class of models. Both the form of the nonlinear terms in (35)
and the parameters of boundary condition (36) can be adjusted, only satisfied H5 and H6.

4. Conclusions

First of all, subject to the coupled system of second-order differential equations with nonlinearities
depending on two unknown functions as well as their derivatives, by defining the appropriate upper
and lower solutions, combining with Nagumo conditions, the truncation function is constructed
successfully. It is proved that there exists a solution to this truncation system that is just between the
upper and lower solutions, and the derivative of the solution is bounded. It means the solution of the
truncation system is the one of the original problem.

Secondly, we extend the coupled system of second-order differential equations to a coupled system
of Caputo fractional differential equations. To the differential model with wide application background,
the existence and uniqueness results of solutions are investigated by using the Leray-Schauder’s
alternative and the Banach’s contraction principle.

However, to the best of our knowledge, this technique of upper and lower solutions has not been
applied yet to the differential system with mixed fractional order derivative definition, which will be
the direction of our further research.
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