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Abstract: A new multiple signal classification (MUSIC)-based methodology is presented for detecting
and locating multiple damage types in a truss-type structure subjected to dynamic excitations.
The methodology is based mainly on two steps: in step 1, the MUSIC method is employed to obtain
the pseudo-spectra of vibration signatures, healthy and damaged, to be used for damage detection.
In step 2, a new damage index, based on the obtained pseudo-spectra, is proposed to measure the
structure condition. Furthermore, the damage location is estimated according to the variation in
the amplitudes of the estimated pseudo-spectra. The presented results show that the proposed
methodology can make an accurate and reliable estimation of the condition and location of three
specific damage conditions, i.e., loosened bolts, internal corrosion, and external corrosion.

Keywords: structural health monitoring; multiple signal classification technique; vibration signals;
multiple damage types; damage location

1. Introduction

In recent years, the monitoring of civil infrastructure, e.g., buildings and bridges, has attracted
the interest of many researchers, engineers, and governments around the world, because it is of
paramount importance to ensure its optimal or healthy condition, via a research field known as
structural health monitoring (SHM), or, if necessary, to perform the reparations required to restore
its structural functionality and integrity [1–4]. In particular, truss-type structures are widely used
for developing civil infrastructure, i.e., building skeleton towers, cranes, bridges, or roof supports,
among other designs, because of their (1) ease of assembly and (2) light weight. These great advantages
allow them to be employed in many applications [5,6]. Despite these great benefits and their robustness,
they are exposed to diverse physical phenomena, e.g., corrosion, constant cycles of high-temperature
operation, cumulative crack growth, degradation of columns, missing elements, fatigue, loosened bolts,
joint–beam deterioration, wind-induced vibrations, and impacts by extern objects that can damage
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them [7–15]. Therefore, the development of reliable strategies for evaluating the health condition of a
civil structure is of great interest for the academic and industry communities.

SHM is defined as the design and implementation of a strategy to detect damage types in a civil
structure through the features identified from the measurements recorded in civil infrastructure [16–18].
In this regard, damage produces alterations in the structural operation parameters, such as stiffness,
damping, natural frequencies, among other parameters, which can lead to the degradation of its service
life and might yield economic losses or, even worse, human lives might be threatened [16,17]. In order
to identify these alterations, diverse SHM schemes based on local procedures such as ultrasound [19],
X-ray [20], laser scanning [21], acoustic emission [22], GPS signals [23], and image processing [24],
have been mainly employed for evaluating the health condition of a civil structure. However, to fully
exploit these procedures, they require the temporary closure of the structure and a priori knowledge of
the damage location, which is not always possible to achieve in real-life conditions [25]. These reasons
have led to the development of novel SHM strategies based on other physical properties of the civil
structures, such as their vibrations [25–28]. The basic idea of a vibration-based SHM is that even slight
damage modifies the physical properties of civil structures, such as their mass, stiffness, damping,
and mode shapes, affecting their vibrational response [25,29,30]. Therefore, a signal processing
technique, with the capability of detecting subtle changes or features produced in the measured
vibration signal, becomes a potential solution for SHM.

Fast Fourier transform (FFT) is without a doubt the most widely used signal processing technique for
evaluating the vibration signals in order to determine the health condition of a civil structure [10,31,32].
FFT is an adequate method to analyze time signals with stationary and linear properties embedded in a
high signal-to-noise ratio (SNR) levels (low-level noise) [25]. Unfortunately, the vibrational responses
acquired in a civil structure generally present nonlinear and non-stationary properties, besides having a
low SNR (high-level noise), compromising negatively the results obtained by FFT to evaluate the health
condition of a civil structure [25]. For this reason, in recent years, diverse methods have been proposed
in the literature such as Kalman filter approaches [33], Hilbert–Huang transform (HHT) [34–36],
time series autoregressive (AR) models [10,37–39], wavelet transform-based algorithms (WT) [40,41],
artificial neural networks (ANN) [11,28,42–44], probabilistic-based approaches [15,18,45,46], subspace
methods [12,47,48], WT-NN [49–52] and deep learning methods [53–56], among other methods or
strategies. Although they have shown promising results in evaluating the condition of civil structures,
these methods also present problems in identifying reliable features in noisy signals when associating
them to the structure condition; in addition, some of them require repeated processing and modeling,
the hand-crafted selection of the best-suited parameters, a large database, and multiple indices to
detect different types of damage [57]. Therefore, it is necessary to propose an algorithm with the
capability of monitoring the structure dynamics accurately, without requiring pre-processing stages nor
extensive training stages and a tolerance to the noise-corrupted signals. To achieve these goals, it should
be desirable to consider that time series signal can be modeled as a sum of harmonic components
that are embedded in noise, as this will allow us to obtain its frequency content using matrices
operations. In this regard, the multiple signal classification (MUSIC) algorithm is an algorithm that
fulfills the aforementioned features. MUSIC assumes that a time series signal is a sum of complex
exponentials that are defined in a noisy environment [58]. The frequency estimation of the exponentials
is done using an eigenvector decomposition; in consequence, a high-resolution spectral estimation,
even for data with a low SNR, is obtained. It is worth noticing that signals with a low SNR are
measured in SHM schemes [40,41]. Further details about the MUSIC method are described in the next
sections. In addition, it should be noted that the MUSIC method displays increased detectability of
weak-amplitude frequencies, which has been a great advantage in identifying the natural frequencies of
civil structures [59], as well as determining if a building presents cracks or not [60], but not to perform
both damage detection and localization. These advantages make MUSIC a suitable alternative that
must be explored to design a methodology that can detect and locate damage in civil structures.



Mathematics 2020, 8, 932 3 of 16

In this work, the evaluation of the MUSIC method, a high-resolution spectral method, for detecting
and locating multiple damage types in a five-bay truss-type structure exposed to forced dynamic
excitations is presented. These excitations are produced by an electrodynamic shaker in a controlled
way. MUSIC method is employed to obtain the pseudo-spectra of vibration signatures, healthy
and damaged, in order to identify and locate the damage zones by comparing them. In other words,
the pseudo-spectrum of each healthy bay is compared with the pseudo-spectrum of each damaged bay in
order to locate the damage zone. In order to evaluate the proposal performance, the data experimentally
obtained by four conditions: healthy, loosened bolts, and internal and external corrosion are analyzed.
The obtained results demonstrate that the proposal can carry out a correct and reliable evaluation of the
health condition of truss-type structures and locate the three specific damage conditions.

2. Theoretical Background

This section briefly presents the concepts and mathematical definitions used in the proposed
methodology.

2.1. Truss-Type Structure

The truss or triangulated structure evaluated in this work employs flexible truss members that are
pin connected at joints. Since their components are axial members, structural stability is guaranteed in
the presence of tension or compression forces [59,61]. The triangulated structure under investigation,
shown in Figure 1a, has the following dimensions: 3.535 m length and 1m height. It is composed of
five bays made of aluminum, where each assembled bay has the following dimensions: 0.7 m in length
and 0.7

√
2 m for diagonal members. Each node is bolt-connected with the bar element as shown in

Figure 1b, where the nodes and bar elements present diameters of 0.055 m and 0.019 m respectively.

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 16 

 

In this work, the evaluation of the MUSIC method, a high-resolution spectral method, for 
detecting and locating multiple damage types in a five-bay truss-type structure exposed to forced 
dynamic excitations is presented. These excitations are produced by an electrodynamic shaker in a 
controlled way. MUSIC method is employed to obtain the pseudo-spectra of vibration signatures, 
healthy and damaged, in order to identify and locate the damage zones by comparing them. In other 
words, the pseudo-spectrum of each healthy bay is compared with the pseudo-spectrum of each 
damaged bay in order to locate the damage zone. In order to evaluate the proposal performance, the 
data experimentally obtained by four conditions: healthy, loosened bolts, and internal and external 
corrosion are analyzed. The obtained results demonstrate that the proposal can carry out a correct 
and reliable evaluation of the health condition of truss-type structures and locate the three specific 
damage conditions. 

2. Theoretical Background 

This section briefly presents the concepts and mathematical definitions used in the proposed 
methodology. 

2.1. Truss-Type Structure 

The truss or triangulated structure evaluated in this work employs flexible truss members that 
are pin connected at joints. Since their components are axial members, structural stability is 
guaranteed in the presence of tension or compression forces [59,61]. The triangulated structure under 
investigation, shown in Figure 1a, has the following dimensions: 3.535 m length and 1m height. It is 
composed of five bays made of aluminum, where each assembled bay has the following dimensions: 
0.7 m in length and 0.7√2 m for diagonal members. Each node is bolt-connected with the bar element 
as shown in Figure 1b, where the nodes and bar elements present diameters of 0.055 m and 0.019 m 
respectively. 

 
Figure 1. (a) Truss structure under test and (b) typical assembly of a bar element. 

2.1.1. Joint Failure 

Joint failure or loosened bolt (JF) is a typical type of damage encountered in the truss-type 
structures [62]. It is generally produced by excessive or constant vibrations (e.g., wind, earthquakes, 
traffic, among others) imposed on the truss structure, resulting in the separation of the elements 
which conform it [63]. In order to simulate a JF, one side of the bar element is separated from the bolt 
connector, as shown in Figure 2a. 

Figure 1. (a) Truss structure under test and (b) typical assembly of a bar element.

2.1.1. Joint Failure

Joint failure or loosened bolt (JF) is a typical type of damage encountered in the truss-type
structures [62]. It is generally produced by excessive or constant vibrations (e.g., wind, earthquakes,
traffic, among others) imposed on the truss structure, resulting in the separation of the elements
which conform it [63]. In order to simulate a JF, one side of the bar element is separated from the bolt
connector, as shown in Figure 2a.
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Figure 2. Simulated elements damaged by: (a) joint failure, (b) external corrosion, and (c) internal
corrosion.

2.1.2. External and Internal Corrosion

Corrosion is an important problem for many civil structures, especially truss structures, since it is
characterized by producing the deterioration of materials, mainly metals, which conform the structure.
Corrosion reduces the lifetime of the material; thus, it loses mass and, consequently, the stiffness is
reduced, endangering the structure’s capacity to support forces or displacements [64]. Two types
of corrosion produced in a truss-type structure with bar or tube elements are studied in this work:
external (EC) and internal (IC) (a fault produced by water filtration and humidity, among other factors)
corrosion [64]. To simulate the EC condition, a bar element with a reduced diameter of 0.013 m is used
(see Figure 2b), resulting in a reduction of 30% in comparison with the healthy bar. On the other hand,
the IC test is carried out using a tube element with an external diameter of 0.019 m and thickness of
0.0025 m (see Figure 2c). It is important to mention that the healthy bar element is perforated with a
drill to generate a hole with a dimeter of 0.0095 m to connect it with the node; therefore, the reduction
in material to simulate the IC is 0.007 m.

2.2. Multiple Signal Classification (MUSIC) Algorithm

MUSIC algorithm is a subspace-based method that manipulates a time series signal to determine
its frequency components [65]. MUSIC considers a time series signal, x[n], as a harmonic model
represented by:

x[n] =
m∑

i=1

|Bi|e jϕie j2π fin + e[n] (1)

where m is the number of complex exponentials, i.e., the frequencies contained in the signal, |Bi| is the
i-th complex sinusoid magnitude of e jϕi , fi represents the frequency value, and e[n] is the white noise
that any measured signal has.

Later, an eigenvector decomposition is computed for obtaining two orthogonal subspaces (Rs and
Rn, respectively), which represent the signal and noise autocorrelation matrices, respectively. The sum
of both R matrices is an autocorrelation matrix estimated as follows:

R = Rs + Rn =
P∑

i=1

|Bi|
2e( fi)eH( fi) + σ2

nI (2)

where P represents the number of frequencies to encounter in the time signal, the operator (.)H is the
Hermitian transpose, I is the identity matrix, and eH (fi) is a vector constructed as:

eH( fi) =
[

1 e− j2π fi · · · e− j2π fi(N−1)
]

(3)



Mathematics 2020, 8, 932 5 of 16

The orthogonality property of both subspaces (Rs and Rn) simplifies the estimation of the
pseudo-spectrum (Q), which is defined by:

QMUSIC( f ) =
1∣∣∣e( f )HVm+1

∣∣∣2 (4)

where Vm+1 is the noise eigenvector. The waveform generated by the pseudo-spectrum shows response
peaks at fi that indicate the frequency components contained in the time signal, but the magnitude of
the estimated frequency components does not relate to the magnitude of real power spectrum.

3. Proposed Methodology

The goal of a signal processing technique is to detect changes, alterations or patterns in any signal
that can be associated with the studied phenomenon [66]. Regarding the vibrations in structures,
it is important to mention that, to measure the vibrational responses of civil structures, they need
to be exposed to diverse dynamical excitations such as natural alternatives (e.g., wind, traffic load,
low-amplitude earthquakes, etc.) or artificial approaches (e.g., shakers, hammers, drop weights, etc.),
resulting in a low-amplitude vibration response with a high level of noise [6,25]. Thus, an adequate
signal processing technique to correctly evaluate this type of signal is of paramount importance. In this
regard, the capabilities of the MUSIC method, i.e., high frequency resolution and high immunity to
degrade its performance under signals with a low SNR, are evaluated to determine variations in the
vibrational responses with the aim of associating them with the truss-type structure condition, which is
exposed to forced dynamic excitations generated by an electrodynamic shaker.

Figure 3 presents a schematic diagram of the proposed methodology for detecting and locating
damage in a truss-type structure by using the MUSIC method. It is based on three main steps, which are
described as follows:

1. Vibration signal acquisition: firstly, the vibrational responses of the truss-type structure for each
condition, healthy and damaged (JF, EC, and IC), are measured through five sensors located in
each bay of the structure. It is important to mention that each damage type was introduced to the
structure in an independent manner (one by one). In addition, when damage is introduced in the
first bay, the others are healthy, and vice versa;

2. MUSIC method: then, the measured vibrational signatures for each condition and bay of the truss
structure are analyzed by means of the MUSIC method in order to estimate their pseudo-spectra
(PS), which will be associated with the structure condition and taken as references;

3. Condition evaluation: finally, the obtained pseudo-spectra are used for (1) determining the
structure condition through a damage index (DI) and (2) locating the damaged zone according to
a detectability value (DV), which will be explained in the following sub-sections.
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3.1. Experimental Setup

Figure 4 shows the proposed experimental setup, where a 3D five-bay truss structure is employed
to validate the proposal. It is exposed to forced dynamic excitations, i.e., a sinusoidal sweep whose
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frequency range varies from 15 to 150 Hz during 15 s as shown in Figure 5, produced by an
electrodynamic shaker from Labworks (model ET-127), which is powered by a linear amplifier from
Labworks (model PA-141). This frequency range is employed because it allows for the excitation
of the structure’s natural frequencies of interest. The amplifier is fed by using a proprietary digital
waveform synthesizer system that has a high-speed 14-bit digital-to-analog converter DAC2904 from
Texas Instruments. In order to measure its vibrational responses, each bay is instrumented with a
tri-axial accelerometer from STMicroelectronics model LIS3L02AS4, which has a user-selectable full
scale of ± 2 g/± 6 g and a 5 × 10−4 g resolution over a 100 Hz-bandwidth. The measured signals are
digitalized using a proprietary data acquisition system (DAS) with a 12-bit four-channel ADS7841
ADC from Texas Instruments; then, the measured signals are sent to a personal computer (PC) by
means of a universal serial bus (USB) protocol. It operates to a sampling frequency of 300 Hz to obtain
4500 samples during the time window of excitation.
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Figure 4. Experimental setup.

To generate statistical information, 10 tests are carried out for the healthy condition and 10 tests for
each damage condition (JF, EC, and IC) at each bay, resulting in 160 tests. It should be noticed that each
damage type is applied to the truss structure one by one, replacing a healthy bar element with another
one (EC or IC). For example, when a damaged bar element is introduced in the first bay, the other ones
are healthy and vice versa. The location of the damaged bar elements is designated randomly in each
bay (see Figure 6), but the same location is used to place another damaged element. On the other hand,
the JF is introduced in the truss structure by separating one of the extremes in each bay, one by one.
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3.2. Vibration Signature Analysis

Commonly, a healthy structure will produce a vibration signature that has a constant and small
magnitude [66]; but, if damage appears, the structure’s physical properties (e.g., damping, mass,
stiffness, among other properties) will be modified according to the damage level [67], leading to
the apparition of changes in the vibration signature. Therefore, if a frequency analysis is performed,
the vibration signature spectrum of both will reflect differences which can be associated to the changes
in the structure mechanical conditions, allowing to perform a fault diagnosis.

To demonstrate the improved detection capabilities that a MUSIC pseudo-spectrum has over a
FFT spectrum, Figure 7 shows a comparison between the FFT spectrum and MUSIC pseudo-spectrum
for a healthy bay and a damaged bay in a truss-type structure. From the figure, it is observed that the
FFT-spectra for both the healthy and the damaged cases are not capable of detecting frequencies or
signatures useful to verify the structure condition because the analyzed signals present a low amplitude
and a high level of noise, limiting the correct identification of their frequency components [25]. On the
contrary, the MUSIC pseudo-spectrum, with an order of 15, shows that the signatures for both cases
are different, demonstrating that it is capable of determining the frequency components encountered
in both noisy signals [58]. It is important to mention that further processing stages can be added
to the FFT results to improve its performance; however, the goal is to demonstrate that MUSIC can
provide more suitable results without the need for further stages. On the other hand, it is worth noting
that the frequency band from 40 to 60 Hz is selected in this work because this region contains the
frequency components or natural frequencies with the highest amplitude or energy, which can be more
susceptible to changes in vibration signals produced by damage [67].
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3.3. Damage Detection

To determine whether the truss-type structure presents damage or not, a damage index (DI) based
on the average of the highest amplitudes in decibels for the main frequency components encountered
in a frequency band or region, which contains successive frequency components with high magnitudes
in each sensor, is proposed. It is defined mathematically as:

DI =

N∑
i=1

Ai

N
(5)

where Ai is the amplitude value of the selected frequency component at location i and N represents
the total of locations. Employing the available data, a threshold is established for the DI value, where
a value inferior to 60 indicates that the truss structure is healthy. This value is obtained from the
experimental data. It is important to mention that the proposed value depends on the configuration
and material of the structure.

In order to illustrate how to estimate the DI value, the pseudo-spectra of the healthy condition
for the five sensors are employed (see Figure 8). Firstly, the frequency component with the highest
amplitude in the region of interest (denoted by a rectangular region marked in dark gray in each
pseudo-spectrum) is located in the pseudo-spectrum of each sensor. The region of interest is determined
experimentally according to the frequency peak values found in the pseudo-spectrum of each sensor
and damage condition. This region slightly changes in each sensor because each type of damage has a
different impact on the overall structure; moreover, the damage location also modifies the measured
response at each sensor. Once the frequency component with the highest amplitude for each frequency
region and sensor is determined, the amplitudes of the selected frequencies are averaged to obtain the
DI value using Equation (5). For example, the amplitude values of the identified frequency components
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in each pseudo-spectrum and sensor are: 58, 52, 59, 54, and 70, resulting in a DI value of 58.6, which is
inferior to the estimated threshold with all the experimental data.Mathematics 2020, 8, x FOR PEER REVIEW 9 of 16 
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sensors and damage index (DI) estimation.

3.4. Damage Location

The damage location is based on a proposed detectability value (DV), which is calculated as the
absolute value for the amplitude difference (in decibels) between the frequency peak of the spectrum
of a damage condition (Dd) (this frequency presents the most abrupt change in amplitude) and the
frequency peak of the spectrum of a healthy condition (Dh). Therefore, DV is computed as follows:

DV = |Dd-Dh| (6)

From this definition, the damage location consists of the following steps: (1) locate the frequency
peak values (Dh) from the pseudo-spectra for a healthy condition in each sensor (see Figure 9), (2) for
the damage condition (unknown frequency content), compute the pseudo-spectrum for each sensor
and locate the frequency peak values (Dd) in the region of interest, which is determined according to
the damage condition of structure, (3) compute the DV for each sensor, i.e., DVS1, DVS2, DVS3, DVS4,
and DVS5, using Equation (6), and (4) find the damage location according to:

Damage location = max(DVS1, DVS2, DVS3, DVS4, and DVS5) (7)
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4. Obtained Results

Following the proposed methodology steps and MATLAB software, the vibration signals for a
healthy condition and the other three damage conditions (JF, EC, and IC) are analyzed by means of the
MUSIC method in order to determine the structure condition through the estimated pseudo-spectra.
Figure 10 presents an example of the vibration signals in the three axes (X, Y, and Z), which are
measured by the third sensor for the healthy condition and the three studied damage types: joint
failure, external corrosion, and internal corrosion. The damage is located in the third bay (damage
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located next to the third sensor). When observing this figure, both conditions (healthy and damaged
ones) present similar vibration signatures, indicating the need for an additional method for identifying
reliable differences between them in order to detect and locate damage in the truss-type structure. It is
important to mention that the vibration signals measured in the vertical axis, the Z-axis, presented
better results than the other two axes (X and Y); therefore, the obtained results from the vertical axis to
determine the health condition of the truss-type structure are presented in this work.
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Figure 10. Measured vibrational signals in X, Y, and Z axes for (a) a healthy structure, (b) joint failure,
(c) an external corrosion, and (d) an internal corrosion in the third bay.

Once the pseudo-spectra for all conditions have been estimated, the amplitudes of the frequency
components in the frequency region from 40 to 60 Hz with the highest amplitude in all sensors are
averaged by using Equation (5) in order to determine the structural condition. It is important to
mention that, when the structure is healthy, the identified frequency component values present a close
range or similar values and, hence, the DI value will be lesser than the set threshold. On the other hand,
when the truss-type structure presents a damage, the DI value becomes larger than the set threshold.
In this regard, the ten tests measured for each condition, healthy and damaged, are evaluated by DI for
determining the structure condition, meaning that the proposed index is capable of determining the
structure condition with an accuracy of 100%.

Once the structure condition is estimated, the damage location is performed by using the abrupt
changes encountered in the amplitudes of the frequency components estimated into the frequency
region by means of the MUSIC method. To perform this task, it is first necessary to find the common
frequency peak among the healthy pseudo-spectrum and the damaged pseudo-spectrum in the same
bay, which means that the pseudo-spectrum of healthy first bay is compared with the spectrum of
damage in the first bay, second bay, third bay, fourth bay, and fifth bay in order to obtain the Dh and
Dd values of Equation (6). Therefore, the highest DV value, from the five sensors, indicates the bay
with the damage. Figures 11–13 present the obtained pseudo-spectra estimated for the five sensors and
the three damage types studied, JF, EC, and IC, respectively, in comparison with the healthy condition
located in the first row of the figures. The lines introducing the regions highlighted in dark gray are
the selected frequency peaks (Dh and Dd), where the frequency peak (Dh) from the healthy spectrum
was taken as a reference. Table 1 summarizes the selected frequency peak values for each sensor or bay
to locate the damaged zone (bay) according to the damage condition (JF, EC, and IC).

Table 1. Selected frequency peak regions for each sensor to locate the damaged bay for the conditions
joint failure (JF), external corrosion (EC) and internal corrosion (IC).

Condition
Frequency (Hz)

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

JF (see Figure 11) 53 51 47 50 56
EC (see Figure 12) 53 51 53 50 53
IC (see Figure 13) 53 51 53 50 56
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Figure 13. Pseudo-spectra obtained from the IC scenario and used to identify condition–location
of damage.

Tables 2–4 summarize the mean of DV values obtained for the five sensors and the three damaged
conditions: JF, EC, and IC, respectively, where ten tests for each condition are analyzed. Therefore,
the damage location is obtained according to the highest detectability values, DV, from the five sensors,
which indicates the bay with the damage. For example, using the results shown in Figure 11, the healthy
and damaged frequency peaks (Dh and Dd) of sensor 1 are 54 dB and 79 dB, respectively, resulting in
DV values of 25 dB. For sensor 2, Dh and Dd are 49 dB and 67.5 dB; thus, DV is 18.5 dB. For the rest of
the sensors, DV values of 0.5 dB, 1.5 dB, and 6.8 dB are obtained, respectively. Thus, the 25 dB-value in
sensor 1, which is the highest in the row, indicates that the damage location is in the first bay according
to Equation (7). This procedure is repeated for all the remaining sensors and bays. The same procedure
is applied for the values presented in Tables 3 and 4.

Table 2. Detectability in decibels for the JF damage analysis (DV values).

Damage Location Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5
Bay 1 25 18.5 0.5 1.5 6.8
Bay 2 6 22 20.5 6 0.7
Bay 3 10.5 22.5 33 5 2.7
Bay 4 16 19.5 21.5 23 2.7
Bay 5 9.5 9 19 13.5 22.3
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Table 3. Detectability in decibels for the EC damage analysis (DV values).

Damage Location Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5
Bay 1 20 7.5 6.5 4 11.5
Bay 2 20.5 26.5 10.5 10 20.5
Bay 3 11 14 33 16 20
Bay 4 12 6.5 12.5 23 6.5
Bay 5 18 20.5 8 12 30

Table 4. Detectability in decibels for the IC damage analysis (DV values).

Damage Location Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5
Bay 1 20 18.5 7 15 11.3
Bay 2 14 23 9 9 16.3
Bay 3 1 11.5 14.5 11.5 12.3
Bay 4 12 11.5 11 22 10.8
Bay 5 8.5 16 1 13.5 22.3

5. Conclusions

This paper presents a methodology based on the MUSIC method and vibration signals for
detecting and locating three types of damage (joint failure, external corrosion, and internal corrosion)
in a five-bay truss-type structure subjected to forced dynamic excitations. The experiments performed
in this paper show that the MUSIC algorithm and the proposed indices, i.e., DI and DV, allow for the
identification and location of damage with an accuracy of 100%.

Finally, it is important to mention that the obtained results are possible since the MUSIC method
considers the measurement of background noise in the signal model. Therefore, the amplitude of
frequency components in each bay correctly indicate the damage detection and location in the three
types of damage studied. Therefore, the proposed MUSIC-based methodology provides an easy
procedure to detect and locate three different damage types, which will help to maintain the structure
integrity. In addition, in a future work, diverse levels of damage, other type of damage and other civil
structure configurations will be investigated in order to evaluate and calibrate the performance of the
proposed methodology under these new circumstances, as this will offer a complete solution that is
desirable for any SHM scheme.
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