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Abstract: Evolutionary Computation Methods (ECMs) are proposed as stochastic search methods to
solve complex optimization problems where classical optimization methods are not suitable. Most of
the proposed ECMs aim to find the global optimum for a given function. However, from a practical
point of view, in engineering, finding the global optimum may not always be useful, since it may
represent solutions that are not physically, mechanically or even structurally realizable. Commonly,
the evolutionary operators of ECMs are not designed to efficiently register multiple optima by
executing them a single run. Under such circumstances, there is a need to incorporate certain
mechanisms to allow ECMs to maintain and register multiple optima at each generation executed in
a single run. On the other hand, the concept of dominance found in animal behavior indicates the
level of social interaction among two animals in terms of aggressiveness. Such aggressiveness keeps
two or more individuals as distant as possible from one another, where the most dominant individual
prevails as the other withdraws. In this paper, the concept of dominance is computationally abstracted
in terms of a data structure called “competitive memory” to incorporate multimodal capabilities into
the evolutionary operators of the recently proposed Cluster-Chaotic-Optimization (CCO). Under
CCO, the competitive memory is implemented as a memory mechanism to efficiently register and
maintain all possible optimal values within a single execution of the algorithm. The performance
of the proposed method is numerically compared against several multimodal schemes over a set of
benchmark functions. The experimental study suggests that the proposed approach outperforms its
competitors in terms of robustness, quality, and precision.

Keywords: evolutionary algorithms; multimodal optimization; competitive memory; collective
behavior; Cluster-Chaotic-Optimization

1. Introduction

Engineering optimization aims to obtain the optimal solution from a possible set of candidate
solutions for a given minimization/maximization problem [1,2]. Many areas, such as economics,
science, bio-engineering, and others, model an optimization problem in terms of objective functions.
Traditionally, to solve optimization problems, engineering optimization has proposed the use of
classical deterministic paradigms which theoretically guarantee the location of global optima. However,
classical approaches present issues in the presence of multiple optima [3,4]. Deterministic methods
are susceptible to being trapped in local optima. Under such circumstances, these methodologies
obtain suboptimal values. On the other hand, Evolutionary Computation Methods (ECMs) have been
proposed to solve complex optimization problems to alleviate the stagnation problem derived from the
presence of multiple optima in a given objective function. ECMs are catalogued as stochastic search
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mechanisms, where the use of evolutionary operators guides the search strategy towards the global
optimum [5,6]. To this end, many scientific, engineering, and even economic research communities
have adopted the use of ECMs as a generic tool to solve optimization problems, regardless of the real
constraints found in their mathematical models.

Recently, several ECMs have been proposed by using biological, natural, or even social metaphors
as search strategies to improve the detection of optimal values, regardless of the domain, nonconvexity,
and complexity of the given objective functions. ECMs are developed as the synergy among randomness
and deterministic criteria to imitate the behavior of their abstracted metaphors. Under ECMs,
the optimization process is divided into two major parts: exploration and exploitation. The exploration
stage aims to make each search agent as scattered as possible in the entire search space, while in
the exploitation stage, each search agent is disturbed, causing it to search in more promising areas.
These two evolutionary stages are abstracted from many metaphors found in nature, i.e., biological
or even social phenomena. Under such an assumption, the evolutionary operators of each ECM are
computationally implemented based on the abstracted knowledge of their behavior.

Some ECMs consider biological aspects of the genetic recombination of parents to produce
fitter individuals. That is the idea behind the Genetic Algorithm (GA), which has been proposed
by Holland [7] and Goldberg [8]. Other methods apply the concept of the collective intelligence of
swarms for finding food. For example, the Ant Colony Optimization algorithm (ACO) was proposed
by Dorigo [9], the Particle Swarm Optimization was proposed by Kennedy and Eberhart [10], and the
Artificial Bee Colony Optimization algorithm (ABC) was proposed by Karaboga [11]. On the other hand,
several ECMs have been proposed following mathematical or physical principles. Under this scenario,
Rashedi [12] considers the gravitational force among bodies to generate an evolutionary operator in
the Gravitational Search Algorithm (GSA). Also, Storn and Price [13] proposed the weighted difference
between two vectors to form a simplex in the Differential Evolution (DE) method. Hansen [14] uses
the covariance among search agents to guide the search strategy in the Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES).

The main objective of most of the proposed ECMs is to find the optimal value for a given objective
function. However, the global solution may be expensive, impractical, or physically unrealizable.
Under such limitations, multimodal strategies are required in order to efficiently detect and store
multiple solutions. In multimodal optimization problems, the aim of locating all possible optima
consists of obtaining a set of optimal and suboptimal solutions. This obtained set will contain many
solutions, where each considers the realistic constraints found in the mathematical description of a
given problem. Then, the user must select which solution will be used based on his/her expertise.
To achieve multiple local/global optima detections, a multimodal search strategy must be designed
considering at least three aspects: (i) a storage structure to maintain all possible optima; (ii) a mechanism
to add/remove elements in the storage unit; and (iii) an update mechanism for managing the storage
structure to avoid redundancies.

Under such circumstances, many multimodal approaches have been developed to incorporate
multimodal capabilities on single optimum ECMs. In the multimodal literature, multimodal techniques
can be classified into two major groups: crowding-niching and speciation [15]. In crowding-niching
approaches, the population is divided into niches of different species, in contrast to speciation methods,
where the population is divided into individuals of the same species. Based on crowding-niching
approaches, some multimodal methods have been proposed.

Based on crowding-niching techniques, Sareni proposed the Fitness Sharing (FS) method [16]
as a mechanism to incorporate a multimodal strategy in the optimization process. This technique
considers two aspects: a similarity function and a sharing model. The sharing model is based on affinity
among individuals, while the similarity function uses the distance among individuals to calculate such
affinities. The resulting scheme assigns a decreasing fitness value to similar individuals to reduce the
number of redundancies in the solutions. Some ECMs have been proposed as multimodal approaches
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based on the FS technique: Fitness Sharing Differential Evolution [17], Fitness Euclidean-distance
Differential Evolution [18], and Information Sharing Artificial Bee Colony [19].

Speciation techniques divide the population in terms of species. That is, they group individuals of
the same species. Additionally, speciation methods can be classified into topology- and distance-based
approaches. In distance-based mechanisms, the similarity of individuals is computed considering
spatial relationships. Under this category, the Differential Evolution with Self-adaptive Strategy [20]
and the Elitist-population Genetic Algorithm [21] have been proposed. In topology mechanisms,
the relationship between location and fitness value are considered. In this category, the History-based
Topological Speciation [22] method, Recursive Middling [23], and the hill-valley approach [24] have
been proposed.

The previously described multimodal approaches have been presented as alternative methodologies to
detect and efficiently store all possible optimal values by considering single objective functions. However,
some researchers have proposed techniques based on the principles of multiobjective optimization
methods [25–28], that is, by controlling one or more conflictive objectives such as diversification and
intensification. Under this paradigm, the Multiobjective Optimization for Multiple optimal of Multimodal
Optimization algorithm [28], the Bi-objective Multipopulation Genetic Algorithm [25], and the Multimodal
Optimization with Bi-objective Differential Evolution [27] methods have been proposed.

On the other hand, the Cluster-Chaotic-Optimization (CCO) [29] was recently proposed, integrating
clustering and chaotic sequences to find the optimal values of optimization problems. The CCO method
divides the population into clusters considering intra- and extra- cluster operations. In intracluster
procedures, the search mechanism locally explores each formed cluster. In extracluster procedures,
the search mechanism globally explores the entire search space for a given optimization problem.

In the beginning, CCO considers each data point (individual) as a single cluster. Then, during
the optimization process, each data point is grouped with similar data points. The way CCO groups
data points is based on the hierarchical clustering method [30], which considers the capacity to
generate associations (links) among data points based on their variance, regardless of the a priori
specification of the number of clusters. During the grouping process, the stochastic characteristics of
chaos theory are also implemented in CCO. In CCO, chaotic sequences have been adopted in order to
produce randomness. This procedure increases the performance and the population diversity of the
CCO. As a consequence, the original CCO operators present a balance among the exploration and
exploitation stages.

Considering the inter- and extra- cluster stages of the CCO, the evolutionary operators naturally
decompose the population into clusters; this process can detect potential optima in a single run. Under
such circumstances, CCO can be adapted to incorporate multimodal capabilities.

This paper presents a novel approach for the detection of multiple optima in any optimization
problem. The proposed method, called Multimodal Cluster-Chaotic-Optimization (MCCO), uses the
original structure of CCO operators and extends its functionality to efficiently detect, register, and
maintain multiple optima for a given objective function. Under the proposed approach, a computational
data structure called the “competitive memory mechanism” is adopted as an abstraction of the concept of
dominance found in animal interactions [31–33]. The performance of MCCO was numerically compared
against some state-of-the-art multimodal techniques over a set of multimodal benchmark functions.
The experimental results were statistically validated by a nonparametric test. The experimental results
suggest that MCCO outperformed other multimodal approaches in terms of accuracy, robustness,
and consistency in most of the benchmark functions.

The rest of the paper is organized as follows. In Section 2, the CCO method is described.
In Section 3 the proposed MCCO is presented. Section 4 describes the performance of the proposed
MCCO against several multimodal approaches, considering a set of multimodal benchmark functions.
Finally, in Section 5, conclusions are presented.
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2. Cluster-Chaotic-Optimization (CCO)

The main process of the CCO is based on data analysis of the population through a clustering
method. The method considered here is the Ward method. With this approach, individual associations
among data points guide the search strategy for the optimization process. Traditionally, most of the
proposed ECMs consider each individual separately, regardless of the spatial information among
them. Under this situation, CCO considers spatial associations among each generation to group similar
individuals into clusters. These clusters will operate locally and globally to improve the search strategy.
On the other hand, CCO also incorporates the stochastic behavior of chaotic sequences to randomly
perturb solutions. The use of chaotic sequences has been demonstrated to improve the performance of
ECMs based on random numbers [34–36].

The CCO method was conceived to find the global optimum of complex optimization problems in
the following form:

minimize/maximize J(x) x = (x1, . . . , xn) ∈ Rn

subject to x ∈ X
(1)

where J : Rn
→ R corresponds to the objective function, and X =

{
x ∈ Rn

|l j ≤ x j ≤ u j, j = 1, . . . , n
}

is
a bounded searched space, constrained by the upper (u j) and lower (l j) bounds. To find the global
optimum of the aforementioned definition, CCO considers population Dk

({
dk

1, dk
2, . . . , dk

ND

})
compound

of ND data points which evolves from an initial iteration (k = 0) to a maximum number of gen iterations
(k = gen). Each solution dk

i (i ∈ [1, . . . , ND]) corresponds to a n-dimensional vector
{
dk

i,1, dk
i,2, . . . , dk

i,n

}
where each dimension represents a decision variable.

Based on the population description in CCO, three procedures are required to implement the
evolution process of each data point: the first corresponds to the initialization process of the population
of data points; the second considers an intracluster operation to search locally inside each cluster;
and finally, an extracluster operation is executed to globally search outside each cluster but inside the
search space.

2.1. Initialization

CCO begins by randomly initializing the population Dk compound of ND solutions (data points).
Each dimension of every data point corresponds to a uniform random number within the range of the
upper (u j) and lower (l j) bounds. This mechanism is mathematically defined as follows:

dk
i, j = l j + rand(0, 1)·(u j − l j), j = 1, 2, . . . , n, i = 1, 2, . . . , ND (2)

where dk
i, j represents the j-th decision variable of the i-th solution (data point) at the k iteration.

2.2. Intracluster Operation

In CCO, the main process for identifying promissory search zones within the search space
is conducted by clustering. During the optimization process of CCO, clustering starts grouping
individuals into a hierarchical structure. This mechanism generalizes natural data associations without
considering the total number of clusters.

In each iteration of the CCO algorithm, the Ward method is used to obtain clusters by spatial data
associations. Then, an evolutionary operator called “Intracluster operation” will locally explore each
formed cluster. Under this operation, two procedures are computed: the local attraction mechanism
and the local perturbation mechanism. In the local attraction mechanism, each data point inside each
cluster is attracted to the best element found in the cluster; this operation can be considered as an
exploitation operator inside the cluster. The local perturbation modifies each data point to increase the
exploitation process inside the cluster.
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2.2.1. Local Attraction

For this operation, it is assumed that ck
q represents a cluster and it is composed of a set of

∣∣∣ck
q

∣∣∣ data

points dk
i

(
i ∈ ck

q

)
, and that each element dk

i is attracted to the best data point dk
b

{
dk

b,1, dk
b,2, . . . , dk

b,n

}
of

the cluster based on the fitness value it represents. In this paper, the best element is considered as the
minimum argument which minimizes the following objective function:

dk
b = min

i∈ck
q

J
(
dk

i

)
(3)

Then, the local attraction operator will modify the dimensionality of the dk
i data point as follows:

dk+1
i, j = dk

i, j + ρk
cq ·z·

(
dk

b, j − dk
i, j

)
(4)

where z corresponds to a chaotic sequence value obtained by the Iterative Chaotic Map with Infinite
Collapses (ICMIC) [37] chaotic map, to generate near-uniform distribution to maintain diversity among
the population [38]. The density term ρk

cq is then calculated as follows:

ρk
cq =

∣∣∣ck
q

∣∣∣
ND

(5)

The cluster density term ρk
cq is the quotient between the number of data points belonging to

a given cluster
∣∣∣ck

q

∣∣∣ and the number of solutions in the population ND. This quotient will produce
lower values (low-density) when the number of elements belonging to a given cluster

∣∣∣ck
q

∣∣∣ contains
few data points. In contrast, the density term ρk

cq will produce higher values (high-density) when

the number of elements belonging to a given cluster
∣∣∣ck

q

∣∣∣ contains a higher number of data points.
The density term ρk

cq then acts as an attraction factor among the data points of a given cluster and their

corresponding best cluster elements dk
b. The induced effect of the density term ρk

cq implies two different

scenarios: (i) clusters containing a high number of data points, whereby the quotient

∣∣∣∣ck
q

∣∣∣∣
ND

will produce
high-density values which will obtain larger movements by Equation (4). The direct effect of this is
large movements towards the best cluster element, improving the exploration of the inner space of the
cluster, but smaller search capabilities in the exploitation of the inner space of the cluster. To illustrate
this effect, Figure 1a represents the case when the cluster contains a high number of elements; hence,

the quotient

∣∣∣∣ck
q

∣∣∣∣
ND

will produce high-density values, and Equation (4) will produce large movements
inside the cluster. The arrows in the Figure, represent smaller search capabilities in the exploitation

of the inner space of the cluster. (ii) Clusters containing few datapoints, whereby the quotient

∣∣∣∣ck
q

∣∣∣∣
ND

will produce low-density values which will obtain smaller movements by Equation (4). The direct
effect of this is small movements towards the best cluster element, not improving the exploration of
the inner space of the cluster, but producing larger search capabilities in the exploitation of the inner
space of the cluster. To illustrate this effect, Figure 1b represents the case when the cluster contains few

elements; hence, the quotient

∣∣∣∣ck
q

∣∣∣∣
ND

will produce low-density values, and Equation (4) will produce small
movements inside the cluster but larger search capabilities to exploit the inner space of the cluster.
The arrows in the Figure represent larger search capabilities in the exploitation of the inner space of
the cluster.
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Figure 1. Local attraction operation in two scenarios: (a) cluster containing several elements (b) cluster
containing few elements. The arrows represent (a) small search capabilities (low exploitation, high
exploration) inside the cluster and (b) large search capabilities (high exploitation, low exploration)
inside the cluster.

2.2.2. Local Perturbation

In this operation, the resulting repositioned solutions by the local attraction mechanism are
perturbed inside the clusters to improve its exploitation search. Each produced solution by the
attraction method is then modified to conduct the search strategy inside each cluster. According to this
procedure, the produced element dk+1

i generates two different subelements: hA
i =

{
hA

i,1, . . . , hA
i,n

}
and

hB
i =

{
hB

i,1, . . . , hB
i,n

}
. Both elements are generated based on:

hA
i, j = dk+1

i, j +
(
dk+1

i, j ·zA·vA

)
; hB

i, j = dk+1
i, j −

(
dk+1

i, j ·zB·vB

)
(6)

where zA and zB represent chaotic values generated by an ICMIC chaotic map. The terms vA and vB

correspond to a radial neighborhood described as follows:

vl = cos(α·r); l = A, B (7)

where r is a random number in the range [0, 2π], and α corresponds to the self-adaptive value described
in [29].

The last step in this operation, is the elitist selection among dk+1
i , hA

i and hB
i to hold only the best

elements from each generation. This process is described as follows:

dk+1
i =


hA

i if J
(
hA

i

)
< J

(
dk+1

i

)
hB

i if J
(
hB

i

)
< J

(
dk+1

i

)
dk+1

i otherwise

(8)

To graphically illustrate the local perturbation operation, Figure 2 summarizes the procedure.
The figure shows that element hB

i presents a better fitness value than its predecessor dk+1
i , and that

under such a condition, hB
i replaces dk+1

i in a future iteration.
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2.3. Extracluster Operation

This CCO operation improves the global search. The operation considers two different parts:
Global attraction and global perturbation. In global attraction, the best elements of each cluster are
attracted to the best global solution which has occurred so far. In global perturbation, the repositioned
elements produced by the global attraction movement are perturbed to increase the search capabilities
of the method. This extracluster mechanism establishes a balance between the exploration and
exploitation stages.

2.3.1. Global Attraction

This operation moves the best elements of each cluster dk
b towards the best element to have

occurred so far in the entire optimization process dk
B. This global operator is described as follows:

dk+1
b, j = dk

b, j +
(
dk

B, j − dk
b, j

)
·rand(·)·vG (9)

where rand(·) represents a random number between [0, 1] and vG corresponds to a radial neighborhood
from Equation (7).

2.3.2. Global Perturbation

After the application of global attraction, the repositioned data points will produce two solutions
in terms of radial movement. The aim of this procedure is to increase the exploitation rate of the search
mechanism outside the clusters but inside the search space. In this operation, two different elements
hR

b =
{
hR

b,1, . . . , hR
b,n

}
and hS

b =
{
hS

b,1, . . . , hS
b,n

}
are obtained as follows:

hR
b, j = dk+1

b, j +
(
dk+1

b, j ·rR·vR

)
; hS

b, j = dk+1
b, j −

(
dk+1

b, j ·rS·vS

)
(10)

where rR and rS correspond to random numbers between (0, 1). vR and vS are radial neighborhoods
generated by Equation (7).

The last step in this operation is an elitist selection among dk+1
i , hR

b and hS
b to keep only the best

elements from each generation. This process is described as follows:

dk+1
b =


hR

b if J
(
hR

b

)
< J

(
dk+1

b

)
hS

b if J
(
hS

b

)
< J

(
dk+1

b

)
dk+1

b otherwise

(11)

To illustrate the extracluster operation, Figure 3 summarizes both the global attraction mechanism
and the global perturbation procedure.
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The following pseudo-code in Algorithm 1 summarizes the entire iteratively process of the CCO.

Algorithm 1. Pseudo-code for the Cluster-Chaotic-Optimization (CCO) algorithm.

1. Input: ND, gen, k = 0
2. Dk

←InitializePopulation(ND);
3. while k<=gen do
4. dk

B←SelectBestParticle(Dk);
5. [ck

q,g]←WardClustering(Dk);
6. α←CalculatePerturbation(gen); Self-Adaptive value from [29]
7. for (q = 1; q <= g; q++)

Intracluster
procedure

8. dk
b←SelectBestCluster(ck

q);
9. dk+1

l ←LocalAttractionOperation (ck
q); l ∈ck

q

10. dk+1
l ←LocalPerturbationOperation(dk+1

l );
11. end for
12. for (each element of ck

q)
Extracluster
procedure

13. dk+1
b ←GlobalAttractionOperation(dk

b);
14. dk+1

b ←GlobalPerturbationOperation(dk+1
b );

15. end for
16. k = k + 1;
17. end while
18. Output: dk

B

3. Multimodal Cluster-Chaotic-Optimization (MCCO)

In CCO, the optimization process is driven by the application of a data analysis technique
with chaotic perturbations. CCO divides the population considering the spatial information among
individuals. This clustering process is based on the computation of a hierarchical tree, where the
natural associations among each data point (individual) are determined. The clustering method called
“Ward” is cataloged as a hierarchical clustering methodology, where each element starts by forming
a single cluster, and then an association tree is generated over the remaining elements. This tree
structure is used to define the level at which the clustering algorithm will produce clusters. The formed
clusters share similarities among data points. CCO uses the idea of clustering from the Ward method
to partition the population into similar groups at each iteration of the optimization process. In the
beginning, each element is treated as a single cluster; then, during the application of its evolutionary
operators, it starts grouping clusters containing more elements. Then, CCO operates each cluster
differently by exploring and exploiting inside and outside each cluster.

The CCO uses the intracluster operation to locally explore and exploit inside each formed cluster.
This process is achieved by two operations: local attraction and local perturbation. Under local
attraction, each element of a given cluster is attracted to the best element in such a cluster. The way
each element moves towards the best individual in the cluster is based on the density measure of the
cluster. In the CCO, the density of a cluster refers to the number of elements a cluster has. Clusters
containing few elements will attract each element quickly. On the other hand, if a cluster contains a
high number of elements, the elements will attract each other slowly. This process can be defined as an
exploration operator inside the cluster. To maintain a balance between exploration and exploitation
inside the clusters, CCO defines a local perturbation operator as an exploitation mechanism inside the
clusters. In this way, two different solutions are radially generated to improve the search mechanism.

On the other hand, CCO uses the extracluster operation to globally explore and exploit outside
the clusters, that is, in the overall search space. To accomplish this, CCO considers both the global
attraction and global perturbation operations. Under global attraction, the best elements of each
cluster are attracted to the global best solution to have occurred so far. This procedure improves the
exploitation stage outside each cluster but inside the feasible search space of a given optimization
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problem. Then, a redefinition phase is computed. The CCO uses global perturbation as an exploitation
operator outside the clusters but inside the search space. This whole process maintains the population
diversity and promotes a balance among the evolutionary exploitation and exploration stages.

The spatial associations from the CCO operators suggest an inherent multimodal behavior. Each
time an iteration begins, a clustering procedure is executed. This mechanism will group each individual
in the population into similar individuals forming clusters. This clustering process suggests the
agglomeration of individuals into potential search zones. Under such circumstances, CCO presents a
certain degree of multimodality in its operators. However, the original CCO structure is not suitable for
detecting multiple optima in a single run. Under such limitations, CCO can be adapted to incorporate
multimodal capabilities.

In this paper, a multimodal extension of the CCO is presented to incorporate multimodal
capabilities into the original structure of the CCO. The concept of dominance commonly found in social
animal associations presents the nature-inspired structure called “competitive memory”. Under the
competitive memory approach, each individual will confront its neighbors. The resulting individual
will be catalogued as a potential optimum. Then, an updating scheme will manage the diversity of
the population. The effect of this computational structure will provide a multimodal structure where
optimal and suboptimal solutions will be carried out at each iteration.

The multimodal extension used to incorporate multimodal capabilities in the CCO was conceived
based on the concept of dominance in animal interactions. Biologists have demonstrated that
social interactions among animals remain in an animal’s memory. Such a structure has been called
“competitive memory” [31–33]. In this structure, it is established that previous group interactions can
affect social interactions in the future in terms of aggressiveness. Such aggressiveness keeps two or
more individuals as distant as possible from one another, where the most dominant individual prevails
as the other withdraws. From a computational point of view, the idea of dominance among individuals
in a population is implemented based on a data structure called competitive memory.

To implement the competitive memory approach, two types of memory must be generated:
historic MH and population memories MP. Historic memory stores promissory solutions through
the optimization process, in contrast to population memory, which only stores the solutions for each
generation. Once these memory structures have been initialized, competition and update mechanisms
are required.

3.1. Initialization Phase

The first step considered for the implementation of the competitive memory approach in the
CCO is the initialization of the memory mechanism. For that, once the initialization procedure from
Section 2.1 has been executed, a sorted copy of the population will create the historic memory MH ={
m1

H, m2
H, . . . , mn

H

}
, where each mi

H vector corresponds to an element belonging to the historic memory.

A sorted copy of the population will also create the population memory MP =
{
m1

P, m2
P, . . . , mn

P

}
,

where each element mi
P corresponds to an individual stored in the population memory. After the

initialization process has occurred, the population memory will be affected by the CCO evolutionary
operators and the historic memory will maintain potential optima during the optimization process.

3.2. Competition Phase

This procedure is based on the biological concept of dominance. Animal dominance is a social
interaction behavior among two animals. Animals maintain a distance from each other to avoid
confrontation. The distance is based on how aggressively the animals behave. When two animals
confront each other inside a radius distance, the most dominant animal will prevail, while the other
withdraws. In order to implement this idea, a set of competition rules must be applied for each solution
to be part of the MH. The competition rules are based on the distance (δ) and fitness values among Mk

P
and MH. The following rules are considered in the implementation of the competition phase in MCCO.
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1. Compute the dominance radius ρ.
2. Compute the euclidean distance δ among elements of MH and elements of Mk

P.
3. If the distance δ between two individuals is less than the dominance radius ρ, then the prevailing

individuals beloging to MH will be stored in a temporary historic memory TH, while the prevailing
individuals in Mk

P will be stored in temporary population memory TP.
4. The temporary memory structure T will be the union of TH and TP.

To illustrate the previously described competition rules, Figure 4 graphically illustrates the
competition phase between L1 and L2 animals using the representation L1 as individual mH

i stored in
the MH, and L2 to represent individual mP

j stored in Mk
P.
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In Figure 4a, L2 enters to the radius of L1; then, they confront each other, considering their fitness
values. If L2 possesses a lower fitness value than L1, then L1 remains unbeaten and L2 is removed from
Mk

P (Figure 4b). On the other hand, if L1 possesses a lower fitness value than L2, L2 remains unbeaten
and L1 is removed from MH (Figure 4c).

The dominance radius ρ in Figure 4 is computed by:

ρ =

d∏
j=1

(u j − l j)

κ·d
(12)

where l j and u j correspond the lower and upper limits for the j-th decision variable, respectively.
κ corresponds to a proportional factor to adjust the radius to a minimum value regarding the number
of dimensions for the objective function. The κ parameter was experimentally configured to 20.
Such an experimental value was chosen considering the sensitivity analysis reported in Section 4.3.
The pseudo-code for the competition phase is summarized in Algorithm 2.

3.3. Update Phase

Finally, a mechanism to maintain population diversity in the optimization process is considered
in the last step. The updating scheme for the competitive memory approach aims to obtain the historic
memory MH for future iterations. The historic memory will contain and maintain the best solutions
through the optimization process. In the competition phase, a temporary historic memory TH is created;
however, the number of its elements could be smaller than the historic memory MH, Hence, if the
aforementioned condition is satisfied (|TH | < |MH |), then the update phase is executed considering
two scenarios as:

1. If |TP| > 0, then the best individuals belonging to TP will be stored in TH.
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2. If |TH | < ND, then the best solutions in Pk will be allocated to TH.

Algorithm 2. Pseudo-code for the competition phase.

1. TH ← ∅
2. TP ← ∅

3.
ρ←

d∏
j=1

(u j−l j)

κ·d
1st Rule

4. for (i = 1; i<=size(MH);i++)
5. for (j = 1; j<=size(MP);j++)

6. δ←

√
d∑

z=1

(
mH

i,z −mP
j,z

)2
2st Rule

7. if δ < ρ 3rd Rule

8. if J
(
mH

i,z

)
< J

(
mP

j,z

)
4rd Rule

9. TH ← TH ∪mH
i,z

10. else
11. TP ← TP ∪mP

j,z
12. end if
13. end if
14. end for
15. end for
16. T = TH ∪TP

To summarize the update scheme, Algorithm 3 presents pseudo-code for the previous description.

Algorithm 3. Pseudo-code for the update phase.

1. if size (TH) < size (MH)

2. if size (TP) > 0
3. TH ← TH ∪TP
4. end if
5. if size (TH) < ND
6. TH ← TH ∪ Pk

7. end if
8. end if
9. MH ← TH

3.4. The Complete Multimodal Cluster-Chaotic-Optimization (MCCO)

To incorporate multimodal capabilities into the original structure of CCO, the MCCO requires
three operators to allocate and manage the potential optima: initialization, competition, and update.
In the initialization phase, a memory mechanism is initialized based on the current population; in this
process, two types of memories are generated in order to computationally abstract the concept of
dominance. Then, in the competition phase, the solutions in both memories confront each other in order
to determine the most dominant solutions. Finally, the updating scheme manages the historic memory
to produce a new population to be used in future iterations. Under the complete memory mechanism
of the MCCO, potential optima will be stored and maintained during the whole optimization process
by holding only the solutions which present better fitness values. The complete pseudo-code for the
MCCO algorithm can be summarized in Algorithm 4.

In Algorithm 4, the original operators of the CCO are extended with the memory mechanism
described in Section 3; the memory initialization process is achieved by line 3. Then, the competitive
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phase is applied in line 17, and the update phase is accomplished in line 18. The original structure of
the intra- and extra- cluster operations are found in lines 8–12 and 13–16, respectively.

Algorithm 4. Pseudo-code for the Multimodal Cluster-Chaotic-Optimization (MCCO) algorithm.

1. Input: ND, gen, k=0
2. Dk

←InitializePopulation(ND);
3. [MH, MP]←InitializeMemory(Dk); Memory initialization
4. while k<=gen do
5. dk

B←SelectBestParticle(Dk);
6. [ck

q,g]←WardClustering(Dk);
7. α←CalculatePerturbation(gen);
8. for (q = 1; q <= g; q++)

Original CCO operators

9. dk
b←SelectBestCluster(ck

q);
10. dk+1

l ←LocalAttractionOperation (ck
q); l ∈ck

q

11. dk+1
l ←LocalPerturbationOperation(dk+1

l );
12. end for
13. for (each element of ck

q)
14. dk+1

b ←GlobalAttractionOperation(dk
b);

15. dk+1
b ←GlobalPerturbationOperation(dk+1

b );
16. end for
17. [TH, TP]←CompetitionPhase(MH, MP);

Memory Competition and Update
18. [MH, MP]←UpdatePhase(MH, MP, TH, TP);
19. k=k+1;
20. Dk

← MP
21. end while
22. Output: dk

B, Dk

4. Experimental Results

This section presents a numerical comparison among MCCO and 11 state-of-the-art multimodal
techniques. The performance results were obtained by the evaluation of 23 multimodal benchmark
functions containing different types of complexities. The experimental analysis was based on the
computation of commonly used performance metrics in the multimodal literature. Such metrics
measure the ability of each multimodal methodology to quantify the number of approximated solutions
considering true optima. In the Section 4.1, each of the performance metrics used in the experimental
study is described. Section 4.2 presents the analytical methodology considered in this study to
obtain the true optimal values for each multimodal benchmark function. Section 4.3 presents the
numerical results of MCCO, and the rest of the multimodal approaches are compared considering the
performance metrics.

4.1. Performance Metrics

In this section, six multimodal optimization performance indexes are presented. The set of
metrics is composed of the Effective Peak Number (EPN), the Maximum Peak Ratio (MPR), the Peak
Accuracy (PA), the Distance Accuracy (DA), the Peak Ratio (PR), and the Success Rate (SR). The entire
set of metrics was used extensively to quantify the performance of many multimodal optimization
techniques [17,39–41]. The entire set of metrics expresses the performance of a multimodal approach
based on the difference among true optima and the approximated optimal values. The EPN reflects
the capability of a multimodal technique to obtain most of the optima. The MPR computes the
consistency of the approximated optima over true optima. On the other hand, PA measures the error
among approximated optima and true optima. Similarly, DA indicates the total error, considering
each independent variable of the objective function. PR calculates the percentage of the total number
of approximated optima over multiple executions of a given algorithm. Lastly, SR measures the
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successful percentage of runs considering the total number of executions. The following paragraphs
mathematically describe each metric.

Effective Peak Number (EPN). This metric quantifies the number of approximated solutions identified
as valid optima. Each approximated solution ô is considered as a valid optimum if the Euclidean
distance between ô and the true optimum o is less than µ. The EPN is calculated as follows:

EPN = ‖oi − ô j‖ < µ (13)

where the subindexes i and j correspond to the i-th and the j-th true optimum and the approximated
optimum, respectively. Additionally, µ is a threshold value which refers to the accuracy. The value of
µ was set to 0.5. This value corresponds to the accuracy level in [41].

Maximum Peak Ratio (MPR). This metric computes the consistency of the approximated optima
over true optima. MPR is defined as:

MPR =

EPN∑
j=1

J(ô j)

O∑
i=1

J(oi)

(14)

where EPN and O correspond to the number of valid optima and the number of true optima, respectively.
Peak Accuracy (PA). Calculates the obtained error among approximated optima and true optima

as follows:

PA =
O∑

i=1

‖J(oi) − J(ôi)‖ (15)

Distance Accuracy (DA). Since the calculated error in PA is based on the fitness value, it does not
consider the closeness over peaks. For that, DA computes the error between approximated optima and
true optima according to the following model:

DA =
O∑

i=1

‖oi − ôi‖ (16)

Peak Ratio (PR). PR calculates the percentage of the total number of approximated optima over
multiple executions of a given algorithm as follows:

PR =

NR∑
i=1

EPNi

O·NR
(17)

Successful Rate (SR). Measures the successful percentage of runs considering the total number of
executions as:

SR =
NSR
NR

(18)

where NSR corresponds to the number of successful runs and NR denotes the total number of executions.

4.2. True Optima Determination

Each of the previously described multimodal metrics operates considering the true optima
solutions for each benchmark function. Under such circumstances, true optimal values are required.
Most of the reported literature on multimodal optimization lacks information related to the numerical
values of true optima. In this paper, the calculation process to obtain the numerical values of each
optimum is based on derivate application. To obtain all the optima values, the middle point between
the highest and lowest values is defined for each benchmark function. Then, all the optima found
below (in case of minimization) the middle point will be target optima. Under the target optima,
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the application of the second partial derivative is required to analytically compute the optimal values.
The following model describes the true optimal set T.

T = {o ∈ J |o ≤ m} (19)

where J corresponds to the objective function, o is the optimum, and m represents the middle point
used as a threshold value to compute optimal values. Then, Equation (20) defines the second partial
derivative discriminant:

D ≡ Jxx Jyy − Jxy Jyx (20)

To indicate if certain point (x0, y0) could represent a local minimum, the discriminant D is used
as follows:

o =
{
D > 0, Jxx(x0, y0) > 0

}
(21)

From Equation (21), it can be shown that the process to obtain local minima is based on a
minimization process.

4.3. Performance Comparison

In this section, the numerical results of the proposed MCCO are presented by comparing
the performance among MCCO and 11 state-of-the-art multimodal approaches, considering a
set of 14 multimodal benchmark functions. The benchmark functions have been widely used
to test the multimodal capabilities of several multimodal functions [41–43]. Tables A1 and A2
in Appendix A mathematically describe the test functions considered in the experimental study.
For clarity, the benchmark functions have been split into two tables. Table A1 describes functions
J1–J7, and Table A2 describes functions J8–J14. In the tables, the features of each benchmark function
are defined. The search domain column indicates the box constraints for each objective function,
n corresponds to the dimensionality tested, and the optima number corresponds to the number of true
optima determined by the second partial derivative method from Section 4.2.

For comparison purposes, the MCCO is compared against 11 multimodal methodologies: Locally
Informed Particle Swarm Model (LIPSM) [44], Fitness Sharing Differential Evolution (FSDE) [17], Clonal
Selection Algorithm (CSA) [45], Deterministic Crowding Genetic Algorithm (DCGA) [46,47], Locally
Informative Niching Differential Evolution (LoINDE) [15], Proximity-based Crowding DE (PNPCDE) [48],
Multimodal Gravitational Search algorithm (MGSA) [49], History-based Topological Speciation
(HTS) [22], Multiobjective Optimization for Multiple optimal of Multimodal Optimization algorithm
(MOMMOP) [28], Ensemble and Arithmetic Recombination-Based Speciation DE (EARSDE) [50],
and Region-based Memetic algorithm (RM) [51].

The comparison scheme involves the evaluation of the six multimodal metrics described in
Section 4.1. Also, it is considered a statistical validation framework based on a rank sum [52] test to
avoid the random effect. The population size has been configured to 100 individuals, and the maximum
number of iterations has been configured as 500, considering 30 independent runs. Each optimization
process is executed using MATLAB® R2018b, Windows-7 OS, x64-based PC, Intel(R) Core-i7(R)-CPU,
2.20 GHz with 16 GB RAM. The initial configuration parameters for each multimodal approach were
devised according to the guidelines in Table 1. These configuration settings were chosen since they
represent the best parameters for each multimodal approach according to their reported guidelines.

Additionally, the κ parameter was experimentally configured to 20; this value was chosen by the
sensitivity analysis shown in Table 2. In the table, an evaluation of the MCCO method is reported
for each benchmark function considering the EPN metric. The sensitivity analysis was conducted on
30 independent runs. The best entries in the table are in bold, and the numbers in parenthesis are the
standard deviations.

Tables 3 and 4 present the numerical results from the experimental study of all multimodal
approaches. To make a clear representation of the numerical results, Table 3 reports the experimental
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results for functions J1–J7, and Table 4 reports the numerical results for functions J8–J14. In the tables,
the numerical values for each metric are presented. Additionally, to measure the computational effort of
each multimodal approach, the Number of Function Calls (NFC) and the execution time (T) in seconds
were assessed. Finally, the entries in parentheses are the standard deviations of each particular metric.

Table 1. Parameter configuration for each multimodal method used in the experimental study.

Algorithm Parameter(s) Reference

DCGA Crossover probability cp = 0.9, Mutation probability mp = 0.1 [46]

CSA Mutation probability mp = 0.01, percentile to random
reshuffle per = 0.0, clone per candidate f at = 0.1 [45]

FSDE Crossover probability cr = 0.9, differential weight dw = 0.1,
sharing radius σshare = 0.1, α = 1.0 [46]

LIPSM Neighborhood size nsize = 2 [44]
LoINDE Crossover probability cr = 0.2, differential weight dw = 0.9 [15]
MGSA Final percentage f p = 0.02 [49]

PNPCDE Crossover probability cr = 0.2, differential weight dw = 0.9 [48]
HTS Crossover probability cr = 0.9, differential weight dw = 0.1 [22]

MOMMOP Crossover probability cr = 0.7, differential weight dw = 0.5 [28]

EARSDE Crossover probability cr = 0.9, differential weight dw = 0.1,
sharing radius σshare = 0.1, α = 1.0 [50]

RM Detail parameters are described by guidelines of the author. [51]

Table 2. Sensitivity analysis of the κ parameter.

Function κ = 10 κ = 15 κ = 20 κ = 25 κ = 30

J1
3.0000 3.4000 6.0000 5.4000 4.6000

(0.7071) (0.8944) (0.0000) (0.8944) (0.5477)

J2
1.0000 2.2000 4.0000 3.8000 3.6000

(0.7071) (0.8367) (0.0000) (0.4472) (0.5477)

J3
2.4000 4.4000 12.0000 6.8000 6.4000

(0.5477) (1.8166) (0.0000) (1.3038) (1.9494)

J4
10.8000 16.2000 19.0000 18.8000 13.2000
(1.6432) (2.0494) (2.4083) (0.4472) (1.0954)

J5
1.2000 3.4000 5.0000 4.4000 4.0000

(0.4472) (0.8944) (0.0000) (0.5477) (1.2247)

J6
2.8000 3.0000 3.0000 3.0000 3.0000

(0.4472) (0.0000) (0.0000) (0.0000) (0.0000)

J7
4.0000 4.0000 4.0000 3.6000 3.0000

(0.0000) (0.0000) (0.0000) (0.5477) (0.7071)

J8
8.0000 7.8000 8.0000 8.0000 6.2000

(0.0000) (0.4472) (0.0000) (0.0000) (1.0954)

J9
6.0000 6.0000 6.0000 6.0000 6.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

J10
15.2000 20.0000 24.0000 21.2000 22.0000
(2.8636) (1.5811) (0.7071) (2.3875) (1.0000)

J11
14.8000 20.8000 24.0000 22.2000 20.4000
(1.7889) (2.2804) (0.0000) (1.3038) (1.1402)

J12
3.6000 6.4000 8.0000 6.4000 6.8000

(0.8944) (0.8944) (0.0000) (0.8944) (1.0954)

J13
4.0000 4.0000 4.8000 4.0000 4.0000

(0.0000) (0.0000) (0.4472) (0.0000) (0.0000)

J14
4.2000 6.4000 9.0000 8.6000 8.0000

(1.3038) (0.5477) (0.0000) (0.8944) (0.7071)
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Table 3. Numerical results for J1–J7 multimodal test functions.

Function Algorithm EPN MPR PA DA PR SR NFC T(s)

J1

DCGA 3.7600
(1.2048)

0.6442
(0.1990)

126.2960
(69.4572)

11.9316
(5.7567) 6.47E−01 6.00E−02 5.2701e+06

(373.5616)
4.7476

(0.2630)

CSA 1.8200
(0.3881)

−0.0107
(0.0017)

352.9702
(0.6908)

25.3819
(0.3957) 1.67E−01 2.34E−02 1.0020e+03

(0.0000)
3.6196

(0.4550)

FSDE 3.0000
(0.0000)

0.8600
(0.0072)

54.4195
(2.4567)

14.7039
(0.0815) 4.93E−01 0.00E+00 5.0000e+04

(0.0000)
11.1163
(0.3280)

LIPSM 3.9400
(1.2683)

0.6289
(0.2270)

130.8030
(78.5388)

12.7353
(6.2776) 6.53E−01 2.00E−02 5.0000e+04

(0.0000)
0.0715

(0.0025)

LoINDE 0.1400
(0.3505)

−0.0327
(0.0909)

362.7803
(31.1560)

26.5336
(1.4380) 0.00E+00 0.00E+00 5.0000e+04

(0.0000)
6.3351

(0.1164)

MGSA 1.0000
(0.0000)

−0.0174
(0.0819)

357.6663
(28.3122)

27.2754
(1.6772) 1.67E−01 0.00E+00 5.0000e+04

(0.0000)
14.8227
(0.0646)

PNPCDE 3.0400
(0.1979)

−0.5547
(0.0376)

537.5972
(12.9847)

20.1959
(0.6167) 5.00E−01 4.31E−02 5.0000e+04

(0.0000)
13.6878
(0.1993)

HTS 3.9200
(0.8999)

1.1230
(0.2705)

249.6098
(59.7460)

14.6753
(2.5628) 6.90E−01 2.00E−02 4.7710e+06

(921,384.2807)
151.2031
(20.3608)

MOMMOP 6.0000
(0.0000)

0.7144
(0.1391)

153.3749
(40.9594)

6.0172
(1.2304) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
19.9509
(0.2957)

EARSDE 0.9800
(0.1414)

0.3004
(0.0448)

248.1227
(15.4322)

22.9300
(1.1826) 1.67E−01 0.00E+00 2.3418e+05

(103,335.0363)
7.4633

(1.2582)

RM 5.2800
(0.6402)

0.7036
(0.1274)

107.5283
(43.2990)

8.3606
(3.8876) 8.90E−01 2.23E−01 5.0000e+04

(0.0000)
8.2135

(0.7462)

MCCO 6.0000
(0.0000)

0.9904
(0.0075)

4.0639
(2.6462)

0.6218
(0.0963) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
4.5698

(0.7841)

J2

DCGA 1.1200
(0.8485)

0.2685
(0.2015)

31.7400
(8.7399)

10.3789
(2.7592) 2.90E−01 2.00E−02 5.2700e+06

(394.2309)
4.5124

(0.1676)

CSA 0.0000
(0.0000)

0.0000
(0.0000)

43.3904
(0.0000)

14.0472
(0.0000) 0.00E+00 0.00E+00 1.0020e+03

(0.0000)
4.1331

(0.3774)

FSDE 4.0000
(0.0000)

0.9887
(0.0077)

0.4906
(0.3318)

0.5365
(0.1768) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
11.3112
(0.3865)

LIPSM 1.7200
(1.2623)

0.4101
(0.2996)

25.5940
(12.9992)

8.4951
(4.0528) 5.00E−01 1.60E−01 5.0000e+04

(0.0000)
0.0712

(0.0009)

LoINDE 2.8800
(0.9823)

0.0000
(0.0000)

43.3904
(0.0000)

10.3229
(1.2543) 7.00E−01 2.40E−01 5.0000e+04

(0.0000)
6.4320

(0.0187)

MGSA 1.0000
(0.0000)

0.1199
(0.0740)

38.1891
(3.2111)

15.0909
(2.1688) 2.50E−01 0.00E+00 5.0000e+04

(0.0000)
14.6761
(0.0265)

PNPCDE 3.7000
(0.4629)

0.0000
(0.0000)

43.3904
(0.0000)

9.2659
(0.6119) 9.05E−01 6.20E−01 5.0000e+04

(0.0000)
13.6181
(0.0343)

HTS 1.5600
(0.9293)

0.3902
(0.2317)

26.4993
(10.0648)

13.3447
(2.4274) 3.50E−01 1.56E−02 4.0284e+06

(923,964.7574)
84.3728
(34.0255)

MOMMOP 3.8200
(0.3881)

0.7118
(0.1288)

12.5069
(5.5905)

7.0579
(2.0677) 9.40E−01 7.60E−01 5.0000e+04

(0.0000)
19.1834
(0.4985)

EARSDE 1.0000
(0.0000)

0.2504
(0.0003)

32.5607
(0.0101)

13.6066
(1.5561) 2.50E−01 0.00E+00 2.0677e+05

(100,142.9924)
7.0750

(1.6465)

RM 3.7400
(0.4431)

0.7180
(0.1452)

12.2383
(6.3022)

3.3264
(1.5125) 9.29E−01 5.00E−01 5.0000e+04

(0.0000)
11.1452
(0.2781)

MCCO 4.0000
(0.0000)

0.9891
(0.0068)

0.4759
(0.2947)

0.5273
(0.1261) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
4.5961

(0.7636)

J3

DCGA 1.4400
(1.1095)

0.1198
(0.0927)

9.9554
(1.0486)

130.1057
(13.7530) 1.20E−01 5.47E−02 5.2700e+06

(325.3758)
4.7424

(0.0041)

CSA 0.0000
(0.0000)

0.0000
(0.0000)

11.3110
(0.0000)

147.5853
(0.0000) 0.00E+00 0.00E+00 1.0020e+03

(0.0000)
4.2001

(0.2209)

FSDE 8.5800
(1.0708)

0.7167
(0.0880)

3.2041
(0.9956)

41.7794
(12.1795) 7.27E−01 4.75E−01 5.0000e+04

(0.0000)
11.1469
(0.1650)
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Table 3. Cont.

Function Algorithm EPN MPR PA DA PR SR NFC T(s)

J3

LIPSM 2.5200
(1.5418)

0.2094
(0.1279)

8.9427
(1.4471)

117.2757
(18.4672) 2.40E−01 3.12E−02 5.0000e+04

(0.0000)
0.0701

(0.0017)

LoINDE 11.0800
(0.8533)

0.0000
(0.0000)

11.3110
(0.0000)

35.0425
(7.9412) 9.43E−01 4.80E−01 5.0000e+04

(0.0000)
6.3708

(0.0240)

MGSA 0.8400
(0.3703)

0.0172
(0.0171)

11.1163
(0.1929)

144.8417
(1.6426) 6.50E−02 0.00E+00 5.0000e+04

(0.0000)
14.6998
(0.0433)

PNPCDE 11.2600
(0.8762)

0.0000
(0.0000)

11.3110
(0.0000)

34.1437
(8.8249) 9.53E−01 5.40E−01 5.0000e+04

(0.0000)
13.5493
(0.0122)

HTS 8.8600
(1.5780)

0.7526
(0.1332)

3.0996
(1.4566)

55.4717
(15.6015) 7.70E−01 0.00E+00 7.3565e+06

(1,287,155.0175)
177.6863
(9.6369)

MOMMOP 11.2600
(0.6943)

0.8635
(0.0774)

1.5956
(0.8647)

25.8957
(7.0792) 9.37E−01 3.20E−01 5.0000e+04

(0.0000)
20.0918
(0.2758)

EARSDE 0.0000
(0.0000)

0.0000
(0.0000)

11.3110
(0.0000)

147.5853
(0.0000) 0.00E+00 0.00E+00 1.7467e+05

(42,697.2200)
7.1183

(0.5543)

RM 10.1600
(1.0947)

0.6011
(0.1735)

4.5117
(1.9619)

32.1361
(12.1145) 8.45E−01 5.52E−01 5.0000e+04

(0.0000)
15.1540
(1.6523)

MCCO 12.0000
(0.0000)

0.9997
(0.0002)

0.0036
(0.0024)

1.0183
(0.1912) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
4.1569

(0.5874)

J4

DCGA 1.0000
(0.0000)

0.0000
(0.0000)

72.3042
(0.0000)

35.0906
(0.0000) 4.76E−02 0.00E+00 5.2699e+06

(416.2384)
4.3055

(0.1456)

CSA 1.0000
(0.0000)

0.0000
(0.0000)

72.3042
(0.0000)

35.0906
(0.0000) 4.76E−02 0.00E+00 1.0020e+03

(0.0000)
3.5061

(0.3923)

FSDE 1.0000
(0.0000)

0.0111
(0.0128)

71.5229
(0.8932)

34.4844
(0.6165) 4.76E−02 0.00E+00 5.0000e+04

(0.0000)
12.6042
(0.6616)

LIPSM 16.5200
(2.0328)

3.5017
(0.7066)

212.4614
(51.9022)

12.0950
(3.6246) 7.77E−01 5.00E−01 5.0000e+04

(0.0000)
0.0722

(0.0043)

LoINDE 0.0000
(0.0000)

0.0000
(0.0000)

72.3042
(0.0000)

35.0906
(0.0000) 0.00E+00 0.00E+00 5.0000e+04

(0.0000)
6.3880

(0.0158)

MGSA 1.0000
(0.0000)

0.3235
(0.1556)

94.7625
(11.2486)

36.5793
(0.7025) 4.76E−02 0.00E+00 5.0000e+04

(0.0000)
14.9765
(0.6466)

PNPCDE 5.2800
(1.7501)

3.1901
(1.1053)

260.7722
(64.7410)

35.2237
(1.5040) 2.29E−01 1.00E−01 5.0000e+04

(0.0000)
13.5348
(0.0192)

HTS 1.0000
(0.0000)

0.0058
(0.0071)

72.3138
(0.1896)

35.4401
(0.4779) 4.76E−02 0.00E+00 1.8194e+06

(397,438.3358)
55.4796
(7.0736)

MOMMOP 4.1600
(3.0194)

0.4118
(0.4535)

74.1442
(15.4454)

35.5183
(1.6315) 1.83E−01 3.75E−01 5.0000e+04

(0.0000)
19.8674
(1.0594)

EARSDE 1.0000
(0.0000)

0.0110
(0.0118)

72.5588
(0.5541)

35.7343
(0.5839) 4.76E−02 0.00E+00 2.1782e+05

(100,997.0905)
7.7488

(2.6999)

RM 9.9600
(2.6570)

1.2543
(0.7687)

90.0817
(47.8586)

29.9317
(2.0631) 4.36E−01 4.87E−01 5.0000e+04

(0.0000)
14.4105
(0.9501)

MCCO 20.2000
(0.8367)

1.6587
(0.2146)

58.5175
(13.3882)

3.8922
(1.7007) 9.62e−01 4.00e−01 5.0000e+04

(0.0000)
4.3698
(01319)

J5

DCGA 0.7800
(0.7365)

0.1181
(0.1179)

5854.3185
(782.3737)

32.5236
(5.0061) 1.56E−01 0.00E+00 5.2699e+06

(388.4161)
3.3219

(0.0074)

CSA 0.0000
(0.0000)

0.0000
(0.0000)

6638.3536
(0.0000)

37.6246
(0.0000) 0.00E+00 0.00E+00 1.0020e+03

(0.0000)
3.2029

(0.0615)

FSDE 2.0200
(0.1414)

0.5546
(0.0278)

2956.7455
(184.2896)

20.6989
(0.8690) 4.16E−01 2.47E−01 5.0000e+04

(0.0000)
11.3648
(1.0508)

LIPSM 4.8000
(0.4518)

0.9682
(0.0664)

210.8735
(440.7701)

1.5889
(2.6986) 9.40E−01 7.00E−01 5.0000e+04

(0.0000)
0.0689

(0.0005)

LoINDE 0.0000
(0.0000)

0.0000
(0.0000)

6638.3536
(0.0000)

37.6246
(0.0000) 0.00E+00 0.00E+00 5.0000e+04

(0.0000)
6.4482

(0.0766)

MGSA 1.0000
(0.0000)

0.0180
(0.0091)

6518.9525
(60.0834)

37.1607
(1.2430) 2.00E−01 0.00E+00 5.0000e+04

(0.0000)
14.8330
(0.1476)

PNPCDE 0.0200
(0.1414)

0.0001
(0.0010)

6637.4387
(6.4697)

37.5088
(0.8188) 4.00E−03 0.00E+00 5.0000e+04

(0.0000)
13.5464
(0.0083)



Mathematics 2020, 8, 934 18 of 29

Table 3. Cont.

Function Algorithm EPN MPR PA DA PR SR NFC T(s)

J5

HTS 3.8400
(0.9765)

0.9008
(0.1943)

1857.3834
(926.0475)

17.2088
(4.5171) 7.28E−01 8.00E−02 7.2154e+06

(1,651,796.8452)
217.8520
(32.1873)

MOMMOP 5.0000
(0.0000)

0.8328
(0.0956)

1117.1761
(634.0152)

5.2591
(2.4087) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
19.1777
(0.1498)

EARSDE 0.0000
(0.0000)

0.0000
(0.0000)

6638.3536
(0.0000)

37.6246
(0.0000) 0.00E+00 0.00E+00 6.9265e+04

(544.3150)
5.5117

(0.3721)

RM 4.9600
(0.1979)

0.9795
(0.0404)

136.0493
(268.3073)

1.3495
(1.3138) 9.91E−01 7.25E−01 5.0000e+04

(0.0000)
15.6752
(0.4225)

MCCO 5.0000
(0.0000)

1.0000
(0.0000)

0.1077
(0.1451)

0.0653
(0.0437) 1.00e+00 1.00e+00 5.0000e+04

(0.0000)
5.1350

(0.1937)

J6

DCGA 1.6800
(0.4712)

0.4852
(0.1653)

276.5939
(64.3688)

5.3019
(1.5552) 5.47E−01 1.20E−01 5.2700e+06

(389.5683)
4.6943

(0.3738)

CSA 3.0000
(0.0000)

0.0169
(0.0014)

468.6314
(0.6779)

7.7615
(0.3637) 1.00E+00 1.00E+00 1.0020e+03

(0.0000)
3.7440

(0.2425)

FSDE 3.0000
(0.0000)

0.9488
(0.0371)

24.3929
(17.6827)

0.2104
(0.1739) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
11.0306
(0.3032)

LIPSM 2.9600
(0.1979)

0.9808
(0.0686)

9.1553
(32.7096)

0.1642
(0.7120) 9.70E−01 8.34E−01 5.0000e+04

(0.0000)
0.0698

(0.0033)

LoINDE 0.9400
(0.2399)

−0.0004
(0.0001)

476.9022
(0.0516)

9.0917
(0.4403) 3.33E−01 0.00E+00 5.0000e+04

(0.0000)
6.4283

(0.0049)

MGSA 1.0000
(0.0000)

0.0025
(0.0036)

475.5096
(1.7299)

10.7513
(0.9050) 3.33E−01 0.00E+00 5.0000e+04

(0.0000)
15.2934
(0.1745)

PNPCDE 2.9400
(0.3136)

0.0124
(0.0024)

470.7805
(1.1363)

6.9902
(0.3619) 9.87E−01 9.60E−01 5.0000e+04

(0.0000)
13.5647
(0.0073)

HTS 3.0000
(0.0000)

1.0145
(0.0212)

13.2536
(4.6615)

4.2459
(0.9590) 1.00E+00 1.00E+00 4.2998e+06

(659,780.5913)
107.2854
(7.3498)

MOMMOP 3.0000
(0.0000)

0.8007
(0.0798)

95.0269
(38.0208)

2.4266
(1.5930) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
19.4086
(0.2270)

EARSDE 0.0000
(0.0000)

0.0000
(0.0000)

476.7000
(0.0000)

10.8167
(0.0000) 0.00E+00 0.00E+00 6.9417e+04

(591.6421)
5.5583

(0.3461)

RM 2.8600
(0.3505)

0.9164
(0.1442)

39.8426
(68.7635)

0.7597
(1.3776) 9.23E−01 8.03E−01 5.0000e+04

(0.0000)
11.7645
(0.1840)

MCCO 3.0000
(0.0000)

1.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
5.9875

(0.6458)

J7

DCGA 1.1800
(0.3881)

0.0995
(0.0474)

0.7495
(0.0388)

3.5085
(0.2489) 2.70E−01 2.62E−01 5.2700e+06

(423.1517)
12.9869
(0.6382)

CSA 1.0000
(0.0000)

0.0966
(0.0543)

0.7834
(0.0452)

3.6925
(0.1322) 2.50E−01 0.00E+00 1.0020e+03

(0.0000)
3.4782

(0.4208)

FSDE 1.0000
(0.0000)

0.1053
(0.0335)

0.7848
(0.0318)

3.7335
(0.1051) 2.50E−01 0.00E+00 5.0000e+04

(0.0000)
12.4835
(0.4654)

LIPSM 3.8400
(0.3703)

1.1479
(0.1501)

0.1552
(0.1333)

0.6102
(0.4302) 9.95E−01 9.80E−01 5.0000e+04

(0.0000)
0.0707

(0.0017)

LoINDE 1.0000
(0.0000)

0.7286
(0.0001)

1.3091
(0.0001)

4.9245
(0.0047) 2.50E−01 0.00E+00 5.0000e+04

(0.0000)
6.5180

(0.0086)

MGSA 1.0000
(0.0000)

0.4178
(0.1458)

1.0505
(0.1213)

4.3127
(0.2471) 2.50E−01 0.00E+00 5.0000e+04

(0.0000)
14.8000
(0.2078)

PNPCDE 1.0000
(0.0000)

0.7283
(0.0007)

1.3089
(0.0006)

4.9182
(0.0129) 2.50E−01 0.00E+00 5.0000e+04

(0.0000)
13.6422
(0.0161)

HTS 1.0000
(0.0000)

0.0779
(0.0016)

0.7678
(0.0013)

3.6304
(0.0153) 2.50E−01 0.00E+00 2.9957e+05

(80,384.5566)
13.2584
(3.7344)

MOMMOP 1.0000
(0.0000)

0.0859
(0.0099)

0.7745
(0.0083)

3.6868
(0.0452) 2.50E−01 0.00E+00 5.0000e+04

(0.0000)
20.6801
(1.8592)

EARSDE 1.0000
(0.0000)

0.0775
(0.0000)

0.7675
(0.0000)

3.6242
(0.0002) 2.50E−01 0.00E+00 2.0720e+05

(99,520.1634)
9.7879

(1.7101)

RM 1.4800
(0.5047)

0.3347
(0.1999)

0.7724
(0.1356)

4.1215
(0.5835) 3.75E−01 0.00E+00 5.0000e+04

(0.0000)
12.2837
(0.5762)

MCCO 4.0000
(0.0000)

1.1222
(0.0417)

0.1017
(0.0347)

0.3258
(0.1017) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
7.1484

(0.6582)
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Table 4. Numerical results for J8–J14 multimodal test functions.

Function Algorithm EPN MPR PA DA PR SR NFC T(s)

J8

DCGA 6.7400
(0.8992)

0.5091
(0.1381)

57.9157
(16.2795)

2.1725
(0.9493) 8.60E−01 3.00E−01 5.2700e+06

(423.5090)
3.9790

(0.0227)

CSA 1.0000
(0.0000)

0.1357
(0.0000)

101.9679
(0.0000)

8.2522
(0.0000) 1.25E−01 0.00E+00 1.0020e+03

(0.0000)
3.6211

(0.4123)

FSDE 7.8200
(0.4819)

0.9358
(0.0614)

7.5921
(7.2334)

0.4674
(0.6016) 9.85E−01 8.80E−01 5.0000e+04

(0.0000)
11.0149
(0.2440)

LIPSM 6.3600
(1.3815)

0.2437
(0.4316)

89.1749
(50.8793)

2.7790
(1.7139) 7.58E−01 1.40E−01 5.0000e+04

(0.0000)
0.0705

(0.0005)

LoINDE 1.0000
(0.0000)

−0.4791
(0.0002)

174.3908
(0.0191)

8.9533
(0.0077) 1.25E−01 0.00E+00 5.0000e+04

(0.0000)
6.3788

(0.0431)

MGSA 1.0000
(0.0000)

−0.0566
(0.1507)

124.5808
(17.7644)

8.5178
(0.1649) 1.25E−01 0.00E+00 5.0000e+04

(0.0000)
14.5061
(0.5020)

PNPCDE 1.0000
(0.0000)

−0.4702
(0.0119)

173.3371
(1.4049)

8.9644
(0.0348) 1.25E−01 0.00E+00 5.0000e+04

(0.0000)
13.5234
(0.0121)

HTS 1.0000
(0.0000)

0.1345
(0.0016)

102.0548
(0.1845)

8.2801
(0.1379) 1.25E−01 0.00E+00 7.8946e+05

(237,933.4253)
19.1952
(7.6346)

MOMMOP 1.0000
(0.0000)

0.1296
(0.0040)

102.6255
(0.4688)

8.7652
(0.5011) 1.25E−01 0.00E+00 5.0000e+04

(0.0000)
22.3204
(0.8625)

EARSDE 1.0000
(0.0000)

0.1350
(0.0029)

102.0438
(0.3251)

8.3202
(0.2762) 1.25E−01 0.00E+00 2.3699e+05

(105,559.4854)
7.5346

(1.5782)

RM 1.6600
(1.3494)

0.1324
(0.1502)

102.2930
(17.7047)

8.5933
(0.4921) 2.47E−01 0.00E+00 5.0000e+04

(0.0000)
13.1458
(0.0762)

MCCO 8.0000
(0.0000)

0.8051
(0.1250)

23.0527
(14.7310)

0.5634
(0.2429) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
4.7895

(0.3612)

J9

DCGA 5.1000
(0.6468)

0.5901
(0.0878)

2.3783
(0.4837)

1.7795
(0.5792) 8.67E−01 3.40E−01 5.2699e+06

(416.2275)
6.3541

(0.3430)

CSA 1.0000
(0.0000)

0.1713
(0.0147)

4.7577
(0.0660)

6.2613
(0.6894) 1.67E−01 0.00E+00 1.0020e+03

(0.0000)
3.4052

(0.2621)

FSDE 5.8000
(0.4041)

0.8141
(0.0852)

1.0691
(0.4780)

0.5166
(0.4258) 9.53E−01 7.20E−01 5.0000e+04

(0.0000)
11.4995
(0.4801)

LIPSM 4.4800
(0.8862)

0.4685
(0.1213)

3.0125
(0.6852)

2.4932
(0.8558) 7.33E−01 8.00E−02 5.0000e+04

(0.0000)
0.0696

(0.0013)

LoINDE 4.5000
(0.5051)

0.0016
(0.0002)

5.6544
(0.0010)

11.8864
(0.6904) 7.13E−01 0.00E+00 5.0000e+04

(0.0000)
5.9209

(0.0470)

MGSA 1.0000
(0.0000)

0.0798
(0.0265)

5.2112
(0.1500)

6.3464
(0.5928) 1.67E−01 0.00E+00 5.0000e+04

(0.0000)
14.8454
(0.1165)

PNPCDE 4.1800
(0.3881)

0.0015
(0.0001)

5.6548
(0.0008)

11.4256
(0.5542) 7.07E−01 0.00E+00 5.0000e+04

(0.0000)
13.7502
(0.2281)

HTS 1.0000
(0.0000)

0.1752
(0.0017)

4.7406
(0.0082)

6.3731
(0.5063) 1.67E−01 0.00E+00 1.9116e+06

(292,922.6258)
46.6750
(0.1455)

MOMMOP 1.0000
(0.0000)

0.1423
(0.0146)

4.8574
(0.0825)

6.2275
(0.6006) 1.67E−01 0.00E+00 5.0000e+04

(0.0000)
20.2234
(0.1947)

EARSDE 1.0000
(0.0000)

0.1765
(0.0002)

4.7471
(0.0009)

6.2540
(0.6985) 1.67E−01 0.00E+00 1.9827e+05

(104,111.6689)
7.2288

(0.9528)

RM 1.1600
(0.3703)

0.1375
(0.0513)

4.8846
(0.2907)

6.1834
(0.7370) 1.95E−01 0.00E+00 5.0000e+04

(0.0000)
11.8541
(0.0930)

MCCO 6.0000
(0.0000)

0.9942
(0.0585)

0.3756
(0.3233)

0.1208
(0.0878) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
5.5784

(0.3712)

J10

DCGA 17.3800
(4.1349)

0.2295
(0.0752)

53.7829
(5.2159)

81.5710
(15.9520) 4.89E−01 0.00E+00 5.2699e+06

(406.6097)
4.4611

(0.3421)

CSA 1.6400
(1.3962)

1.2028
(1.9805)

31.2207
(1.8519)

157.2020
(0.5684) 7.78E−03 0.00E+00 1.0020e+03

(0.0000)
3.7716

(0.4670)

FSDE 5.5800
(2.0711)

0.1564
(0.0552)

58.8156
(3.8439)

114.5919
(10.6299) 1.58E−01 0.00E+00 5.0000e+04

(0.0000)
11.0075
(0.2962)

LIPSM 18.5000
(6.9818)

0.1415
(0.1798)

59.9756
(12.3843)

102.5510
(32.2349) 5.14E−01 0.00E+00 5.0000e+04

(0.0000)
0.0719

(0.0026)

LoINDE 31.0400
(5.5401)

−0.8857
(0.1576)

131.4681
(10.9899)

82.3903
(13.1937) 8.14E−01 8.00E−02 5.0000e+04

(0.0000)
6.3637

(0.0051)
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Table 4. Cont.

Function Algorithm EPN MPR PA DA PR SR NFC T(s)

J10

MGSA 1.0000
(0.0000)

−0.0025
(0.0147)

69.8919
(1.0264)

154.1091
(1.0567) 2.78E−02 0.00E+00 5.0000e+04

(0.0000)
14.4385
(0.1911)

PNPCDE 34.5200
(2.3408)

−0.9657
(0.0670)

137.0452
(4.6695)

80.5974
(5.9311) 9.62E−01 4.00E−02 5.0000e+04

(0.0000)
13.4963
(0.0070)

HTS 22.6400
(8.8865)

0.0025
(0.0017)

69.5456
(0.1159)

111.9837
(18.2089) 6.14E−01 4.00E−02 4.7138e+06

(482,108.0580)
88.7629
(3.5432)

MOMMOP 27.0000
(6.8243)

0.5971
(0.1727)

28.5716
(11.5581)

70.6105
(8.6683) 8.79E−01 1.60E−01 5.0000e+04

(0.0000)
20.8947
(0.8648)

EARSDE 0.4400
(1.8534)

1.4477
(10.4475)

39.4683
(11.8950)

156.7319
(3.1499) 7.78E−03 0.00E+00 2.1237e+05

(118,498.9689)
7.8712

(1.3295)

RM 23.3400
(10.6342)

0.2915
(0.3093)

49.8345
(20.9848)

99.8005
(35.7264) 5.61E−03 0.00E+00 5.0000e+04

(0.0000)
13.7253
(0.6319)

MCCO 25.0000
(0.0000)

0.7064
(0.0127)

21.1987
(0.7800)

35.8584
(1.1774) 6.94e−01 0.00e+00 5.0000e+04

(0.0000)
4.1574

(0.3804)

J11

DCGA 32.5400
(2.0723)

0.2892
(0.1015)

50.3347
(6.7100)

25.6746
(3.7450) 8.26E−01 2.00E−02 5.2702e+06

(452.3383)
4.3025

(0.4210)

CSA 14.7600
(10.3541)

0.1603
(0.1122)

58.2375
(7.7804)

79.9445
(4.5951) 2.85E−01 0.00E+00 1.0020e+03

(0.0000)
3.8122

(0.8740)

FSDE 33.3600
(1.4394)

0.9261
(0.0387)

20.9214
(1.8189)

25.7048
(2.3848) 8.26E−01 0.00E+00 5.0000e+04

(0.0000)
11.3063
(0.7670)

LIPSM 33.2800
(2.8287)

−0.0845
(0.2927)

75.7633
(19.7202)

24.0068
(4.8334) 8.51E−01 2.00E−02 5.0000e+04

(0.0000)
0.0701

(0.0013)

LoINDE 30.8600
(5.7924)

−1.8075
(0.3318)

194.7076
(23.0088)

54.7586
(3.9624) 7.76E−01 4.00E−02 5.0000e+04

(0.0000)
6.3762

(0.0169)

MGSA 1.0000
(0.0000)

−0.0128
(0.0084)

70.2408
(0.5795)

81.8813
(0.4700) 2.50E−02 0.00E+00 5.0000e+04

(0.0000)
14.0801
(0.0271)

PNPCDE 16.7400
(10.8624)

−0.2905
(0.1866)

89.5021
(12.9423)

77.3101
(5.0775) 3.99E−01 0.00E+00 5.0000e+04

(0.0000)
13.4828
(0.0089)

HTS 23.3400
(11.3616)

1.6178
(0.9708)

98.8315
(34.8418)

121.6556
(25.5682) 5.95E−01 4.00E−02 5.3787e+06

(1,538,699.7330)
114.3261
(40.2107)

MOMMOP 29.9400
(6.6253)

0.8442
(0.2780)

37.8543
(7.4293)

65.4402
(4.8254) 7.03E−01 1.20E−01 5.0000e+04

(0.0000)
18.9512
(0.5326)

EARSDE 0.0000
(0.0000)

0.0000
(0.0000)

69.3526
(0.0000)

81.7565
(0.0000) 0.00E+00 0.00E+00 2.2695e+05

(22,116.5083)
7.7541

(0.5658)

RM 32.5000
(4.2964)

0.1675
(0.3229)

59.8485
(19.3763)

51.7364
(6.1193) 8.16E−01 4.27E−02 5.0000e+04

(0.0000)
12.1458
(0.3897)

MCCO 24.6000
(1.1402)

0.3816
(0.0327)

43.1790
(1.9530)

37.2566
(3.2108) 6.15e−01 0.00e+00 5.0000e+04

(0.0000)
4.5769

(0.1642)

J12

DCGA 3.5600
(1.2149)

0.4143
(0.1232)

18.9560
(3.9532)

44.4814
(12.2185) 4.68E−01 0.00E+00 5.2700e+06

(512.5000)
4.4157

(0.1919)

CSA 0.0000
(0.0000)

0.0000
(0.0000)

32.1222
(0.0000)

74.7141
(0.0000) 8.75E−02 0.00E+00 1.0020e+03

(0.0000)
3.5020

(0.0492)

FSDE 2.0000
(0.0000)

0.3800
(0.0012)

19.9148
(0.0371)

56.3252
(0.0584) 2.50E−01 0.00E+00 5.0000e+04

(0.0000)
11.5497
(0.5992)

LIPSM 3.6000
(1.1429)

0.4405
(0.1499)

17.9719
(4.8161)

48.2005
(10.5583) 4.55E−01 0.00E+00 5.0000e+04

(0.0000)
0.0692

(0.0007)

LoINDE 6.4800
(1.0349)

−0.8734
(0.1161)

60.1790
(3.7304)

31.5892
(6.1687) 7.70E−01 0.00E+00 5.0000e+04

(0.0000)
6.4375

(0.0281)

MGSA 1.0000
(0.0000)

−0.0262
(0.0667)

32.9630
(2.1425)

68.4868
(1.3019) 1.25E−01 0.00E+00 5.0000e+04

(0.0000)
14.0832
(0.0301)

PNPCDE 7.1000
(0.3030)

−0.6212
(0.1318)

52.0763
(4.2339)

26.1353
(2.7162) 8.88E−01 1.00E−01 5.0000e+04

(0.0000)
13.5545
(0.0269)

HTS 4.5400
(1.1988)

0.4554
(0.3582)

26.5703
(4.0784)

47.7845
(8.3195) 5.40E−01 0.00E+00 3.4108e+06

(546,220.0657)
83.3420
(18.7297)

MOMMOP 7.7800
(0.4647)

0.8766
(0.1026)

5.8293
(2.7242)

10.1018
(4.9705) 9.75E−01 8.00E−01 5.0000e+04

(0.0000)
19.0711
(0.7056)

EARSDE 0.8200
(0.3881)

0.0900
(0.1135)

30.0505
(2.7604)

70.7956
(3.0980) 8.75E−02 0.00E+00 3.4856e+05

(128,156.0640)
11.1211
(1.9141)
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Table 4. Cont.

Function Algorithm EPN MPR PA DA PR SR NFC T(s)

J12

RM 4.5200
(0.6465)

0.4752
(0.0674)

16.8572
(2.1657)

42.4463
(6.8784) 5.87E−01 0.00E+00 5.0000e+04

(0.0000)
11.6824
(0.6375)

MCCO 8.0000
(0.0000)

0.9997
(0.0002)

0.0159
(0.0074)

0.2078
(0.0242) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
4.2497

(0.3921)

J13

DCGA 1.0000
(0.0000)

−0.1474
(0.0011)

1.7324
(0.0008)

5.7077
(0.1723) 8.33E−02 0.00E+00 5.2700e+06

(396.7548)
4.0571

(0.2988)

CSA 1.0000
(0.0000)

−0.1337
(0.0295)

1.7442
(0.0249)

5.7767
(0.1971) 8.33E−02 0.00E+00 1.0020e+03

(0.0000)
3.1997

(0.0902)

FSDE 1.0000
(0.0000)

−0.1462
(0.0024)

1.7332
(0.0020)

5.6966
(0.1770) 8.33E−02 0.00E+00 5.0000e+04

(0.0000)
11.5354
(0.2906)

LIPSM 1.0800
(0.2740)

−0.0513
(0.2371)

1.7869
(0.1180)

5.7190
(0.1694) 8.67E−02 0.00E+00 5.0000e+04

(0.0000)
0.0679

(0.0007)

LoINDE 1.0000
(0.0000)

2.0893
(0.0181)

3.6384
(0.0155)

6.8529
(0.1807) 8.33E−02 0.00E+00 5.0000e+04

(0.0000)
5.8972

(0.0177)

MGSA 1.0000
(0.0000)

0.1255
(0.1769)

1.9647
(0.1507)

5.8757
(0.1979) 8.33E−02 0.00E+00 5.0000e+04

(0.0000)
14.7684
(0.0800)

PNPCDE 1.0000
(0.0000)

1.7767
(0.3247)

3.3719
(0.2768)

6.7406
(0.1949) 8.33E−02 0.00E+00 5.0000e+04

(0.0000)
13.5227
(0.0248)

HTS 1.0000
(0.0000)

−0.1479
(0.0000)

1.7324
(0.0000)

5.7680
(0.1847) 8.33E−02 0.00E+00 4.2065e+05

(67,438.1820)
12.4227
(0.2386)

MOMMOP 1.0000
(0.0000)

−0.1310
(0.0224)

1.7460
(0.0191)

5.7757
(0.1697) 8.33E−02 0.00E+00 5.0000e+04

(0.0000)
18.8628
(0.3494)

EARSDE 1.0000
(0.0000)

−0.1479
(0.0000)

1.7324
(0.0000)

5.7823
(0.1738) 8.33E−02 0.00E+00 2.4215e+05

(104,975.1893)
7.8763

(1.4696)

RM 1.0000
(0.0000)

−0.0915
(0.0558)

1.7797
(0.0475)

5.8308
(0.1042) 8.33E−02 0.00E+00 5.0000e+04

(0.0000)
12.2543
(0.4314)

MCCO 4.8000
(0.4472)

−0.6356
(0.0321)

1.8985
(0.0279)

5.3181
(0.1704) 4.00e−01 0.00e+00 5.0000e+04

(0.0000)
4.4547

(0.4962)

J14

DCGA 1.0000
(0.0000)

0.0000
(0.0000)

114.3627
(0.0000)

28.8892
(0.0000) 1.11E−01 0.00E+00 5.2702e+06

(408.7596)
3.6593

(0.0113)

CSA 1.0000
(0.0000)

0.0000
(0.0000)

114.3627
(0.0000)

28.8892
(0.0000) 1.11E−01 0.00E+00 1.0020e+03

(0.0000)
3.4427

(0.3641)

FSDE 1.0000
(0.0000)

0.0001
(0.0002)

114.3570
(0.0160)

28.8916
(0.0126) 1.11E−01 0.00E+00 5.0000e+04

(0.0000)
12.3678
(0.1444)

LIPSM 5.4400
(1.8201)

0.6144
(0.2655)

65.6156
(23.4835)

14.7539
(6.0802) 5.69E−01 4.00E−02 5.0000e+04

(0.0000)
0.0677

(0.0005)

LoINDE 4.0400
(0.1979)

3.3509
(0.0956)

348.3661
(6.7529)

23.1722
(0.8612) 4.44E−01 0.00E+00 5.0000e+04

(0.0000)
6.3759

(0.0272)

MGSA 1.0000
(0.0000)

0.2210
(0.1169)

139.5238
(13.3732)

30.2407
(0.7448) 1.11E−01 0.00E+00 5.0000e+04

(0.0000)
14.6457
(0.0936)

PNPCDE 6.0000
(0.0000)

2.8921
(0.0033)

292.6285
(0.3751)

22.4646
(0.0682) 6.67E−01 0.00E+00 5.0000e+04

(0.0000)
13.5294
(0.0155)

HTS 1.2400
(0.8221)

0.0276
(0.0916)

112.8990
(5.3421)

28.7942
(0.6401) 1.24E−01 0.00E+00 2.5309e+06

(674,403.9839)
83.0052
(10.2085)

MOMMOP 6.0800
(0.8291)

0.7335
(0.1540)

54.9871
(7.7088)

19.7481
(2.6027) 7.16E−01 0.00E+00 5.0000e+04

(0.0000)
18.9710
(0.3317)

EARSDE 1.0000
(0.0000)

0.0000
(0.0000)

114.3627
(0.0000)

28.8892
(0.0001) 1.11E−01 0.00E+00 2.0328e+05

(107,472.8440)
8.7347

(2.4919)

RM 7.3000
(1.0351)

1.3945
(0.4019)

105.6598
(30.2145)

13.0871
(3.4396) 8.01E−01 0.00E+00 5.0000e+04

(0.0000)
11.6824
(0.6375)

MCCO 9.0000
(0.0000)

0.9323
(0.1354)

0.4787
(0.0089)

0.4281
(0.0235) 1.00E+00 1.00E+00 5.0000e+04

(0.0000)
4.0872

(0.2458)

Table 3 reports the numerical results for functions J1–J7. In the table, it can be seen that MCCO
and MOMMOP achieved the best results for the majority of the numerical simulations. In function
J1 and J5, both algorithms outperformed the others. According to the EPN metric, only MCCO and
MOMMOP are capable of finding the total number of peaks in the functions; however, MCCO produced
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more consistent results. In the case of function J2, FSDE and MCCO obtained all the optimal values.
For function J6, CSA, HTS, FSDE MOMMOP, and MCCO obtained the maximum number of peaks
with similar levels of robustness. The most distinguishing characteristics of MCCO regarding these
multimodal methods concerned its ability to find all the peaks with relatively low computational effort,
compared to its competitors. For functions J3, J4 and J7, it is clear that MCCO outperformed the other
algorithms in terms of dispersity, scalability, and precision. According to the reported results, the MPR,
PA, and DA metrics suggest that MCCO is capable of operating under complex multimodal functions
by yielding the greatest EPN value.

Additionally, Table 3 reports the computational effort of each multimodal approach, considering
the NFC and execution time. From the results, it is quite evident that LIPSM presented the best
execution time metric for functions J1–J7. However, performance metrics indicate that LIPSM was not
able to produce competitive results. In contrast, MCCO yielded significantly better results than many
of the tested algorithms when evaluating a similar number of function calls. Considering the execution
time, it can be seen that MCCO presented better results than DCGA, FSDE, LoINDE, MGSA, PNPCDE,
HTS, MOMMOP, EARSDE, and RM in function J1. For function J2, J4, and J5, MCCO outperformed
FSDE, LoINDE, MGSA, PNPCDE, HTS, MOMMOP, EARSDE, and RM. Also MMCO beat DCGA, CSA,
FSDE, LoINDE, MGSA, PNPCDE, HTS, MOMMOP, EARSDE, and RM on function J3. For functions J6

and J7, MCCO also presented remarkable results.
In general terms, by analyzing the numerical results from Table 3, it can be seen that the competitive

memory approach adapted in the original operators of the CCO method provided better results than
its competitors. Since collective memory is based on the concept of dominance, potential solutions
compete among themselves to be allocated into the historic memory. This process detects most of the
possible optima in a single run of the entire MCCO method. The DA metric reported that MCCO
obtained the optimal values with the shortest spatial relation, compared to the rest of multimodal
methods. This indicates that MCCO produces solutions with a higher level of consistency. The MPR
and PA performance metrics corroborate that the proposed approach obtained a higher accuracy
level than the other methodologies by measuring the error among approximated optima and true
optimal values, evaluating each benchmark function in fewer runs with respect to the other methods.
This indicates that the proposed mechanism is capable of finding most of the true optima with low
computational effort.

From the numerical results in Table 4, it is clear that for functions J10 and J11, PNPCDE and FSDE
outperformed the other algorithms, including MCCO. The experimental results suggest that these
methods are capable of finding a higher number of optimal values than MCCO. However, PNPCDE
presented a lower level of consistency than MCCO. Considering the standard deviation of EPN, it can
be seen that PNPCDE and FSDE tended to produce dispersed solutions. Under such circumstances,
both techniques produced nonrobust solutions. In contrast, even though it did not detect the highest
number of peaks in functions J10 and J11, the standard deviation of EPN indicated that more consistent
and robust solutions were produced using MCCO. On the other hand, for the remaining functions,
MCCO outperformed the tested multimodal approaches. In functions J08 and J09, it was quite evident
that the competition phase from the memory mechanism in CCO efficiently registered most of the
candidate optima for these functions. In the results, it can be noted that MCCO produced results
containing a higher level of accuracy with the lowest standard deviations. Additionally, for functions
J12–J14, MCCO presented remarkable performance considering the EPN and its corresponding standard
deviation. Also, MCCO produced closer solutions regarding the true optima for each benchmark
function (MPR). MCCO is capable of detecting the suboptimal and optimal solution under these
functions, since it makes use of a powerful updating scheme. The collective memory mechanism
stores and manages all the potential solutions thanks to the balance among the original evolutionary
operators of the CCO method.

Considering the computational effort metrics, MCCO requires similar function calls than FSDE,
LIPSM, LoINDE, MGSA, PNPCDE, MOMMOP, and RM. However, MCCO presents better execution
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time metrics in functions J8, J11, J13, and J14 than FSDE, LoINDE, PNPCDE, HTS, MOMMOP, EARSDE,
and RM; additionally, for functions J9, J10, and J12, it outperforms DCGA, FSDE, LoINDE, MGSA,
PNPCDE, HTS, MOMMOP, EARSDE, and RM.

As a result, the proposed multimodal extension to adapt CCO in multimodal optimization
produces a balanced and powerful data structure which can efficiently register, maintain, and manage
all potential solutions during the entire optimization process. Also, from the experimental study, it was
determined that the proposed MCCO detects most of the optima for the majority of the test functions,
evaluating similar NFC than the many of tested methods with the lowest execution time in most cases,
indicating that MCCO is less computationally complex.

In order to statistically corroborate the numerical results from Tables 3 and 4, A Wilcoxon rank sum
test was computed. This nonparametric approach indicates whether there is a significant difference
between two multimodal approaches. In this study, the test was conducted based on 5% significance.
Table 5 report the p-values of a pair-wise comparison among each multimodal technique. For the test,
the proposed null hypothesis H0 represents the idea of no significant difference among multimodal
methods. As a counterpart, the proposed alternative hypothesis H1 indicates a significant difference
among two tested methods. To visually analyze the numerical results from this test, Table 5 uses
the symbols N, H, and I; the first symbol indicates that one algorithm outperformed its competitor;
the second indicates that a given method performed worse than its competitor; the third symbol
indicates that the statistical test could not decide which algorithm was significantly better. As shown
in Table 5, MCCO performed better than its competitors, producing solutions that were quite different
in most of the experimental cases.

Table 5. p-values produced by nonparametric test comparing MCCO vs. DCGA, MCCO vs. MCCO,
MCCO vs. FSDE, MCCO vs. LIPSM, MCCO vs. LoINDE, MCCO vs. MGSA, MCCO vs. PNPCDE,
MCCO vs. HTS, MCCO vs. MOMMOP, MCCO vs. EARSDE, and MCCO vs. RM over the EPN
performance metric from Tables 2 and 3.

MCCO
vs. DCGA CSA FSDE LIPSM LoINDE MGSA PNPCDE HTS MOMMOP EARS

DE RM

J1 1.47E-13N 8.01E-05N 1.35E-04N 2.78E-13N 2.69E-13N 2.69E-13N 1.22E-05N 3.97E-07N 0.00E+00I 2.69E-13N 1.14E-04N

J2 1.41E-04N 2.50E-13N 0.00E+00I 5.80E-07N 3.26E-03N 2.50E-13N 9.48E-07N 1.29E-04N 1.15E-04N 2.50E-13N 7.47E-06N

J3 2.14E-04N 2.66E-13N 1.33E-03N 5.23E-06N 1.01E-04N 5.81E-08N 7.40E-05N 1.34E-04N 5.69E-05N 2.66E-13N 2.87E-10N

J4 3.08E-10N 2.69E-13N 2.69E-13N 3.36E-11N 2.69E-13N 2.69E-13N 1.18E-05N 2.69E-13N 1.48E-04N 2.69E-13N 4.48E-09N

J5 1.65E-04N 2.65E-13N 1.50E-08N 1.33E-08N 2.65E-13N 2.65E-13N 1.62E-11N 1.20E-09N 0.00E+00I 2.65E-13N 1.87E-07N

J6 1.43E-05N 0.00E+00I 0.00E+00I 8.00E-06N 2.50E-13N 2.50E-13N 6.85E-08N 0.00E+00I 0.00E+00I 2.50E-13N 6.87E-07N

J7 1.71E-07N 2.50E-13N 2.50E-13N 4.32E-08N 2.50E-13N 2.50E-13N 2.50E-13N 2.50E-13N 2.50E-13N 2.50E-13N 5.24E-14N

J8 5.21E-03N 2.50E-13N 4.32E-01N 1.28E-09N 2.50E-13N 2.50E-13N 2.50E-13N 2.50E-13N 2.50E-13N 2.50E-13N 8.45E-18N

J9 3.31E-03N 2.50E-13N 1.81E-01N 5.92E-08N 1.37E-05N 2.50E-13N 7.15E-06N 2.50E-13N 2.50E-13N 2.50E-13N 7.13E-11N

J10 5.94E-03N 4.54E-07N 1.33E-04N 2.02E-04N 1.24E-02H 2.68E-13N 5.33E-06H 7.24E-08N 9.32E-04H 3.20E-05N 9.67E-08N

J11 2.44E-04N 2.27E-03N 2.33E-04N 2.43E-04H 1.59E-02H 2.69E-13N 7.98E-07N 3.95E-07N 4.06E-02H 2.69E-13N 2.58E-07H

J12 2.80E-04N 2.65E-13N 2.65E-13N 3.54E-04N 6.40E-08N 2.65E-13N 1.45E-04N 8.08E-04N 2.85E-05N 5.91E-05N 7.59E-13N

J13 2.68E-13N 2.68E-13N 2.68E-13N 2.77E-09N 2.68E-13N 2.68E-13N 2.68E-13N 2.68E-13N 2.68E-13N 2.68E-13N 1.57E-17N

J14 2.66E-13N 2.66E-13N 2.66E-13N 2.68E-02N 2.66E-13N 2.66E-13N 7.89E-06N 2.74E-09N 1.33E-08N 2.66E-13N 6.31E-18N

N 14 13 12 13 12 14 13 13 9 14 13

H 0 0 0 1 2 0 1 0 2 0 1

I 0 1 2 0 0 0 0 1 3 0 0

5. Conclusions

Evolutionary Computation Methods (ECMs) are stochastic search mechanisms which present
an alternative search strategy with which to solve real-world optimization problems where classical
optimization techniques are unsuitable. Most of the literature on ECMs indicates that these methods
are conceived of to detect the global optimum. However, in real-world applications in the engineering,
medical, or economic fields, the global optimum may not be realizable due to physical, mechanical,



Mathematics 2020, 8, 934 24 of 29

or even realistic aspects. Under such circumstances, multimodal optimization methodologies have
been designed to detect optimal and suboptimal solutions in a single run of the optimization process.

This paper presents a multimodal extension to incorporate multimodal capabilities in a
recently developed optimization algorithm called Cluster-Chaotic-Optimization (CCO). The proposed
Multimodal Cluster-Chaotic-Optimization (MCCO) incorporates the concept of dominance found
in animal behavior, which indicates the level of social interaction between two animals in terms of
aggressiveness. Such aggressiveness leads the animals to remain as distant as possible from each
other, i.e., the most dominant individual prevails while the other withdraws. In MCCO, this concept is
computationally abstracted in terms of a data structure called “competitive memory” to incorporate
multimodal capabilities into the evolutionary operators of the CCO.

The single optimum CCO divides the population into small clusters for each generation; meanwhile,
the search strategy is conducted based on intra- and extra- cluster evolutionary operations. Intracluster
procedures will cause the search strategy to be inside each cluster. Extracluster will search outside of
each cluster but inside the feasible search space. The combination of these two evolutionary operators
tends to form groups into potential search zones. Such promissory zones can be efficiently registered
within a memory data structure to maintain potential locations which can be catalogued as optimal
and suboptimal values. Under such circumstances, CCO can be extended considering the abstraction
idea of animal dominance to incorporate multimodal capabilities into the original CCO to detect all
possible optimal solutions in a single run of the optimization process.

The performance of the proposed MCCO was tested and compared against eleven multimodal
techniques, i.e., DCGA, CSA, FSDE, LIPSM, LoINDE, MGSA, PNPCDE, HTS, MOMMOP, EARSDE, and
RM. In the experimental section, a comparison of the results based on six commonly used multimodal
performance metrics, i.e., Effective Peak Number (EPN), the Maximum Peak Ratio (MPR), the Peak
Accuracy (PA), the Distance Accuracy (DA), the Peak Ratio (PR), and the Success Rate (SR) was reported.
The EPN reflects the ability of a multimodal technique to obtain most of the optima. The MPR computes
the consistency of the approximated optima over true optima. On the other hand, PA measures the
error among approximated optima and true optima. Similarly, DA indicates the total error, considering
each independent variable of the objective function. PR calculates the percentage of the total number of
approximated optima over multiple executions of a given algorithm. Lastly, SR measures the successful
percentage of runs, considering the total number of executions. Also, the computational effort, in terms
of the Number of Function Calls (NFC) and execution time (T) in seconds, was reported.

Based on the numerical results, it was demonstrated that the proposed approach is capable of
obtaining most of the true optimal values in most of the benchmark functions, with a competitive
computational effort level based on NFC and execution time. Since the MPR, PA, DA, PR, and SR
metrics were calculated based on the EPN metric, a nonparametric test was conducted on the EPN
metric to statistically validate the performance results based on true optima approximation. In the
statistical test, it was shown that the proposed method is capable of locating most of the true optima
based on the Euclidean distance between the true optima and approximated solutions.
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Appendix A Multimodal Test Functions Formulation

Table A1. Multimodal test functions J1–J7 used in the experimental study.

Function Search Domain Dimensionality Optima
Number Graph

Bird

J1(x1, x2) =

sin(x1)·e(1−cos(x2))
2
+ cos(x2)·e(1−sin(x1))

2
+ (x1 − x2)

2 [−2π, 2π]n n = 2 6
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Table A2. Multimodal test functions J8 − J14 used in the experimental study.

Function Search Domain Dimensionality Optima
Number Graph

Rastriguin49

J8(x1, x2) =
n∑

i=1
x2

i − 18· cos(2πxi) [−1, 1]n n = 2 8
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