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Abstract: In this paper, we discuss the averaging method for periodic systems of second order and
the behavior of solutions that intersect a hyperplane. We prove an averaging theorem for impact
systems. This allows us to investigate the approximate dynamics of mechanical systems, such
as the weakly nonlinear and weakly periodically forced Duffing’s equation of a hard spring with
an impact wall, or a weakly nonlinear and weakly periodically forced inverted pendulum with
double impacts.
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1. Introduction

In this paper, we deal with averaging methods for differential equations of second order.
More precisely, we derive averaging estimates for the following equation

ẍ = ε2 f (x, t, ε), (1)

where (x, ε, t) ∈ RN × [0, 1]×R, R = (−∞, ∞) and f is specified in further text, particularly in (2),
(3) or (4). We also present a result concerning an application of these averaging estimates on impact
systems. Physically, (1) represents, among other things, a moving particle under weak nonlinearities
and weak forces. Moreover, if we apply scaling y(τ) = x(τ/ε) we get

ÿ = f (x, τ/ε, ε),

which is a differential equation with a rapid forcing widely studied in [1,2].
The theory of differential equations is a powerful tool for modeling and studying real problems

with interesting outputs; see, e.g., [3,4]. It has broad ranges of approaches, as is demonstrated in recent
works [5,6]. An averaging method, as a part of those approaches, has many applications and it is
well-developed for ordinary, partial, delay and stochastic differential equations; see, e.g., [3,4,7–14]
for more motivations and applications. One can find another applications in the field of non-smooth
dynamical systems; see, e.g., [15]. In most cases, the averaging estimates are derived for differential
equations of first order and often cannot be used for second order equations. We study second order
differential equations subjected to impacts. We derive an O(ε) estimate between solutions of (1)
and averaged system (see (5)) on a time scale [0, O(1/ε)] that allows one to compare dynamics of
these two differential equations. The advantage of this estimate is based on the fact that averaged
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system is autonomous and thus its dynamics should be more predictable than of (1). For instance,
an averaged system can be Hamiltonian or even integrable, or if N = 2, then its dynamics are described
by Poincaré-Bendixson theorem; see [3,9]. On the other hand, (1) may have very complicated dynamics
up to chaotic; see [3,9,16]. Moreover, we study impact systems. We also present an example of a weakly
nonlinear and weakly periodically forced Duffing’s equation of a hard spring with an impact wall.
For simplicity, we focus our study to system with one impact, but our method holds for multiple
impacts. These are novelties of our paper.

The proofs in this paper are based on ideas from [13,17]; these ideas involve classical estimates of
integral forms of Equation (1) and a standard application of Gronwall Lemma. Theorem 1 below can be
proven by these techniques for a more general set of right-hand-side functions f in (1) if, for example,
we require basic assumptions on f ; e.g., boundedness, Lipschitz continuity and periodicity in time
variable or continuous differentiability. This paper reveals that if f is of some special form then it is
possible to prove useful averaging estimates.

2. Preliminaries

Throughout the paper, we will use the following notation:

• u · v — the inner product of vectors u, v ∈ RN ;
• |u|— the Euclidean norm of u ∈ RN ;
• dist(A, B) := inf{|a− b| | a ∈ A, b ∈ B}— the distance of nonempty sets A, B ⊂ RN ;
• ẋ(t) (ẍ(t)) — the first (second) derivative of function x at time t;
• ẋ(t)+ (ẋ(t)−) — the right (left) derivative of function x at time t.

Let Ω ⊂ RN be a domain, a ∈ Ω and b ∈ RN . We consider the initial value problem

ẍ = ε2 f (x, t, ε), x(0) = a, ẋ(0) = b, (2)

defined for (x, ε, t) ∈ Ω× [0, 1]×R. We will assume that f is equal to one of the following special forms

f (x, t, ε) = f̄ (x, ε) + g(t), (3)

or
f (x, t, ε) = f̄ (x, ε) + εh(x, t), (4)

where f̄ : Ω × [0, 1] → RN is a Lipschitz continuous, C2 smooth in Ω × [0, 1] with respect to x;
ε, g : R→ RN is a C2 smooth, bounded function that is periodic in the time variable t with the period
T and h : Ω×R→ RN is a C2 smooth in Ω×R with respect to x, t, bounded function that is periodic
in the time variable t with the period T. In the case of (3), the average of right-hand-side function f is
equal to [3,13],

1
T

∫ T

0
f (x, t, 0) dt = f̄ (x, 0) + ḡ

where ḡ= 1
T
∫ T

0 g(t) dt ∈ R is the average of g. In the case of (4), the average of f is equal to f̄ (., 0),
since f (x, t, 0) = f̄ (x, 0). For the case (3), we state the following definition:

Definition 1. The averaged system associated with (2) is the system

z̈ = ε2( f̄ (z, 0) + ḡ), (5)

and the guiding system associated with (2) is the system

ẅ = f̄ (w, 0) + ḡ.



Mathematics 2020, 8, 916 3 of 12

Let Γ = Γ(n, α) be the hyperplane in RN that is orthogonal to unit vector n and α ∈ R is given
parameter. This hyperplane can be defined by the means of the scalar product in RN as

Γ(n, α) := {y ∈ RN ; y · n = α}. (6)

The hyperplane Γ divides RN into two open half-spaces Γ− := {y ∈ RN ; y · n < α} and
Γ+ := {y ∈ RN ; y · n > α}. Let b be a vector that is transversal to the hyperplane Γ and points towards
Γ; i.e., b · n > 0. In this context, we call b the impact vector. The reflection vector b′ of vector b is given
due to the reflection law as

b′ = b− 2(b · n)n. (7)

Clearly, it holds b′ · n < 0; i.e., the reflection vector b′ points away from Γ. Moreover, the angle
between b′ and Γ is the same as the angle between b and Γ.

According to the definition of the reflection vector, we can proceed to the following definition of
solution of impact system.

Let a, b̄ ∈ RN be vectors, L > 0 be a constant and a · n < α. We say that a function x is the solution
of impact system

ẍ = ε2 f (x, t, ε),
x(0) = a,
ẋ(0) = b̄,
x · n ≤ α

(8)

if whenever x reaches the hyperplane Γ at some point x0 ∈ Ω attained at time τ0 ∈ (0, L) then
it continues as a solution of the same equation equipped with new initial conditions; i.e.,

ẍ = ε2 f (x, t, ε),
x(τ0) = x0,
ẋ(τ0) = b′.

Here x0 is the impact point and b′ is the reflection vector of the impact vector b = ẋ(τ0)
−;

then clearly b′ = ẋ(τ0)
+. If this happens we say that x reflects back to Γ−. We assume that motion is

free to move in the region Γ− ∪ Γ, until some time τ0 at which x(τ0) ∈ Γ where there is an impact with
a rigid obstacle represented by Γ. Within this definition, it is natural to require that if the solution starts
in Γ− and impacts Γ at the time τ0, the left derivative ẋ(τ0)

− should be transversal to hyperplane Γ
and be directed towards Γ; i.e., ẋ(τ0)

− · n > 0. Otherwise, if ẋ(τ0)
− · n = 0 then the solution x need

not either continue to Γ+, nor return back to Γ−. If ẋ(τ0)
− · n < 0 then the solution cannot even attain

Γ. Thus, if ẋ(τ0)
− · n > 0 then it holds ẋ(τ0)

+ · n < 0 and the solution x returns back to Γ−.

3. Results and Proofs

The following Theorem gives averaging estimates and is important for the second result of
this paper.

Theorem 1. Let L2 > L1 > 0, ε ∈ (0, 1] be given parameters and z :
[

L1
ε , L2

ε

]
→ Ω be a solution of

the averaged system (5) satisfying initial conditions

z
(

L1

ε

)
= a, ż

(
L1

ε

)
= b, (9)
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where a ∈ Ω and b ∈ RN . Let Aε ∈ R be a parameter such that |Aε| ≤ Dε for some D > 0 and consider
the local solution xε of initial value problem

ẍ = ε2 f (x, t, ε), x
(

L1

ε
+ Aε

)
= aε, ẋ

(
L1

ε
+ Aε

)
= bε, (10)

for aε ∈ Ω, bε ∈ RN and f satisfies either the assumption (3), or (4). Assume that there exists D > 0 such that

|a − aε|2 + |b− bε| ≤ Dε2. (11)

Then there exist ε0 ∈ (0, 1] and C > 0 such that the solution xε of (10) can be extended up to interval[
L1
ε + max{Aε, 0}, L2

ε

]
, stays within Ω for all ε ∈ (0, ε0]. Moreover, the following estimates are true

|xε(t)− z(t)| ≤ Cε,

and
|ẋε(t)− ż(t)| ≤ Cε2,

for t ∈
[

L1
ε + max{Aε, 0}, L2

ε

]
and ε ∈ (0, ε0].

Proof. Throughout the whole proof, we will assume that Aε ≥ 0 since the case Aε < 0 would be
proven in an analogous way. In the proof, we will deal with the case (3); the other case should
be dealt with in a similar way. For fixed ε ∈ (0, 1], let xε be the unique solution that exists on
some interval

[
L1
ε + Aε, s

)
for some s ≤ L2

ε and satisfies the initial value problem (10). The only

difficulty that prevents xε from existence on the whole interval
[

L1
ε + Aε, L2

ε

]
is that xε may approach

to the boundary of Ω in some earlier time s. In the rest of the proof we will write x instead of xε.
We will prove that the solution x can be extended up to interval

[
L1
ε + Aε, L2

ε

]
, i.e., s = L2

ε and

the inequality (12) is true for t ∈
[

L1
ε + Aε, L2

ε

]
. Integrating the equation in (10) with respect to t two

times and using notation of initial conditions from (10), we obtain

x(t) = aε +
∫ t

L1
ε +Aε

ẋ(ξ) dξ

= aε +
∫ t

L1
ε +Aε

bε dξ + ε2
∫ ξ

L1
ε +Aε

f (x(τ), τ, ε) dτ dξ

= aε + bε

(
t− L1

ε − Aε

)
+ ε2

∫ t

L1
ε +Aε

∫ ξ

L1
ε +Aε

f (x(τ), τ, ε) dτ dξ

= aε + bε

(
t− L1

ε − Aε

)
+ ε2

∫ t

L1
ε +Aε

(t− τ) f (x(τ), τ, ε) dτ.

In the last equality, we used the Fubini’s Theorem. A similar equation is true for the solution z
but with L1

ε + Aε replaced by L1
ε and f replaced by f̄ + ḡ. Hence, for t ∈

[
L1
ε + Aε, L2

ε

]
, we come to

the expression

x(t)− z(t) = aε − a + (bε − b)
(

t− L1
ε

)
− bε Aε

+ ε2
∫ t

L1
ε +Aε

(t− τ) ( f (x, τ, ε)− f̄ (z, 0)− ḡ) dτ

− ε2
∫ L1

ε +Aε

L1
ε

(t− τ) ( f̄ (z, 0) + ḡ) dτ.
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From the last equality, we can derive the following estimation

|x(t)− z(t)| ≤ |aε − a|+
(

t− L1
ε

)
|bε − b|+ Dε|bε|

+ ε2
∣∣∣∣∫ t

L1
ε +Aε

(t− τ)
(

f (x, τ, ε)− f̄ (z, 0)− ḡ
)

dτ

∣∣∣∣
+ ε2

∫ L1
ε +Aε

L1
ε

(t− τ) | f̄ (z, 0) + ḡ| dτ.

(12)

In the following estimates, the constant C may vary from step to step. Clearly, if t, τ ∈
[

L1
ε , L2

ε

]
then

t− τ ≤ L2 − L1

ε
.

Since the function g is periodic, the function g1(ξ) :=
∫ ξ

L1
ε +Aε

g(τ) − ḡ dτ is bounded and its

boundedness is independent of ε and ξ . Using this fact and the Lipschitz continuity of f̄ , the first
integral in (12) can be estimated in the following way∣∣∣∣∫ t

L1
ε +Aε

(t− τ)
(

f (x, τ, ε)− f̄ (z, 0)− ḡ
)

dτ

∣∣∣∣ ≤ ∫ t

L1
ε +Aε

(t− τ)
∣∣ f̄ (x, ε)− f̄ (z, 0)

∣∣ dτ

+

∣∣∣∣∫ t

L1
ε +Aε

∫ ξ

L1
ε +Aε

g(τ)− ḡ dτ dξ

∣∣∣∣
≤ C

∫ t

L1
ε +Aε

(t− τ) (|x(τ)− z(τ)|+ ε) dτ +
C
ε

.

(13)

Combining the estimates (12) and (13) and the assumption (11), we get

|x(t)− z(t)| ≤
√

Dε + ε (L2 − L1) D + ε(Dε2 + D|b|)

+ Cε2
∫ t

L1
ε +Aε

(t− τ) |x(τ)− z(τ)| dτ + Cε (L2 − L1)
2

≤ Cε +
∫ t

L1
ε +Aε

Cε |x(τ)− z(τ)| dτ.

Now, an obvious application of the General Gronwall Lemma (see, e.g., [13]) yields

|x(t)− z(t)| ≤ CεeC(L2−L1) ≤ Cε.

Note that the constant C depends on L1,2, D, A and b but is independent of ε and s. Thus

we proved the estimate (12) for t ∈
[

L1
ε + Aε, s

)
. Now, we prove that s = L2

ε ; i.e., the solution x can be

extended up to the interval [ L1
ε + Aε, L2

ε ]. It is sufficient to prove that the solution x is bounded away
from the boundary ∂Ω. Denote d = dist(∂Ω, w([L1, L2])), where w solves the guiding system (6) and
w([L1, L2]) = {w(t) | t ∈ [L1, L2]}. It is clear that d > 0 and there is some ε0 > 0 such that

|xε(t)− w(εt)| ≤ Cε ≤ d
2

for every ε ∈ (0, ε0] and t ∈ [ L1
ε + Aε, s). Since C is independent of ε and s, it is ε0, and it means that

dist(∂Ω, x([ L1
ε + Aε, s)) ≥ d

2 for all t ∈ [ L1
ε + Aε, s), and moreover, the solution x can be extended.

Therefore x exists globally on interval [ L1
ε + Aε, L2

ε ]. It remains to prove the estimate (12). As before,
we start with following equality

ẋ(t) = bε + ε2
∫ t

L1
ε +Aε

f (x(τ), τ, ε) dτ (14)
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and an estimation similar to (12) yields

|ẋ(t)− ż(t)| ≤ |bε − b|+ ε2
∫ t

L1
ε +Aε

∣∣ f (x, τ, ε)− f̄ (z, 0)− ḡ
∣∣ dτ + ε2

∫ L1
ε +Aε

L1
ε

| f̄ (z, 0) + ḡ| dτ. (15)

Now using the assumption (11) and estimates similar to (13), we obtain

|ẋ(t)− ż(t)| ≤ Dε2 + Cε2
∫ t

L1
ε +Aε

|x(τ)− z(τ)| dτ + Cε2(1 + ε).

We apply the estimate (12) that has been proven before and we get the desired estimate (12).

Remark 1. The estimates (12) and (12) resemble to Hyers–Ulam stability—see [18]—but the purpose of these
estimates is to compare solutions of averaged and original differential equations.

Here we state an important lemma that is useful in the study of averaged impact systems or some
other applications. The proof of this lemma is based only on the estimates (12) and (12) and can be
used for any right-hand-side function f for which these estimates are valid.

Lemma 1. Let f be a function such that for the initial value system (2), the estimates (12) and (12) are valid,
Γ is a hyperplane defined by (6) with unit normal vector n and parameter α, L > 0 be a given constant and
w : [0, L]→ Ω be a solution of the guiding system (6) satisfying initial conditions

w (0) = a, ẇ (0) = b (16)

where a ∈ Ω \ Γ and b ∈ RN . Assume that a · n < α < w(L) · n, w intersects Γ in exactly one point x0 at
τ0 ∈ (0, L) and ẇ(τ0) · n > 0.

Then there exist positive constants ε0 and B such that for all ε ∈ (0, ε0], the solution xε of initial value
problem (10) with aε = a and bε = b intersects Γ at exactly one point xε

(
tε
ε

)
, there holds xε

(
L
ε

)
· n > α,

ẋε

(
tε
ε

)
· n > 0 and the following inequalities are true

∣∣∣∣ tε

ε
− τ0

ε

∣∣∣∣ ≤ εB,
∣∣∣∣xε

(
tε

ε

)
− x0

∣∣∣∣ ≤ Bε and
∣∣∣∣ẋε

(
tε

ε

)
− εẇ(τ0)

∣∣∣∣ ≤ Bε2.

Proof. Denote zε the solution of Equation (5) satisfying the initial conditions (9). Fix ε ∈ (0, ε0]. Due to
the assumption, zε intersects Γ at exactly one point x0 = zε

( τ0
ε

)
. Denote

u(t) := xε(t) · n and v
(

t
ε

)
:= zε

(
t
ε

)
· n = w(t) · n.

Due to the assumption on w, we know that v(0) < α < v
(

L
ε

)
and v attains the value α only at one

time τ0. Due to the assumption, there exist some δ, β > 0 such that ẇ(t) · n ≥ 2β for t ∈ (τ0 − δ, τ0 + δ)

or v̇
( t

ε

)
≥ 2εβ. The estimate (12) implies that u̇

( t
ε

)
≥ εβ for ε0 > 0 sufficiently small.

Let C be the constant from (12) and we fix some A > C
β Then we have

v
(

τ0 + εA
ε

)
− v

(τ0

ε

)
=
∫ τ0+εA

ε

τ0
ε

v̇(τ) dτ ≥ Aβε; (17)

then, the last estimate together with (12) yield

u
(

τ0 + εA
ε

)
≥ α + (Aβ− C)ε ≥ α + Dε for ε ∈ (0, ε0]. (18)
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Recall that ε0 > 0 is sufficiently small and fixed in (18), while ε ∈ (0, ε0] is a parameter.
Similarly, we obtain

u
(

τ0 − εA
ε

)
≤ α− Dε for ε ∈ (0, ε0]. (19)

The estimates (18) and (19) show that there exists some tε ∈ (τ0 − εA, τ0 + εA) such that
v
(

tε
ε

)
= α which means that xε intersects Γ at some time tε

ε . Moreover, the point xε

(
τ0−εA

ε

)
lies in Γ−

and xε

(
τ0+εA

ε

)
in Γ+. If we lower ε0 then the estimate (12) implies that dist

(
Γ, xε

([
0, τ0−εA

ε

]))
> 0

and dist
(

Γ, xε

([
τ0+εA

ε , L
ε

]))
> 0 which means that xε

([
0, τ0−εA

ε

])
⊂ Γ− and xε

([
τ0+εA

ε , L
ε

])
⊂ Γ+.

Hence xε intersects Γ at exactly one time tε
ε .

Till now we proved that tε ∈ (τ0 − εA, τ0 + εA) and this is equivalent to
∣∣∣ tε

ε −
τ0
ε

∣∣∣ ≤ A.
In the following, we will find out that some better estimation is actually true. Since τ0 is the intersection
time for w and tε

ε is for u we can write

α = w(τ0) · n = u
(

tε

ε

)
. (20)

Note that the function u defined on [τ0− δ, τ0 + δ] is increasing and Aε ≤ δ for some ε0 sufficiently
small. Then tε ∈ (τ0 − δ, τ0 + δ), i.e., tε is close enough to τ0 and it is possible to apply the inverse
function u−1 to the equality (20) and obtain

ϕ(ε) := εu−1(α) = tε.

Recall that ϕ depends on parameter ε, more precisely, ϕ(ε) = ε(xε · n)−1 (α). We know that due
to the C2 smoothness of the right-hand side in (2), the function ϕ is C2 smooth and ϕ(ε) = τ0 + κε +

λε2 +O(ε2) as ε → 0+. On the other hand, from the estimate (12) we see that u
( τ0

ε

)
− α = O(1).

Since u−1 is continuous, there holds τ0
ε − u−1 (α) = τ0

ε −
tε
ε = O(1). Hence

O(ε) = τ0 − tε = κε + λε2 +O(ε2),

consequently κ = 0 and we proved the first estimate in (1).
Now we prove the second estimate in (1). Observe that the derivative żε

( t
ε

)
is bounded; its bound

depends only on the initial value b and is independent of ε and t. This follows easily from an equation
similar to (14). Hence the estimate (12) implies the uniform Lipschitz continuity of xε. Thus, due to
(12) and the first inequality in (1), the following holds:∣∣∣∣xε

(
tε

ε

)
− x0

∣∣∣∣ ≤ ∣∣∣∣xε

(
tε

ε

)
− xε

(τ0

ε

)∣∣∣∣+ ∣∣∣xε

(τ0

ε

)
− zε

(τ0

ε

)∣∣∣ ≤ Cε, (21)

which was required.
The third estimate in (1) can be proven similarly to the second one. First, one has to prove

the uniform Lipschitz continuity of zε by using an equation similar to (14). Then the desired estimate
follows from (12) and the first inequality in (1).

Remark 2. The value of L > 0 in Lemma 1 is finite. In general, L cannot be equal to ∞; otherwise, a solution,
if one exists, may be unstable. However, one can find several very interesting results in Chapter 5 of [13]
regarding case L = ∞.

Now we are ready to state and prove the following theorem concerning the relationship between
solutions of an impact system and the corresponding guiding system. The theorem is actually
a consequence of Lemma 1 and Theorem 1. This is the main result of this paper that extends
averaging principles in [3,9,13] to second order differential equations with impacts.
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Theorem 2. Let f , Γ, n, α, L > 0 be as in Lemma 1, and w : [0, L]→ Ω be a solution of the guiding system
associated with the impact problem (8) satisfying initial conditions (16). Assume that w starts in Γ−; i.e.,
a · n < α, w impacts on Γ in exactly one point x0 at τ0 ∈ (0, L); it holds ẇ(τ0)

− · n > 0 and reflects back to
Γ− in direction ẇ(τ0)

′ in sense of the reflection law (7) at point w(τ0) ∈ Γ.
Then there exist positive constants ε0, C and a time tε ∈ (0, L) such that for all ε ∈ (0, ε0], the solution

xε of the impact initial value problem (8) starts in Γ−, impacts on Γ at point xε

(
tε
ε

)
∈ Γ and reflects back to

Γ−. Moreover, the following inequalities are true

|xε(t)− w(εt)| ≤ Cε for t ∈
[

0,
L
ε

]
, (22)

and

|ẋε(t)− εẇ(εt)| ≤ Cε2 for t ∈
[

0,
L
ε

]
\
[

min{τ0, tε}
ε

,
max{τ0, tε}

ε

]
. (23)

Remark 3. If, e.g., τ0 < tε for fixed ε > 0, then obviously, the estimate (23) cannot be true for t ∈
[

τ0
ε , tε

ε

]
if ε

is sufficiently small. Due to the assumption ẇ(τ0)
− · n > 0, the solution w takes at τ0 a completely different

direction equal to the reflection vector of ẇ(τ0)
−.

Proof. Let w be the solution of system (8). Then due to the assumptions, w touches Γ at the point w(τ0)

and reflects back to Γ−. We define v as the local solution of problem

v̈ = f̄ (v, 0),
v(0) = w(τ0),
v̇(0) = ẇ(τ0)

−.

Since ẇ(τ0)
− · n > 0 it is clear that there exists δ > 0 such that v(t) ∈ Γ+ for t ∈ (0, δ). Observe

that the function

u(t) =

{
w(t), t ∈ [0, τ0],

v(t− τ0), t ∈ (τ0, τ0 + δ],

is the solution of the equation (6) with initial conditions (16) and satisfies the assumptions of Lemma 1.
Hence there exists ε0 > 0 such that for all ε ∈ (0, ε0], the solution x1,ε :

[
0, τ0+δ

ε

]
→ Ω of initial value

problem (10) intersects Γ at exactly one time tε
ε with tε ∈ (0, τ0 + δ).

Fix ε > 0. From Lemma 1, we know that there holds ẋ1,ε

(
tε
ε

)
· n > 0. Thus, the vector ẋ1,ε

(
tε
ε

)
is

transversal to Γ and we can define a local solution x2,ε : [0, s]→ Ω of equation (2). Let the initial value

x2,ε(0) be equal to x1,ε

(
tε
ε

)
and ẋ2,ε(0) be the reflection vector of ẋ1,ε

(
tε
ε

)
due to the reflection law (7).

In the following, we will assume that τ0 ≤ tε. We define a function

xε(t) =

x1,ε(t), t ∈
[
0, tε

ε

]
,

x2,ε

(
t− tε

ε

)
, t ∈

(
tε
ε , tε

ε + s
]

.

It is clear that xε is a solution of impact system (8). We are yet to prove the estimates (22) and (23).
The validity of the estimates (22) and (23) for t ∈

[
0, τ0

ε

)
follows immediately from Theorem 1 and

for t ∈
(

tε
ε , tε

ε + s
]

from (1), due to Lemma 1 and Theorem 1. Using similar argument as in the proof

of Theorem 1, we conclude that s = L−tε
ε and so x

([
0, L

ε

])
⊂ Ω. The estimate (22) for t ∈

[
τ0
ε , tε

ε

]
follows from the Lipschitz continuity of w, xε and from the first inequality in (1).

Remark 4. Since deriving the optimal value of positive constants ε0, C, and a computation of tε in Theorem 2
would lead to awkward and messy formulas, we do not go into details in this paper.
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4. Example

We consider a second order differential equation

ẍ = ε2(−x− x3 + cos 2πt), (24)

with impact wall
x = 1. (25)

Thus, we have N = 1, n = 1 and α = 1 in (6). Clearly, T = 1 and the guiding system (6) is
as follows

ẅ = −w− w3. (26)

This equation is called Duffing’s equation of a hard spring ([19], Section 5.2). Its solution has
the form

ww0(t) = w0cn(
√
(1 + w2

0)t, k(w0)), ww0(0) = w0 < 0, ẇ(0) = 0 (27)

where cn is a Jacobi elliptic function with modulus

k(w0) = −
w0√

2 + 2w2
0

.

Note that the functions (27) are periodic with periods

T(w0) =
4K(k(w0))√

1 + w2
0

where K(k) is the complete elliptic integral of the first kind. To get impact (25), we need w0 ≤ −1.
When w0 = −1, we have a periodic grazing impact solution [20] (see Figure 1), so this solution w−1(t)
is just touching the impact wall at (1, 0) for τ0(−1) = T(−1)

2 =
√

2K
(

1
4

)
≈ 2.38401.

-1.0 -0.5 0.5 1.0
w

-1.0

-0.5

0.5

1.0

w


Figure 1. Periodic grazing impact solution of (25) and (26).

For w0 < −1, the impact time τ0 from Theorem 2 is given by w(τ0) = 1, which means to solve

w0cn(
√
(1 + w2

0)τ0, k(w0)) = −1,

so

τ0(w0) =
cn−1(−w−1

0 , k(w0))√
1 + w2

0

. (28)

One can numerically check that τ0(w0) is increasing with limw0→−∞ τ0(w0) = 0 (see Figure 2).
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-20 -15 -10 -5
w0

0.0

0.5

1.0

1.5

2.0

2.5

τ

Figure 2. The graph of (28) on [−20,−1].

For any w0 < −1, we have periodic impact solutions; see Figure 3.

-2.0 -1.5 -1.0 -0.5 0.5 1.0
w

-4

-2

2

4

w


Figure 3. Impact solution of (25) and (26) for w0 = −2.

Consequently, we can apply Theorem 2 to (24) with (25) for any fixed L ∈ (τ0(w0), T(w0)],
w0 < −1, to see that x(t) is O(ε)-near to ww0(εt) on

[
0, L

ε

]
for any ε > 0 sufficiently small. This means

that we know O(ε)-approximately dynamics of (24) with (25) on a time scale [0, O(1/ε)] for any ε > 0
sufficiently small.

Similarly, we can investigate a weakly nonlinear and weakly periodically forced inverted
pendulum with double impacts [21].

5. Conclusions

An averaging method was developed for weakly nonlinear and periodic second order differential
equations subjected to impacts. Asymptotic estimation was derived between solutions of original and
averaged equations. In this paper, we focused on the theoretical justification of the averaging principle
for periodic second order differential equations and its applications to impact systems. The next step
would be a numerical implementation of the above approach and method. This means an extension
of averaging method for first order difference equations (see [22–24]) to second order ones, as in this
paper, and a combination with discrete numerical schemes [25]. Another further direction would be
dealt with more general discontinuous cases.
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18. Liu, K.; Fečkan, M.; Wang, J.R. A fixed point approach to the Hyers-Ulam stability of Caputo-Fabrizio

fractional differential equations. Mathematics 2020, 8, 647. [CrossRef]
19. Lawden, D.F. Elliptic Functions and Applications; Springer: New York, NY, USA, 1989.
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