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Abstract: Technological tables are very important in electrical discharge machining to determine
optimal operating conditions for process variables, such as material removal rate or electrode wear.
Their determination is of great industrial importance and their experimental determination is very
important because they allow the most appropriate operating conditions to be selected beforehand.
These technological tables are usually employed for electrical discharge machining of steel, but their
number is significantly less in the case of other materials. In this present research study, a methodology
based on using a fuzzy inference system to obtain these technological tables is shown with the aim of
being able to select the most appropriate manufacturing conditions in advance. In addition, a study of
the results obtained using a fuzzy inference system for modeling the behavior of electrical discharge
machining parameters is shown. These results are compared to those obtained from response surface
methodology. Furthermore, it is demonstrated that the fuzzy system can provide a high degree of
precision and, therefore, it can be used to determine the influence of these machining parameters on
technological variables, such as roughness, electrode wear, or material removal rate, more efficiently
than other techniques.

Keywords: fuzzy; manufacturing; modeling; electrical discharge machining (EDM); technological tables

1. Introduction

Electrical discharge machining (EDM) is a manufacturing process which is typically classified as
a non-traditional manufacturing process. EDM has several advantages over traditional manufacturing
processes such as turning or milling, because there is no direct contact between the part and the tool, and the
hardness of the so-processed materials does not affect the result. In the field of EDM, technological tables are
of great interest since, by using them, it is possible to determine in advance the optimal machining conditions
for a certain strategy that either maximizes material removal or reduces electrode wear, among other
objectives. These technological tables are usually employed for electrical discharge machining of steel,
but their number is significantly less in the case of other materials. In the research study of Torres et al. [1],
technological tables were obtained for the case of TiB,, which is a low-machinability material, by using
response surface methodology (RSM) that fitted a second-order polynomial regression model along with
nonlinear programming. However, when regression models are not adequate to predict the behavior
of response variables, because the values of the coefficients of determination are low, it is necessary to
use other alternative methodologies. Therefore, in this present study, a methodology is proposed to
obtain the technological tables using a Sugeno type fuzzy inference system (FIS). As shown, the results
obtained with this FIS significantly improve those obtained using response surface methodology and,
therefore, the results obtained are more reliable than those obtained by RSM. In the research study of
Torres et al. [2], a new energy density model was proposed and a 43 factorial design was employed for
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modeling the behavior of the arithmetical mean roughness (Ra), the electrode wear (EW), and the material
removal rate (MRR) in the EDM machining of an Inconel® 600 alloy using Cu-C electrodes (Inconel is a
registered trademark of Special Metals Family of Companies). However, in this study, the technological
tables for this alloy were not developed. Furthermore, as shown in this study [2], the regression models
obtained using RSM were able to adequately predict Ra and MRR values with R-squared values greater
than 0.95; however, in the case of EW, response surface methodology was not able to adequately predict the
EW behavior. Therefore, to fill these gaps, a Takagi-Sugeno [3,4] fuzzy inference system (FIS) is proposed
in this present study to model the behavior of Ra, MRR, and EW and to obtain the technological tables
for this Inconel® 600 alloy, within the range of the considered variation levels of the parameters under
study. In addition, a comparative study is performed between the results provided by RSM and the results
provided by the FIS system. In [5] a methodology was developed to obtain the values of technological
tables for the case of B4C, SiSiC and WC-Co conductive ceramic materials. However, as in the technological
tables developed in [1], when regression models are not adequate to predict the behaviour of response
variables, it is necessary to use other alternative methodologies. As shown below, the FIS can predict the
output values more efficiently than by using regression. Data shown in Tables 1 and 2 that were taken from
the above-mentioned study [2] are used in this present work in order to analyze a case study and to develop
a fuzzy inference system for modeling the behavior of these technological variables (Ra, EW, and MRR),
as well as show the application of the proposed methodology in order to obtain the technological tables.
These technological tables are widely used for steel, while their number is significantly less in the case of
other materials. In any case, it is considered that the proposed methodology could be generally applied
to any other material and for other manufacturing processes. Hence, it is considered that the present
methodology for obtaining the technological tables may be of interest in the event that the input variables
can be continuously varied and, thus, in this way, it could be possible to select the most appropriate
operating conditions in advance.

Table 1. Design factors and levels. These values were taken from Reference [2] Torres Salcedo, A.;
Puertas Arbizu I; Luis Pérez, C.]. Analytical Modeling of Energy Density and Optimization of the EDM
Machining Parameters of Inconel 600. Metals 2017, 7, 166. (Open access article distributed under the
terms and conditions of the Creative Commons Attribution (CC BY) license: http://creativecommons.

org/licenses/by/4.0/).
Levels and Values
Design Factors Positive Polarity Negative Polarity
1 2 3 4 1 2 3 4
Current intensity (A) 2 4 6 8 2 4 6 8
Pulse time (us) 25 50 75 100 25 50 75 100
Duty cycle (%) 0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6

Table 2. Mean values of arithmetical mean roughness (Ra), material removal rate (MRR), and electrode
wear (EW), obtained with positive and negative polarity. These values were taken from Reference [2]
Torres Salcedo, A.; Puertas Arbizu I; Luis Pérez, C. J. Analytical Modeling of Energy Density and
Optimization of the EDM Machining Parameters of Inconel 600. Metals 2017, 7, 166. (Open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license: http://creativecommons.org/licenses/by/4.0/). (See Reference [2] or Appendix A for all data).

Positive Polarity (+) Negative Polarity (-)
E Ra (um) MRR (mm?/min) EW (%) E Ra (um) MRR (mm3/min) EW (%)
1 1.39 0.1778 35.81 1 1.57 0.4961 96.67
2 3.34 3.0897 10.66 2 3.59 4.7944 28.23
63 6.33 8.4132 1.30 63 7.52 23.2371 171.94

64 7.08 15.3894 0.37 64 7.83 30.4894 17.49
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2. State of the Art

Over the past few years, the number of applications of fuzzy systems increased significantly [6].
Takagi-Sugeno [3,4] and Mamdani [7,8] fuzzy inference systems are commonly used, and there exist a
large number of research studies in different scientific fields, dealing with control, pattern recognition,
modeling, etc. Among the studies that can be found in the literature, it is worth mentioning the study
of Mouralova et al. [9] which proposed a Mamdani FIS, based on 18 rules provided by an expert in the
field, for modeling the cutting speed in wire electrical discharge machining (WEDM) from five inputs
(gap voltage, pulse on time, pulse off time, discharge current, and wire feed). These authors employed
a maximum of results for aggregation and the centroid in order to de-fuzzify the aggregated output.
Among the conclusions, these authors found that the FIS may be employed in order to determine the
optimum machine parameters to maximize the cutting speed for the WEDM of Creusabro steel [9].
In another study, Aamir et al. [10] employed a Mamdani FIS to predict surface roughness and hole
size as a function of feed rate and cutting speed in multi-hole drilling. These authors calculated the
outputs based on the centroid method. They found that the FIS was able to predict hole quality at
different levels of process parameters [10]. On the other hand, Alarifi et al. [11] employed genetic
algorithms and particle swarm optimization to determine the parameters of an adaptive neuro-fuzzy
inference system (ANFIS) model to predict the thermo-physical properties of Al,O3—multi-walled
carbon nanotube (MWCNT)/thermal oil hybrid nanofluid. In order to evaluate and compare the
performance of the models analyzed, root-mean-square error (RMSE) and the R-squared coefficient
(R?) were employed. These authors found that the models were able to appropriately predict the
thermo-physical properties [11]. In the research study of Wang et al. [12], a fuzzy multicriteria
decision-making model (MCDM) for raw material supplier selection in the plastic industry was
employed. Likewise, in the research study of Kang et al. [13], a heating temperature estimation method
using an ANFIS algorithm was proposed for diagnosis and assessment of fire-damaged concrete
structures. These authors employed as input variables ultrasonic pulse velocity, reflectance of the
concrete surface, and design compressive strength of the concrete. Moreover, these authors estimated
the heating temperatures of the specimens using the proposed ANFIS algorithm. They found that their
model estimated the heating temperatures of the specimens with a high degree of accuracy [13]. On the
other hand, Tayyab et al. [14] applied fuzzy theory to consider uncertainty in demand information in a
multi-stage lean manufacturing system. These authors employed the centroid to de-fuzzify the objective
function. Other studies such as that of Faisal et al. [15] used particle swarm optimization (PSO) and
biogeography-based optimization (BBO) algorithms for a multiple-objective optimization of the MRR and
Ra for the EDM process, and they validated their models with experimental results. Lin et al. [16] applied
a fuzzy collaborative intelligence approach for fall detection in four existing smart technology applications,
while Cavallaro employed a Takagi-Sugeno FIS to assess the sustainability of biomass of production [17].

Regarding fuzzy modeling for industrial applications, there exist several studies which were applied
to different industrial sectors. Among these research studies, it is worth mentioning the application of soft
computing techniques for both detection and classification of defects [18,19], fault diagnosis of rolling bearing
in industrial robots [20], airport classification [21], control of piezoelectric actuators [22], monitoring of
fuel system of an industrial gas turbine [23], control of brushless direct current (DC) motors [24], and fault
detection in wind turbines [25]. In addition, fuzzy systems are able to handle uncertainties in an efficient
way, as shown in Reference [26], where a Takagi-Sugeno-Kang (TSK) type-2 fuzzy neural network was
proposed for system modeling and noise cancellation, or in Reference [27], where a design methodology
based on interval type-2 TSK fuzzy logic controllers for modular and reconfigurable robots manipulators
with uncertain dynamic parameters was shown, among many others [28,29].

Some other studies such as that of Shabgard et al. [30] employed a Mamdani inference system to
predict material removal rate, electrode wear, and surface roughness in the EDM and ultrasonic-assisted
EDM (US/EDM) processes of tungsten carbide. An analysis of the particle swarm optimization (PSO)
implementation in designing parameters of manufacturing processes, as well as a benchmark with
other optimization techniques can be found in the review study of Sibalija [31]. EDM process variables
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were modeled by using artificial neural networks (ANNSs) and ANFIS, as shown in studies such
as that of Rahul et al. [32], where the authors employed a Taguchy design of experiments, as well
as the concept of satisfaction function, to improve machining performances responses in EDM of
Inconel 718. Babu et al. [33] employed a Taguchy design of experiments and an ANN in order
to determine optimal parameters in the wire electrical discharge machining (WEDM) of Inconel
750. Likewise, Al-Ghamdi et al. employed an adaptive neuro-fuzzy inference system (ANFIS) and
polynomial modeling approaches to model the material removal rate in EDM of a Ti-6A1-4V alloy [34].
These authors employed five ANFIS models and a first-order Sugeno, along with a back-propagation
neural network training algorithm. Among the results, these authors found that ANFIS models perform
more efficiently than convectional polynomial models [34]. Devarasiddappa et al. [35] employed
an artificial neural network (ANN) to predict surface roughness in the wire-cut electrical discharge
machining (WEDM) of Inconel 825. These authors found that this methodology is effective for modeling
surface roughness in this Inconel alloy [35]. Maher et al. [36] employed an adaptive neuro-fuzzy
inference system (ANFIS) to predict cutting speed, surface roughness, and heat-affected zone in WEDM.
Another example is the study of Joshi et al. [37] which investigated the management and quantification
of surface roughness and MRR of Inconel 800 HT when machined with a copper electrode on EDM,
whereas Torres et al. [38] studied an Inconel® 718 alloy during electrical discharge machining.

From previous studies, it is possible to see that EDM is commonly used for manufacturing
materials such as tungsten carbide [39], titanium diboride [1], and Inconel® alloys [2], boron carbide
and silicon carbide [5], among many others. In this present research study, the main aim is to use a FIS
to obtain technological tables from EDM experimental data. As previously mentioned, these tables are
very usual for steel; however, in other materials, the number of technological tables is significantly less.
Hence, this study may have interest because these tables allow machining strategies to be selected in
advance to obtain either maximum material removal rate or minimum electrode wear, among other
manufacturing strategies.

3. Methodology

This study presents a methodology in order to obtain technological tables that can be used in electrical
discharge machining (EDM) processes. This methodology is based, first of all, on experimentation,
which can be carried out through design of experiments (DOE) or another type of experimental study.
Technological tables are of great interest in the field of EDM since, by using them, it is possible to determine
in advance the optimal machining conditions for a certain strategy that either maximizes material removal
or reduces electrode wear. The methodology presented in this present study could be used generally for
other manufacturing processes; however, in this present case, it is focused on EDM in order to analyze
a case study. Most current EDM devices have (Computer Numerical Control) CNCs; thus, it is possible
to enter these technological tables in the memory of their CNCs. Currently, most EDM equipment is
programmed based on the existence of these technological tables. The usual practice is to obtain the
technological tables both from experimental tests and from the experience of the users [1,5].

Technological tables could be developed from previous experience on EDM in order to determine
the most appropriate operating conditions. Moreover, it would be possible to train and then adjust an
ANFIS by using experiments, that is to say, inputs and measured outputs. However, these techniques
are not used in this present study because it is possible to get more precision by using a FIS from the
experimental data. In a future study, a FIS will be adjusted from inputs and outputs which may have a
lower number of rules compared to that proposed in this present study. However, the precision of
this so-adjusted FIS would be lower than that obtained with the proposed model. Therefore, the FIS
employed in this present study starts from the knowledge of the experimental tests. As previously
mentioned, the knowledge of these technological tables is very important since it makes it possible to
select a machining strategy to obtain certain values of roughness, as well as to specify a certain strategy
for the material removal rate or electrode wear. For this reason, these technological tables are widely
used for steel, with their number being significantly lower in the case of other materials, as in the case
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analyzed in this present study. In any case, it is considered that the proposed methodology could be
generally applied for any other material. These technological tables are generated in a bottom-up
approach, since they start from experimental tests because of the fact that more precise results can be
obtained. Therefore, the proposed methodology is as described below.

Firstly, a FIS is developed from the inputs (x; . ...x,) and outputs (1 ....ys). A zero-order Sugeno
fuzzy model is employed in this study. Triangular membership functions are used for modeling the
inputs and constant values are used for the outputs. Figure 1 shows the membership function selected
for fuzzification of the inputs. The membership functions for the independent variables are triangular,
as shown in Figure 1. The membership function is obtained from Equation (1).

Degree of membership
© o o o o o
N w N (6] » ~
T T T T T T
1 1 1 Il 1 1

o
o
T
I

o

Triangular inputs

Figure 1. Degree of membership of the independent variables.

It should be mentioned that the membership functions may have different shapes such as triangular,
trapezoidal, Gaussian, and bell-shape, among many others [40]. In this case, triangular functions
are used for their simplicity and because using these types of functions with overlap between them
produces acceptable values to model the response.

e, ifa<x<b
pr=1 &5, if b<x<c ;. (1)
0, otherwise

Therefore, the procedure for obtaining the technological tables starts from obtaining a Sugeno
FIS [3,4,40], which can be developed from the experimental data. The aggregation method is the sum
of fuzzy sets, and the aggregated output is obtained from the weighted average of all output rules.
For the i-th rule, the implication method is obtained from Equation (2), where the product implication
method is used in Sugeno systems [40].

Ai(x) = AndMethod{u;1 (x1), ..., tin(xn)}- (2)

Once the FIS is developed, it is then possible to evaluate the outputs and to obtain the response values
for each of the inputs using the FIS, that is, for x; = min{x;} : in¢; : max{x;}. The increment “inc;” defines
the number of points to be evaluated in order to generate the response with the fuzzy inference system
(FIS). In general, it is possible to have several inputs and outputs. The general procedure to define the
technological tables is shown in Algorithm 1.
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Algorithm 1. Methodology for obtaining the technological tables. FIS—fuzzy inference system.

(1) Develop a FIS from the inputs (7 ....x;) and outputs (y1 ....yn). A zero-order Sugeno fuzzy model is
employed in this study.

1}

are selected so that the length of each vector “x;” is the same for all inputs.

(2)  Transform each of the inputs into a vector as follows: x; = min{xi]} s ing max{xi,j}, where inc; values

(3) Evaluate the output to be classified, using the fuzzy inference system. That is, evaluate output, ; using

the FIS.
(4)  Select a pitch = outpu’csuplyl - Outputinf“ = constant for the output to be classified, so that
output;,. < output;; < outputy,, . This defines the number of levels “1” used to classify the output.

ulrr

(6) Classify output; using these “1” levels. Each of these levels has “m;” values.

(6)  The strategy for obtaining each value of the technological table is as follows:
If the optimal value of one output “k” is given by the maximum, for example, material removal rate, then
the value of the technological table which corresponds to the level “1” of output, is obtained from the
following function:

table_outputy | = max{outputk/m}pls, classifed-

Otherwise, if the manufacturing strategy is given by the minimum, for example, tool wear, then the
values of the technological tables are obtained from the following function:

table_output, | = min{outputy ;. }r1s, classifed-

That is, for each level of output;, select the value that either maximises or minimises output, , where the
values are obtained using the FIS.

(7)  Then, obtain inputs (X; ....xn) which correspond to table_outputk,1 and, using the FIS, evaluate other
outputs (output,, form # 1and k).

As shown in Algorithm 1, from the experimental results, a fuzzy inference system is generated
from all the independent variables and the dependent variables under study. For this reason, the FIS is
capable of predicting the values of the dependent variables within the range defined by the minimum
and maximum values of the experiments with greater precision than that obtained by using RSM,
as shown later. The intervals used to classify the output, values are established based on a pitch which
could be whatever. The selection of output; as the output to be classified can be done without loss of
generality since, in the methodology presented, a single output is selected as classifiable to establish
the ranges of variation, and the remaining outputs vary either at their maximum levels or at their
minimum levels, depending on the manufacturing strategy.

The proposed methodology has the advantage that several manufacturing conditions can be
determined from a reduced number of experimental tests, within the range defined by experimentation
(minimum and maximum values of the input variables). Once the outputs are classified, it is a matter
of selecting the conditions that maximize a variable.

In order to show the application of the above-mentioned methodology, the technological tables
for the case of Inconel® 600 are obtained, within the range of values defined by the DOE shown in
Table 1. The surface quality is characterized from the arithmetic mean roughness parameter (Ra).
This roughness parameter is commonly employed in industry to characterize the surface finish of
manufactured parts because most roughness measurement equipment is able to provide this parameter.
However, the proposed methodology could be generally applied for other roughness parameters.
In order to develop the technological tables, roughness classes with a certain value should be established
beforehand and, thus, the roughness values are then classified according to the specified roughness
classes. With this objective in mind, it is necessary to start from the experimental values which can be
obtained from a DOE or from any other experimental methodology. Therefore, the method to be used
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is to establish roughness classes and, from these classes, to determine the values of the input variables
that allow either to minimize the electrode wear or to maximize the material removal rate.

4. Results and Discussion

This section presents the results obtained by applying the methodology described in the previous
section. In order to develop the present study, experimental values obtained by Torres et al. [2]
are employed. As previously mentioned, this material is a nickel-chromium alloy (Inconel® 600).
The ranges of variation of the inputs and outputs are shown in Tables 1 and 2.

Table 2 shows the results obtained after EDM of Inconel® 600 alloy, where the material removal
rate (MRR) and the electrode wear (EW) are defined from Equations (2) and (3), respectively.

) Volume of material removed from the part
Material Removal Rate (MRR) =

3 .
Machining time (mm /mm). ©)

Volume of material removed from the electrode

Electrode Wear (EW) = Volume of material removed from the part

% 100(%). (4)

As is well known, (Ra) is defined from the UNE-EN-ISO 4287:1999 norm [41] as the arithmetic
average roughness of the absolute values of the roughness profile ordinates Z(x) (where Z(x) is the
height of the profile evaluated in any position “x”) that are included in a sampling length (Ir) of the
roughness profile, which can be obtained from Equation (5). This value is one of the most commonly
employed parameters in industry. Therefore, it is used in order to classify the roughness values in
order to develop the technological tables.

1 Ir
M—;LV@W- ©)

Figure 2 shows the profile for the determination of the Ra parameter, where Z(x) is the profile
measured from the mean line, and I is the sampling length, while Figure 3 shows the EDM equipment.

WL
VR

Z(x) ()

mean line

sampling
length (Ir)

-

Figure 2. Roughness profile for determination of Ra parameter.
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Figure 3. Electrical discharge machining (EDM) machine ONA Datic D-2030-S.

4.1. Analysis of Experimentation Using the FIS

This section is included in order to demonstrate that the FIS is able to model the behavior of the
response variables more efficiently than by using RSM. Data shown in Tables 1 and 2 are employed
in order to develop a FIS which can be then employed to obtain the technological tables following
the procedure previously mentioned in Section 3. As can be seen in Reference [1], a method for
obtaining the technological tables from a conventional design of experiments along with multiple
linear regression techniques was proposed, where technological tables were obtained for TiB,, which is
a sintered ceramic material and in Reference [5] technological tables were obtained for B4C, SiSiC and
WC-Co. However, as was previously mentioned, if the regression is not able to adequately predict
the behavior of a response variable, the technological tables obtained from these models will not be
accurate. In this section, the proposed methodology in this present study is applied for the case of the
EDM of Inconel® 600. However, it should be mentioned that this methodology could be applied for
other kinds of materials. Figure 1 shows the membership functions that were used to fuzzify the inputs.
As can be observed, triangular functions were selected for the inputs. On the other hand, the present
study assumes that it is possible to linearly vary the parameters in the EDM equipment in order to be
able to select the values obtained from the technological tables which are determined to be optimal
ones. If this is not possible, the FIS would have to be used on the possible values of these independent
variables. As Table 2 shows, the design of experiments does not continuously vary the values of the
independent variables; thus, it is possible that the optimal values are not selected if only these values are
considered. In addition, it may be that there are levels vacant when establishing the levels of roughness,
which is the dependent variable that was selected as output, since, as explained above, it is one of the
most widely used parameters for characterizing surface quality and, therefore, its determination is of
great importance and interest in industry.

In this present study, the FIS was obtained using Matlab™2019b. Therefore, from Table 2, it is
possible to directly obtain the set of rules that make up the FIS. As previously mentioned, a Sugeno
FIS was employed by using the Fuzzy Logic Toolbox™ of Matlab™?2019b [40]. Mamdani systems are
more intuitive and the rules are easier to understand, making them more suitable for expert systems,
developed from human knowledge [40,42,43]. On the other hand, the defuzzification process for a
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Sugeno system is more computationally efficient compared to that of a Mamdani system [40,42,43].
Figure 4 shows the employed FIS which was developed from the rules shown in Table 3. This table
shows the rules implemented in the fuzzy system, in symbolic format, codified from the outputs.
For each output value, a FIS was developed. In this way, it is possible to model the behavior of Ra,
MRR, and EW for each of the manufacturing strategies.

; Number of rules
N \ Sugeno FIS Zi=1 s Ai * Zj
i . (Fuzzy Inference System) output = Number of rules 1

/ L Dl ;

Figure 4. Fuzzy inference system employed.

Degree of membership

Table 3. Codification of the rules.

111,1(1) : 1 112,17(1) : 1 113,33(1) : 1 114,49(1) : 1
211,2(1) : 1 212,18(1) : 1 213,34(1) : 1 214,50(1) : 1
311,3(1) : 1 312,19(1) : 1 313,35(1) : 1 314,51(1) : 1
411,4(1) : 1 412,20(1) : 1 413,36(1) : 1 414,52(1) : 1
121,5(1) : 1 122,21(1) : 1 123,37(1) : 1 124,53(1) : 1
221,6(1) : 1 222,22(1) : 1 223,38(1) : 1 224,54(1) : 1
321,7(1) : 1 322,23(1) : 1 323,39(1) : 1 324,55(1) : 1
421,8(1) : 1 422,24(1) : 1 423,40(1) : 1 424,56(1) : 1
131,9(1) : 1 132,25(1) : 1 133,41(1) : 1 134,57(1) : 1
231,10(1) : 1 232,26(1) : 1 233,42(1) : 1 234,58(1) : 1
331,11(1) : 1 332,27(1) : 1 333,43(1) : 1 334,59(1) : 1
431,12(1) : 1 432,28(1) : 1 433,44 (1) : 1 434,60(1) : 1
141,13(1) : 1 142,29(1) : 1 143,45(1) : 1 144,61(1) : 1
241,14(1) : 1 242,30(1) : 1 243,46 (1) : 1 244,62(1) : 1
341,15(1) : 1 342,31(1) : 1 343,47(1) : 1 344,63(1) : 1
441,16(1) : 1 442,32(1) : 1 443,48(1) : 1 444,64(1) : 1

The codification shown in Table 3, which was obtained from Table 2, is “current intensity, pulse time,
and duty cycle”: “I(i) Ti(j) dc(k), output (1 = and, 2 = or) : weight”. In this case, weight = 1, so that
each rule has the same effect relative to others [40], where the numbering 1, 2, 3, and 4 is employed for
the inputs in order to select the levels of the variables. As can be observed in Table 1, these variables
have four levels. For example, the levels for the intensity are given by {2 A, 4 A, 6 A, and 8 A}.
Therefore, these values are coded as {1, 2, 3, and 4} in Table 3. The same procedure is applied for both
pulse time and duty cycle. In the case of the output, there are 64 values which are obtained from
the DOE with the different input conditions. That is, for the case of Ra, for instance, 111,1 (1) : 1
corresponds to the following:

1. If (Intensity is 2 A)AND (Pulse Time is 25 us) AND (duty cycle is 0.3 %)THEN (Ra is 1.39 pm).

That is,
1.If (I ==12) & (Ti == Ti25) & (dc == dc0.3)Then (Output = mf1),
2.1f (I == I4) & (Ti == Ti25) & (dc == dc0.3)Then (Output = mf2),
63.1f (I == 16) & (Ti == Ti100) & (dc == dc0.6)Then (Output = m1f63),
&

64.1f (I == I8) & (Ti == Ti100) & (dc == dc0.6) Then (Output = mf64),
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where the input values “I(i), Ti(j), dc(k)” and the outputs mfy ... mf, are selected from Table 1.
RSM model:

~ (by 4+ by X x1 + by Xxp + b3 X x3 4+ by X x1 X X3 4+ b5 X x1 ><X3+b6><x2><X3+b7><x2+bg><x2+ngx2 . 6
y 1 2 3

The FIS was generated directly from experimental data. Therefore, as shown later, the precision of
the obtained results is much higher than that obtained using RSM. Figures 5-8 are included to compare
the response surfaces obtained with the proposed methodology using the FIS and those obtained from
the RSM, as done in Reference [2], where the experimental data were fitted by using a second degree
polynomial, which is shown by Equation (6).
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Figure 5. Response surfaces for EW in the case of positive polarity: (a) obtained from the regression [2];
(b) obtained with the proposed methodology using the FIS.
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Figure 8. Difference between MRR (FIS model) and MRR (regression [2]) vs.: (a) Pulse Time and
Intensity; (b) Duty cycle and Intensity; (c) Duty cycle and Pulse Time.

As can be observed in Figures 7 and 8, the results obtained with the FIS are close to those obtained
with the regression as a consequence of Ra and MRR being fitted adequately by a quadratic polynomial,
as can be seen from the coefficients of determination of the fit and from the RMSE and mean absolute
error (MAE) statistics, which are shown in Equation (7) and in Table 4. However, as Table 4 shows,
this is not the case for the electrode wear (EW), which is shown in Figure 5; hence, it is possible to
conclude that the FIS is more accurate than RSM. Therefore, it is able to predict more adequately the
values of the response, within the range of study, than the RSM.

Figures 6-8 show a comparison between the EW, Ra, and MRR results obtained with the RSM and
with the FIS. As can be observed in Figures 7 and 8, differences are not significant as a consequence of
the fact that experimental Ra and MRR results are well fitted by a second-order polynomial, such as that
shown in Equation (6). However, this is not the case for electrode wear, as shown in Figures 5 and 6.
As Table 4 shows, the polynomial model is not accurate and, in this case, the differences between the
FIS and the regression model are significant. Therefore, data provided by the FIS are more accurate
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than those obtained by using the RSM, and the technological tables are more accurate if the FIS is used
instead of the regression model.

Table 4. Accuracy for predicted values of Ra, MRR, and EW using the regression model [2] and the FIS.

Positive Polarity (+) Negative Polarity (-)
Ra Ra Ra Ra
(using the FIS) (Regression) (using the FIS) (Regression)
RMSE =0 RMSE = 0.3286 RMSE =0 RMSE = 0.4461
MAE =0 MAE = 0.2693 MAE =0 MAE = 0.3705
R* =1 R? = 0.9639 R* =1 R? = 0.9606
MRR MRR MRR MRR
(using the FIS) (Regression) (using the FIS) (Regression)
RMSE =0 RMSE = 0.7184 RMSE =0 RMSE = 1.4713
MAE =0 MAE = 0.4879 MAE =0 MAE = 1.0625
R*=1 R? =0.9778 R*=1 R? = 09712
EW EW EW EW
(using the FIS) (Regression) (using the FIS) (Regression)
RMSE =0 RMSE = 5.5290 RMSE =0 RMSE = 49.7581
MAE =0 MAE = 3.5873 MAE =0 MAE = 33.3053
R* =1 R? = 0.6958 R*=1 R* = 0.6783

Figure 9 shows the response surfaces for both Ra and MRR obtained with the proposed
methodology using the FIS for the case of positive polarity. Equation (7) shows the statistical
parameters that were used to determine the precision of the models used for modeling the dependent
variables, that is, Ra, MRR, and EW. As can be observed in Table 4, the FIS accuracy is higher than that
provided by the RSM. Data shown in Table 4 were obtained by using Matlab™2019b.

@)

As can be observed in Table 4, the fuzzy inference system fits all the data perfectly, which is logical
since the FIS was built according to the procedure shown in the previous section. However, this is not
the case with the RSM which, despite using all the DOE points for the determination of the models,
is not able to adequately adjust the electrode wear surface response. Therefore, the values predicted by
the regression have lower accuracy than those predicted by the FIS. In this case, the polynomial models
for the case of both roughness and material removal rate are acceptable. Nevertheless, the precision is
lower than that of the FIS. In any case, in other types of experimentation in which there is less precision
in the least squares adjustments, the employment of the FIS becomes more important since it adjusts to
all the points of the model.

In Torres et al. [2], the model with the highest value of adjusted R? was selected. However, in this
present study, the model with all the regression coefficients is used because these models have higher R?
values than those shown in Reference [2] and, with the aim of considering all the effects in the models
such as the models shown in Reference [2], some of the independent variables could be eliminated.

Figure 10b shows that it is possible to analyze the experimental results in a similar way to that
done with regression models. It is shown that the most important effects are the current intensity
and the pulse time, followed to a lesser extent by the duty cycle. In addition, by using the FIS,
the values obtained are more precise, as can be seen in Table 4. As can be observed, the differences
between the values predicted by the regression model and those predicted by the FIS are significant.
Specifically, in the case of positive polarity, the regression model does not adequately predict the
behavior of electrode wear, as can be seen in Table 4. Therefore, the results provided by the regression
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model when predicting electrode wear are not accurate. In this case, the FIS is shown to have significant
advantages over the regression model. Specifically, it is shown that, with increasing intensity, there is
less wear on the electrode, which is logical because, as seen in Figure 11a,b, if the intensity decreases,
so does the removal of material, while the surface roughness assumes smaller values, with the
wear of the electrode in these cases being greater, which is in good agreement with experimental
values. Finally, Figure 12 shows the interaction effects plot. As can be observed, the most significant
interactions are those related to the current intensity and the pulse time. On the other hand, it is
observed that the differences between both the FIS and the regression are significant, as a consequence
of the fact that the regression model is not able to adequately predict the behavior of the electrode
wear. In addition, Table 4 shows that the FIS is able to predict the behavior of the response variables
more adequately than the regression, which is logical as a consequence of the methodology employed
for defining the FIS. Hence, the fit is perfect in the case of the FIS, and this is not so in the case of
the regression model. Therefore, the technological tables with values provided by the FIS are more
accurate than those provided by conventional methods.
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Figure 9. Response surfaces obtained with the FIS for the case of positive polarity: (a) Ra; (b) MRR.
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Figure 10. Main effects plot for EW in the case of positive polarity: (a) obtained from the regression [2];
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Figure 11. Main effects plot for (a) Ra and (b) MRR in the case of positive polarity, obtained using the FIS.
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Figure 12. Interaction effects plot for EW in the case of positive polarity: (a) obtained from the
regression [2]; (b) obtained with the proposed methodology using the FIS.



Mathematics 2020, 8, 922 15 of 26

Figure 11 shows that the current intensity is the variable that has the greatest impact on both Ra
and MRR, which is logical since, within the values considered in the present study, a higher intensity
reflects higher material removal and worse surface roughness. On the other hand, it can be observed
in Figure 11b that the pulse time affects the material removal rate to only a slight extent and that,
approximately for values of the pulse time within the range 50 us < Ti (ps) < 75 ps, the material
removal rate stands at its maximum value, being constant when the current intensity and the duty
cycle are at their average values.

Figure 12 b(3,3) shows that it is possible to analyze the interaction effects between factors by using
the FIS in a similar way to conventional analysis of factorial 2¢ experiments along with regression
models. These factors are represented in an array (3 files X 3 columns). The results were generated by
analyzing the variation of one factor between its maximum and minimum levels, when all the other
factors were held at their average level. For example, in Figure 12 b(q 5), it is shown that, when the
current intensity is held at its lowest level, the electrode wear values are lower with increasing pulse
time, when the duty cycle is at its average level of 0.45%. Moreover, if the current intensity is held at its
highest level, the electrode wear values are lower than those obtained when the current intensity is held
at its lower level. On the other hand, in the case of duty cycle, which is represented in Figure 12 b(; 3),
it is shown that the electrode wear remains approximately constant versus the duty cycle when the
pulse time is held at a constant value of 62.5 ps, showing that the electrode wear values are independent
of either higher or lower values of intensity. A similar analysis could be done with all the interaction
effects. Figure 13 shows the interaction plots effect, using the FIS, for the three independent variables
under study in the case of positive polarity when Ra and MRR are considered as response variables.
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Figure 13. Interaction effects plot for (a) Ra and (b) MRR in the case of positive polarity, obtained using
the FIS.

Figures 14 and 15 show the main effects plot and the interaction effects plot for the case of negative
polarity, using the FIS. As can be observed, a similar behavior to that of positive polarity is obtained.
The same comments regarding the precision of the models are applicable in the negative polarity case.

As demonstrated in this section, the response surfaces generated with the FIS have greater
precision than those obtained with the RSM; thus, the technological tables are determined according to
the methodology described in the previous Section. It should be mentioned that it was considered
necessary to develop the previous analysis in order to show the higher accuracy of the FIS model to
predict the surface roughness, the material removal rate, and the wear of the electrode.
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Figure 14. Main effects plot for (a) EW, (b) Ra, and (c) MRR in the case of negative polarity, obtained using
the FIS.
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Figure 15. Interaction effects plot for (a) EW, (b) Ra, and (c) MRR in the case of negative polarity,
obtained using the FIS.
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4.2. Development of the Technological Tables

In this section, the technological tables for the Inconel® 600 alloy are obtained from the methodology
previously described in Section 3. As can be observed in Tables 5-8, Ra is classified with a pitch of
0.20 um. Although it would be possible to generate the technological tables only using the experimental
data, it could be that there exist roughness classes in which there are no input variables to obtain
them, since the dependent variables are obtained afterward and, therefore, their value is not known in
advance. Moreover, it could happen that MRR and EW values were not optimized as a consequence of
the fact that the inputs are not linearly varied in the DOE.

Table 5 shows the technological table for the case of positive polarity that was obtained by
selecting a specific class of roughness values with the maximum values of the material removal rate.
The electrode wear is given by the FIS after selecting the input variables that lead to a specific roughness
value, and Table 6 shows the technological table for the case of minimum electrode wear. In this case,
the material removal rate is obtained from the FIS once the input variables are defined.

In previous research studies, in which the author participated, technological tables were obtained
using regression models [1,5]. However, as shown in the previous section, the FIS is capable
of providing more precise values than those obtained by means of a conventional regression.
Therefore, the methodology described in Section 3 was used in this present study to generate the
technological tables. It should be mentioned that a pitch of 0.20 pm was selected for classifying
Ra. However, this value could be whatever without loss of generality. From the values shown
in Tables 1 and 2, an interval that encompasses both the minimum and the maximum values was
selected. In this interval, the roughness classes are established from the selected pitch and, thus,
the technological tables can then be obtained.

Figures 16 and 17 show the values obtained from the technological table with the fuzzy inference
system for the strategy of maximum material removal rate using positive and negative polarities,
respectively. These figures were obtained from Tables 5 and 7, respectively.
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Figure 16. Values obtained from the technological table with the fuzzy inference system for the strategy
of maximum removal rate using positive polarity.

Figures 18 and 19 show the values obtained from the technological table with the fuzzy inference
system for the strategy of minimum electrode wear using positive and negative polarities, respectively.
These figures were obtained from Tables 6 and 8, respectively.
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Table 5. Strategy of maximum material removal rate. Technological table obtained from the FIS, for the case of maximum removal rate strategy (positive polarity).

Class of Roughness Lower Value (um) Ra Value (um) Upper Value (um)  Intensity (A) Pulse Time (us)  Duty Cycle (%) MRR Max (111111?}? ) EW (%)
Ral 1.00 1.19 1.20 2.00 25.00 0.51 0.27 42.80
Ra2 1.20 1.40 1.40 2.12 25.00 0.57 0.56 40.97
Ra3 1.40 1.59 1.60 2.37 25.00 0.54 1.08 37.71
Ra4 1.60 1.79 1.80 2.61 25.00 0.51 1.52 34.43
Ra5 1.80 2.00 2.00 2.73 25.00 0.59 2.05 32.62
Ra6 2.00 2.20 2.20 2.98 25.00 0.56 2.50 29.35
Ra7 2.20 2.39 240 3.10 26.53 0.60 2.98 26.84
Ra8 240 2.57 2.60 3.35 25.00 0.60 3.56 24.34
Ra9 2.60 2.79 2.80 3.59 25.00 0.60 4.15 21.03
Ral0 2.80 297 3.00 3.71 26.53 0.60 4.48 18.96
Rall 3.00 3.20 3.20 4.08 25.00 0.60 5.30 15.39
Ral2 3.20 3.40 3.40 4.69 25.00 0.58 6.31 14.26
Ral3 3.40 3.57 3.60 5.18 25.00 0.60 7.46 13.70

Ral4 3.60 3.78 3.80 5.80 25.00 0.60 8.65 12.75
Ral5 3.80 3.99 4.00 6.78 25.00 0.60 10.65 10.50
Ralé 4.00 4.19 420 7.88 25.00 0.60 1291 7.75
Ral7 420 4.36 4.40 8.00 28.06 0.60 13.46 7.15
Ral8 4.40 4.58 4.60 8.00 32.65 0.60 13.92 6.71
Ral9 4.60 4.80 4.80 8.00 37.24 0.60 14.37 6.26
Ra20 4.80 4.94 5.00 8.00 40.31 0.60 14.67 5.97
Ra21 5.00 5.17 5.20 8.00 44.90 0.60 15.13 5.53
Ra22 5.20 5.39 540 8.00 49.49 0.60 15.58 5.09
Ra23 540 5.59 5.60 8.00 55.61 0.60 16.42 4.89
Ra24 5.60 5.79 5.80 8.00 61.73 0.60 17.28 4.73
Ra25 5.80 6.00 6.00 8.00 67.86 0.60 18.13 4.58
Ra26 6.00 6.20 6.20 8.00 73.98 0.60 18.99 442
Ra27 6.20 6.25 6.40 8.00 75.51 0.60 19.06 431
Ra28 6.40 6.40 6.60 8.00 80.10 0.60 18.37 3.57
Ra29 6.60 6.61 6.80 8.00 86.22 0.60 17.45 2.59
Ra30 6.80 6.82 7.00 8.00 92.35 0.60 16.54 1.60
Ra31 7.00 7.03 7.20 8.00 98.47 0.60 15.62 0.62
Ra32 7.20 7.22 7.40 8.00 100.00 0.33 10.88 1.06

Ra33 7.40 741 7.60 8.00 100.00 0.30 10.04 0.81
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Table 6. Strategy of minimum electrode wear. Technological table obtained from the FIS, for the case of minimum electrode wear strategy (positive polarity).

Class of Roughness Lower Value (um) Ra Value (um) Upper Value (um) Intensity (A) Pulse Time (us)  Duty Cycle (%) EW Min (%) MRR (“n‘l‘if:f)
Ral 1.00 1.20 1.20 2.00 26.53 0.50 40.93 0.26
Ra2 1.20 1.40 1.40 2.00 52.55 0.60 16.57 0.18
Ra3 1.40 1.59 1.60 2.00 72.45 0.60 6.48 0.14
Ra4 1.60 1.80 1.80 2.00 90.82 0.60 3.20 0.11
Rab 1.80 1.99 2.00 2.00 75.51 0.31 1.03 0.09
Ra6 2.00 2.02 2.20 2.00 75.51 0.30 0.49 0.08
Ra7 2.20 221 240 2.12 75.51 0.30 0.73 0.28
Ra8 2.40 243 2.60 224 77.04 0.30 1.09 0.48
Ra9 2.60 2.61 2.80 2.37 77.04 0.30 1.31 0.68

Ral0 2.80 2.82 3.00 2.49 78.57 0.30 1.63 0.87
Rall 3.00 3.12 3.20 2.73 75.51 0.30 1.89 1.28
Ral2 3.20 3.21 3.40 2.73 80.10 0.30 2.12 1.25
Ral3 3.40 3.49 3.60 2.98 75.51 0.30 2.36 1.68
Ral4 3.60 3.67 3.80 3.10 75.51 0.30 2.59 1.88
Ral5 3.80 3.85 4.00 3.22 75.51 0.30 2.82 2.08
Ralé6 4.00 4.01 4.20 3.22 89.29 0.30 3.00 1.90
Ral7 4.20 4.21 4.40 3.35 93.88 0.30 3.12 2.02
Ral8 4.40 441 4.60 3.47 100.00 0.30 3.16 2.10
Ral9 4.60 4.79 4.80 3.84 100.00 0.40 3.02 3.11
Ra20 4.80 5.00 5.00 3.84 100.00 0.49 1.86 3.61
Ra21 5.00 5.19 5.20 4.08 100.00 0.48 0.76 4.02
Ra22 5.20 5.36 5.40 4.45 100.00 0.50 0.47 4.72
Ra23 5.40 5.55 5.60 494 100.00 0.50 0.43 5.59
Ra24 5.60 5.79 5.80 5.55 100.00 0.50 0.37 6.63
Ra25 5.80 5.94 6.00 5.92 100.00 0.50 0.33 7.26
Ra26 6.00 6.00 6.20 6.04 100.00 0.50 0.37 7.49
Ra27 6.20 6.21 6.40 6.04 100.00 0.47 0.62 7.34
Ra28 6.40 6.58 6.60 6.65 100.00 0.30 0.83 7.84
Ra29 6.60 6.79 6.80 7.27 100.00 0.59 0.76 12.74
Ra30 6.80 6.99 7.00 7.76 100.00 0.60 0.48 14.54
Ra31 7.00 7.08 7.20 8.00 100.00 0.60 0.37 15.39
Ra32 7.20 7.33 7.40 7.88 100.00 0.30 0.81 9.84

Ra33 7.40 7.41 7.60 8.00 100.00 0.30 0.81 10.04




Mathematics 2020, 8, 922 20 of 26

Table 7. Strategy of maximum material removal rate. Technological table obtained from the FIS, for the case of maximum removal rate strategy (negative polarity).

Class of Roughness Lower Value (um) Ra Value (um) Upper Value (um) Intensity (A) Pulse Time (us)  Duty Cycle (%) MRR Max ("n‘:l“n3 ) EW (%)
Ra2 1.20 1.39 1.40 2.00 44.90 0.50 0.51 145.31
Ra3 1.40 1.60 1.60 2.24 25.00 0.60 1.76 219.37
Ra4 1.60 1.80 1.80 2.37 29.59 0.60 2.48 212.79
Ra5 1.80 1.99 2.00 2.49 31.12 0.60 3.21 201.03
Ra6 2.00 2.18 2.20 2.61 32.65 0.60 3.94 188.91
Ra7 2.20 2.37 240 2.86 25.00 0.60 5.26 153.08
Ra8 240 2.60 2.60 2.98 28.06 0.60 6.02 142.45
Ra9 2.60 2.76 2.80 3.10 28.06 0.60 6.73 128.83
Ral0 2.80 2.98 3.00 3.35 25.00 0.60 8.07 100.04
Rall 3.00 3.19 3.20 3.47 26.53 0.60 8.81 87.37.
Ral2 3.20 3.35 3.40. 3.59 26.53. 0.60. 9.51 73.93
Ral3 340 3.60 3.60 3.84 25.00 0.60 10.87 47.01
Ral4 3.60 3.75 3.80 3.96 25.00 0.60 11.57 33.75
Ral5 3.80 3.98 4.00 4.69 25.00 0.60 14.20 27.80
Ral6 4.00 4.18 420 543 25.00 0.60 16.73 26.18
Ral7 4.20 4.35 440 6.04 25.00 0.60 18.94 24.86
Ral8 440 4.57 4.60 6.53 25.00 0.60 21.78 24.13
Ral9 4.60 4.79 4.80 7.02 25.00 0.60 24.63 23.39
Ra20 4.80 4.96 5.00 7.39 25.00 0.60 26.76 22.85
Ra21 5.00 5.18 520 7.88 25.00 0.60 29.60 22.11
Ra22 5.20 5.39 540 8.00 28.06 0.60 30.33 21.62
Ra23 540 5.55 5.60 8.00 31.12 0.60 30.35 21.31
Ra24 5.60 5.78 5.80 8.00 35.71 0.60 30.38 20.84
Ra25 5.80 5.93 6.00 8.00 38.78 0.60 30.40 20.52
Ra26 6.00 6.17 6.20 8.00 43.37 0.60 30.43 20.06
Ra27 6.20 6.40 6.40 8.00 47.96 0.60 30.46 19.59
Ra28 6.40 6.47 6.60 8.00 49.49 0.60 30.47 19.43
Ra29 6.60 6.61 6.80 8.00 55.61 0.60 29.23 19.40
Ra30 6.80 6.80 7.00 8.00 63.27 0.59 27.19 19.41
Ra31 7.00 7.19 7.20 7.76 83.16 0.60 26.19 25.20
Ra32 7.20 7.39 7.40 7.88 87.76 0.60 27.44 23.36
Ra33 7.40 7.57 7.60 8.00 92.35 0.60 28.78 18.10
Ra34 7.60 7.78 7.80 8.00 98.47 0.60 30.15 17.61
Ra35 7.80 7.83 8.00 8.00 100.00 0.60 30.49 17.49
Ra36 8.00 8.01 8.20 8.00 100.00 0.56 28.07 16.96

Ra37 8.20 8.23 8.40. 8.00 100.00 0.52 25.24 16.34
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Table 8. Strategy of minimum electrode wear. Technological table obtained from the FIS, for the case of minimum electrode wear strategy (negative polarity).

Class of Roughness Lower Value (um) Ra Value (um) Upper Value (um) Intensity (A) Pulse Time (us)  Duty Cycle (%) EW Min (%) MRR (“n‘l‘if:f)
Ra2 1.20 1.39 1.40 2.00 41.84 0.30 138.16 0.37
Ra3 1.40 1.57 1.60 2.00 25.00 0.30 96.67 0.50
Ra4 1.60 1.69 1.80 2.12 25.00 0.30 92.48 0.76
Rab 1.80 1.94 2.00 2.37 25.00 0.30 84.10 1.29
Ra6 2.00 2.19 2.20 2.61 25.00 0.30 75.72 1.81
Ra7 2.20 2.31 2.40 2.73 25.00 0.30 71.53 2.08
Ra8 2.40 2.56 2.60 2.98 25.00 0.30 63.15 2.60
Ra9 2.60 2.68 2.80 3.10 25.00 0.30 58.96 2.86

Ral0 2.80 293 3.00 3.35 25.00 0.30 50.58 3.39
Rall 3.00 3.18 3.20 3.59 25.00 0.30 42.20 3.92
Ral2 3.20 3.30 3.40 3.71 25.00 0.30 38.01 4.18
Ral3 3.40 3.55 3.60 3.96 25.00 0.30 29.63 4.71
Ral4 3.60 3.79 3.80 4.57 25.00 0.30 27.56 531
Ral5 3.80 3.96 4.00 5.06 25.00 0.30 26.99 5.75
Ralé 4.00 4.20 4.20 5.55 25.00 0.58 26.05 16.12
Ral7 4.20 4.40 4.40 6.16 25.00 0.59 24.77 18.85
Ral8 4.40 4.59 4.60 7.27 25.00 0.30 22.86 9.02
Ral9 4.60 476 3.40 4.80 8.00 0.30 21.09 10.42
Ra20 4.80 4.88 5.00 8.00 26.53 0.30 20.97 10.66
Ra21 5.00 5.13 5.20 8.00 29.59 0.30 20.72 11.14
Ra22 5.20 5.38 5.40 8.00 32.65 0.30 20.47 11.62
Ra23 5.40 5.54 5.60 4.08 75.51 0.30 20.02 791
Ra24 5.60 5.64 5.80 4.08 78.57 0.30 20.05 8.20
Ra25 5.80 5.99 6.00 8.00 40.31 0.30 19.84 12.82
Ra26 6.00 6.11 6.20 8.00 41.84 0.30 19.72 13.06
Ra27 6.20 6.36 6.40 8.00 4490 0.30 19.47 13.54
Ra28 6.40 6.48 6.60 8.00 46.43 0.30 19.34 13.78
Ra29 6.60 6.80 6.80 7.02 75.51 0.40 18.82 17.61
Ra30 6.80 7.00 7.00 7.51 73.98 0.40 18.37 19.49
Ra31 7.00 7.16 7.20 7.76 75.51 0.40 17.93 20.47
Ra32 7.20 7.36 7.40 8.00 78.57 0.40 17.53 21.59
Ra33 7.40 7.59 7.60 8.00 87.76 0.40 17.23 22.07
Ra34 7.60 7.79 7.80 8.00 95.41 0.40 16.98 22.47
Ra35 7.80 8.00 8.00 8.00 100.00 0.42 16.65 23.02
Ra36 8.00 8.18 8.20 8.00 100.00 0.47 16.31 23.50

Ra37 8.20 8.32 8.40 8.00 100.00 0.50 16.07 24.03
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Figure 17. Values obtained from the technological table with the fuzzy inference system for the strategy
of maximum removal rate using negative polarity.
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Figure 18. Values obtained from the technological table with the fuzzy inference system for the strategy
of minimum electrode wear using positive polarity.
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Figure 19. Values obtained from the technological table with the fuzzy inference system for the strategy
of minimum electrode wear using negative polarity.
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5. Conclusions

In this present study, a methodology that combines an experimental design with fuzzy modeling
was used in order to obtain the technological tables that make it possible to select in advance the most
suitable machining conditions in order to either maximize or minimize a certain objective function
(in this case the material removal rate and wear of the electrode) in a process of EDM. In addition,
a case study was analyzed for an Inconel® alloy.

Knowledge of the technological tables is very important since it makes it possible to select a certain
machining strategy, so that it is possible to obtain certain values of roughness along with maximum
material removal or minimum electrode wear. It was shown that the fuzzy model is capable of
generating the results in a more efficient way than that obtained by conventional regression techniques.
Moreover, the fuzzy model has the advantage that it is easy to incorporate new rules into the model,
in the event that there are additional experimental tests.

In this present study, it was shown that the FIS allows the behavior of the technological variables
used in the EDM processes to be adequately modeled and that the statistical values provided by this
methodology, which were quantified by RMSE, MAE, and R-squared, are much better than those
obtained by conventional methods. Therefore, the use of a FIS to obtain the EDM technology tables
may be an interesting alternative, due to the fact that higher precision can be obtained compared to
that obtained by traditional RSM-based methodologies.

It is felt that the present methodology for obtaining the technological tables may be of interest
in the event that the input variables to the EDM equipment can be varied continuously and, thus,
it could be possible to select the most appropriate operating conditions in advance. Likewise, it is
felt that the proposed methodology could be generally applied for any other material and for other
manufacturing processes.

Finally, it should be mentioned that it would have been possible to perform a reverse approach,
that is, to train the model from the experimental data in order to obtain an adaptive neuro-fuzzy
inference system; then, the technological tables could have been obtained. This will be done in a
future study.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Table Al. Mean values of Ra, MRR, and EW, obtained with positive polarity. These values were taken
from Reference [2] Torres Salcedo, A.; Puertas Arbizu I.; Luis Pérez, C. J. Analytical Modeling of Energy
Density and Optimization of the EDM Machining Parameters of Inconel 600. Metals 2017, 7, 166.
(Open access article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license: http://creativecommons.org/licenses/by/4.0/).

Positive Polarity (+)

E Ra(um) MRR (mm?3/min) EW (%) E Ra(um) MRR (mm3/min) EW (%)
1 1.39 0.1778 35.81 33 1.17 0.2650 42.84
2 3.34 3.0897 10.66 34 3.15 42338 15.45
3 3.66 5.0825 11.69 35 3.78 7.7099 9.61
4 422 7.4984 11.68 36 418 11.5649 9.31
5 1.57 0.1331 20.74 37 1.46 0.1792 14.94
6 4.20 3.7383 9.14 38 452 4.8556 10.68
7 4.70 6.3535 8.58 39 5.12 9.1444 7.93
8 471 6.6319 11.26 40 5.62 14.5645 6.77
9 2.01 0.0846 0.44 41 1.47 0.1332 4145
10 5.01 3.3606 432 42 4.83 4.6985 8.08
11 5.84 6.4197 6.76 43 5.31 8.5279 6.41
12 6.57 9.8827 3.92 44 6.35 13.6608 321
13 2.73 0.0884 3.02 45 3.11 0.0852 16.31
14 5.01 2.8219 321 46 5.19 3.9846 0.43
15 6.18 6.7786 0.84 47 5.96 7.3741 0.30
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Positive Polarity (+)

E Ra(um) MRR (mm?/min) EW (%) E Ra(um) MRR (mm?/min) EW (%)
16 7.41 10.0405 0.81 48 6.80 13.8606 2.32
17 1.34 0.2297 37.33 49 1.33 0.2907 42.54
18 3.12 3.6482 16.26 50 3.17 5.1434 15.52
19 3.72 6.3632 11.44 51 3.85 9.0528 12.44
20 4.24 9.9951 9.80 52 4.21 13.1599 7.44
21 1.88 0.1520 18.76 53 1.37 0.1808 17.86
22 4.28 4.0843 8.58 54 4.36 5.7782 11.63
23 5.37 7.2087 8.92 55 494 10.4558 8.42
24 5.57 11.9972 5.72 56 5.41 15.6323 5.04
25 1.75 0.1169 4.80 57 1.62 0.1328 5.19
26 4.79 4.2463 6.15 58 4.69 5.3637 5.90
27 5.81 7.6840 6.31 59 5.21 9.8216 3.60
28 6.56 12.2552 6.47 60 6.23 19.1347 4.39
29 291 0.1056 9.32 61 1.90 0.1031 2.05
30 4.95 3.3520 2.52 62 5.10 3.9857 5.15
31 6.65 6.9094 1.13 63 6.33 8.4132 1.30
32 6.78 12.7827 1.63 64 7.08 15.3894 0.37

Table A2. Mean values of Ra, MRR, and EW, obtained with negative polarity. These values were

taken from Reference [2] Torres Salcedo, A.; Puertas Arbizu I.; Luis Pérez, C. J. Analytical Modeling of
Energy Density and Optimization of the EDM Machining Parameters of Inconel 600. Metals 2017, 7, 166.
(Open access article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license: http://creativecommons.org/licenses/by/4.0/).

Negative Polarity (-)

E Ra(um) MRR (mm3/min) EW (%) E Ra(um) MRR (mm?3/min) EW (%)
1 1.57 0.4961 96.67 33 1.70 0.6719 107.46
2 3.59 4.7944 28.23 34 3.66 7.9205 29.72
3 4.29 6.6012 25.90 35 426 12.5716 25.79
4 4.76 10.4203 21.09 36 5.23 18.9419 21.67
5 1.31 0.3048 158.27 37 1.31 0.4777 154.88
6 5.43 7.4086 25.33 38 456 9.5215 27.75
7 5.84 10.3921 22.60 39 5.52 15.1031 21.94
8 6.77 14.3346 19.05 40 7.10 19.9893 19.59
9 1.39 0.3060 181.88 41 1.36 0.3882 221.58
10 547 7.7107 19.97 42 5.49 11.3645 26.01
11 6.90 11.5521 20.97 43 6.49 16.7606 21.72
12 7.44 17.7658 18.06 44 7.76 23.8823 18.76
13 1.58 0.3257 197.44 45 1.33 0.2949 263.67
14 6.24 9.9400 20.35 46 5.90 12.3596 24 44
15 7.36 16.1073 19.36 47 7.23 19.5421 297.77
16 8.04 20.0082 16.99 48 8.33 23.8906 16.04
17 1.62 0.5149 104.63 49 1.29 0.3546 245.89
18 3.82 6.2876 30.88 50 3.80 11.8064 29.33
19 453 10.5888 25.27 51 433 18.7034 24.92
20 483 13.1696 22.11 52 5.24 30.3120 21.93
21 1.28 0.4136 158.90 53 1.33 0.3144 291.16
22 490 9.7806 24.26 54 5.06 12.7525 26.09
23 6.06 12.7843 22.21 55 5.86 19.7280 21.70
24 6.30 22.1590 21.45 56 6.50 30.4760 19.38
25 1.28 0.3693 181.61 57 1.30 0.3561 248.44
26 5.51 9.2448 23.96 58 5.35 12.7624 26.15
27 6.26 13.5873 20.01 59 6.27 21.7225 21.94
28 7.27 21.4791 17.64 60 6.99 24.9210 19.47
29 1.36 0.3159 224.40 61 1.39 0.2823 320.70
30 6.24 11.3532 23.00 62 6.16 13.5013 25.88
31 6.93 17.2709 21.05 63 7.52 23.2371 171.94
32 7.90 22.7672 16.83 64 7.83 30.4894 17.49
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