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1. Introduction

In addition to the Lyapunov stability criteria for the linear system of ordinary differential equations
ẋ = A(t)x, ẋ = dx/dt, t ≥ t0, x ∈ Rn, other types of conditions guaranteeing the stability often are
useful. Typically these are sufficient conditions that are proved by application of the Lyapunov stability
theorems [1], or the Gronwall–Bellman inequality [2], though sometimes either technique can be used,
and sometimes both are used in the same proof of a stability criterion. One of these useful results for
stability analysis of the linear systems is the following theorem ([3], p. 132, Theorem 8.2).

Theorem 1. For the linear system ẋ = A(t)x, t ≥ t0 denote the largest and smallest point-wise eigenvalues of
AT(t) + A(t) by λmax(t) and λmin(t). Then for any t0 and x(t0) the solution x(t) satisfies

‖x(t0)‖I e
1/2

t∫
t0

λmin(τ)dτ

≤ ‖x(t)‖I ≤ ‖x(t0)‖I e
1/2

t∫
t0

λmax(τ)dτ

, t ≥ t0. (1)

Throughout the whole paper it is assumed that a matrix function A(·) : [t0, ∞) → Rn×n

is continuous.
This theorem belongs, as a special case, to the wider family of sufficient conditions for stability of

the linear systems based on the “logarithmic measure” of the system matrices ([4], p. 58, Theorem 3)
taking into account the fact that for the Euclidean norm ‖·‖I the “logarithmic measure” of a real matrix
A is just the largest eigenvalue of 1

2 (AT + A) ([4], p. 41).
Our aim in this paper is to prove more useful theorem based on the eigenvalues idea for estimating

asymptotics of the solutions of uniformly asymptotically stable linear systems. The theory is illustrated
by two examples.
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Notations, Definitions and Preliminary Results

Let Rn denotes n-dimensional vector space over the real numbers, x = (x1, . . . , xn)T ∈ Rn

is a column vector and the symbol ‖·‖ refers to any (real) vector norm on Rn. Specifically, for a
symmetric, positive definite real matrix H, we define the weight H vector norm ‖x‖H ,

(
xT Hx

)1/2.
Obviously, for H = I (I = the n× n identity matrix) we obtain the Euclidean norm, ‖x‖I . For the
matrices H ∈ Rn×n as an operator norm we will use an induced norm. Particularly, for weight H
vector norm in Rn, the norm ‖M‖H =

(
λmax

[
M̂T M̂

])1/2 where M̂ = H1/2MH−1/2, as was proved
in [5]. Further, λi

[
M
]
, i = 1, . . . , n denotes the eigenvalues of the matrix M, λmin

[
M
]
= min{λi

[
M
]

:
i = 1, . . . , n} and, analogously, λmax

[
M
]
= max{λi

[
M
]

: i = 1, . . . , n}.
In this paper we will deal solely with the uniformly asymptotically (⇔ uniformly exponentially)

stable linear systems ([1], Theorem 4.11), ([3], Theorem 6.13); for the different types of stability and
their relation, see e.g., [6].

Definition 1 ([1,3]). The linear system ẋ = A(t)x is called uniformly asymptotically stable (UAS) if there
exist finite positive constants γ, λ such that for any t0 and x(t0) the corresponding solution satisfies

‖x(t)‖ ≤ γ ‖x(t0)‖ e−λ(t−t0), t ≥ t0.

We recall that the transition matrix of the linear system ẋ = A(t)x is Φ(t, τ) , X(t)X−1(τ),
where X(t), t ≥ t0 is a fundamental matrix of the system. In particular, if A(t) = A is an n× n constant
matrix, then the transition matrix is Φ(t, τ) = eA(t−τ).

For the following theorem see, e.g., ([1], p. 156, Theorem 4.11) or ([3], p. 102, Theorem 6.7).

Theorem 2. The linear system ẋ = A(t)x is uniformly asymptotically stable if and only if there exist finite
positive constants γ, λ such that

‖Φ(t, τ)‖ ≤ γe−λ(t−τ)

for all t, τ such that t ≥ τ ≥ t0.

Theorem 1 leads to proof of some simple criterion based on the eigenvalues of AT(t) + A(t)
([3], p. 133, Corollary 8.4); for a wider context in connection with so called “logarithmic measure” of
the matrices see also, e.g., [7–9].

Corollary 1. If there exist real positive constants γ̃, λ̃ such that the largest point-wise eigenvalue of
AT(t) + A(t) satisfies

t∫
τ

λmax
[
AT(s) + A(s)

]
ds ≤ γ̃− λ̃(t− τ) (2)

for all t, τ such that t ≥ τ ≥ t0, then the linear system ẋ = A(t)x is UAS.

This criterion is quite conservative in the sense that many UAS linear systems do not satisfy the
condition (2) as demonstrated by the following example.

Example 1. The system ẋ = Ax, t ≥ 0 with

A =

(
0

√
10

−
√

10 −2

)

is UAS because λ1,2
[
A
]
= −1 ± 3 i. Because λmax[AT + A] = 0, there does not exist a pair of positive

constants γ̃, λ̃ such that the inequality (2) holds for all t ≥ τ ≥ 0, and so Corollary 1 is not applicable in this
particular case. A straightforward computation by Theorem 1 gives
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‖x(0)‖I e−2t ≤ ‖x(t)‖I ≤ ‖x(0)‖I

for all t ≥ 0.

Despite such examples the eigenvalue idea is not to be completely rejected. In Theorem 3 below
we prove for the UAS linear systems ẋ = A(t)x the stronger result, generalizing Theorem 1 in such
a way as to be meaningfully applicable to every UAS system.

2. Main Results

The main results of this paper are summarized in the following theorem generalizing ([5],
Theorem 3.1) to the linear time-varying systems. Recall that although its claims are mainly of theoretical
relevance, providing the necessary conditions for exponential stability, within its framework without
giving details and exact mathematical explanation the important results regarding convergent systems
were derived in [10]; for the definitions and comparisons with the notion of incremental stability see
also [11]. Moreover, this theorem provides also the lower bound on the solutions generally classified
as difficult to obtain.

Theorem 3. If the linear system ẋ = A(t)x, is UAS, where A(·) : [t0, ∞] → Rn×n is a continuous matrix
function, then there exists a continuous, symmetric and positive definite matrix function H(·) : [t0, ∞]→ Rn×n

such that every solution x(t) of the system satisfies

(
λmin[H(t)]
λmax[H(t)]

)1/2

‖x(t0)‖I e
− 1

2

t∫
t0

dτ
λmin [H(τ)]

≤ ‖x(t)‖I

≤
(

λmax[H(t)]
λmin[H(t)]

)1/2

‖x(t0)‖I e
− 1

2

t∫
t0

dτ
λmax [H(τ)]

for all t ≥ t0, (3)

and there exist two positive real constant γ, λ such that

λmax
[
H(t)

]
≤ γ2

2λ
.

In particular, if A(t) is bounded, ‖A(t)‖I ≤ L for all t ≥ t0, then

1
2L
≤ λmin

[
H(t)

]
≤ λmax

[
H(t)

]
≤ γ2

2λ
. (4)

Proof. Set

H(t) =
∞∫

t

ΦT(τ, t)Φ(τ, t)dτ, t ≥ t0.

In particular, if A(t) = A is a constant matrix, we have

H =

∞∫
0

eATτeAτdτ.

We begin with the analysis of the properties of the matrix function H(·). Observe that H(t) is
symmetric and positive definite because such is the integrand ΦT(τ, t)Φ(τ, t) ([12], Corollary 14.2.10).
The use of

• The Rayleigh–Ritz ratio [13],
• The fact that ‖Φ(τ, t)‖I =

∥∥ΦT(τ, t)
∥∥

I because every matrix and its transpose have the same
characteristic polynomial ([12], Lemma 21.1.2),
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• The fact that spectral radius of the matrix ΦT(τ, t)Φ(τ, t) is less or equal to any induced matrix
norm

∥∥ΦT(τ, t)Φ(τ, t)
∥∥ , and

• Theorem 2

yields for every fixed t ≥ t0 and x ∈ Rn that

xT H(t)x ≤ λmax

[ ∞∫
t

ΦT(τ, t)Φ(τ, t)dτ

]
‖x‖2

I ≤

∥∥∥∥∥∥
∞∫

t

ΦT(τ, t)Φ(τ, t)dτ

∥∥∥∥∥∥
I

‖x‖2
I

≤ ‖x‖2
I

∞∫
t

‖Φ(τ, t)‖2
I dτ ≤ ‖x‖2

I

∞∫
t

γ2e−2λ(τ−t)dτ =
γ2

2λ
‖x‖2

I ,

where γ, λ are the constants given by Theorem 2. As a consequence, λmax
[
H(t)

]
≤ γ2

2λ because there
is equality xT H(t)x = λmax

[
H(t)

]
‖x‖2

I for x equal to the eigenvector corresponding to λmax
[
H(t)

]
.

To prove the left inequality in (4) we will need the following result.

Lemma 1. If ‖A(t)‖I ≤ L for all t ≥ t0, then the solution x(t) of the ẋ = A(t)x satisfies

‖x(t0)‖I e−L(t−t0) ≤ ‖x(t)‖I ≤ ‖x(t0)‖I eL(t−t0), t ≥ t0. (5)

Observe that the right-hand side inequality is uninteresting for UAS systems, every estimate of
‖x(t)‖I would grow exponentially as t→ ∞.

Proof. The claim of the lemma follows immediately from the chain of inequalities

λmax
[
AT(t) + A(t)

]
≤
∥∥∥AT(t) + A(t)

∥∥∥
I
≤ 2 ‖A(t)‖I ≤ 2L,

λmin
[
AT(t) + A(t)

]
≥ −

∥∥∥AT(t) + A(t)
∥∥∥

I
≥ −2 ‖A(t)‖I ≥ −2L,

and (1).

Now if φ(τ) is a solution of dφ/dτ = A(τ)φ starting at (t, x), that is, φ(τ) = Φ(τ, t)x, then for all
x ∈ Rn one gets

xT H(t)x = xT
( ∞∫

t

ΦT(τ, t)Φ(τ, t)dτ

)
x =

∞∫
t

φT(τ)φ(τ)dτ

and, by (5),
∞∫

t

‖φ(τ)‖2
I dτ ≥ ‖x‖2

I

∞∫
t

e−2L(τ−t)dτ =
1

2L
‖x‖2

I .

Arguing analogously as above, λmin
[
H(t)

]
≥ 1

2L and the inequality (4) is proved.
Now we are ready to prove the remaining part of the theorem, namely the inequality (3).

Suppose x(t) is a solution of ẋ = A(t)x corresponding to a given t0 and nonzero x(t0). Let us
formally consider a time-varying weighted vector norm of the solutions ‖x(t)‖H(t) . Then

d
dt
‖x(t)‖2

H(t) =
d
dt

[
xT(t)H(t)x(t)

]
= xT(t)

[
AT(t)H(t) + Ḣ(t) + H(t)A(t)

]
x(t). (6)

Now we show that the function H(t) satisfies time-varying Lyapunov equation (e.g., [1,3,14])

Ḣ(t) + AT(t)H(t) + H(t)A(t) = −I.
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Using the Equations ([15], p. 70) and ([3], p. 62)

d
dt

Φ(τ, t) = −Φ(τ, t)A(t),

d
dt

ΦT(τ, t) = −AT(t)ΦT(τ, t)

and
Φ(τ = ∞, t) = 0 (⇐ UAS), Φ(t, t) = I,

we obtain that

Ḣ(t) =
∞∫

t

ΦT(τ, t)
[

∂

∂t
Φ(τ, t)

]
dτ +

∞∫
t

[
∂

∂t
ΦT(τ, t)

]
Φ(τ, t)dτ − I

= −
∞∫

t

ΦT(τ, t)Φ(τ, t)dτ A(t)− AT(t)
∞∫

t

ΦT(τ, t)Φ(τ, t)dτ − I

= −AT(t)H(t)− H(t)A(t)− I.

Returning to (6), d
dt ‖x(t)‖

2
H(t) = −‖x(t)‖

2
I . Dividing through by ‖x(t)‖2

H(t) which is positive at
each t ≥ t0, the Rayleigh–Ritz ratio yields

− 1
λmin

[
H(t)

] ≤ d
dt ‖x(t)‖

2
H(t)

‖x(t)‖2
H(t)

= − ‖x‖2
I

xT H(t)x
≤ − 1

λmax
[
H(t)

] .

Integrating from t0 to any t ≥ t0 one gets

−
t∫

t0

dτ

λmin
[
H(τ)

] ≤ ln ‖x(t)‖2
H(t) − ln ‖x(t0)‖2

H(t) ≤ −
t∫

t0

dτ

λmax
[
H(τ)

] .

Exponentiation followed by taking the nonnegative square root gives for all t ≥ t0 the inequality

‖x(t0)‖H(t) e
− 1

2

t∫
t0

dτ
λmin [H(τ)]

≤ ‖x(t)‖H(t) ≤ ‖x(t0)‖H(t) e
− 1

2

t∫
t0

dτ
λmax [H(τ)]

. (7)

Finally using “norm conversion rule” between different weight H1 and H2 (recall H1, H2 are
symmetric and positive definite matrices)

λmin[H1]

λmax[H2]
≤
‖x‖2

H1

‖x‖2
H2

=
xT H1x
xT H2x

≤ λmax[H1]

λmin[H2]
for x 6= 0,

we obtain the inequality (3).

Remark 1. Combining ([5], Lemma 2.3, Theorem 2.1) and ([4], p. 58, Theorem 3) we obtain

‖x(t0)‖H̃ e
−

t∫
t0

dτ
λmin [H̃]

≤ ‖x(t)‖H̃ ≤ ‖x(t0)‖H̃ e
−

t∫
t0

dτ
λmax [H̃]
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which is a special case of (7) if H(t) = H̃/2. Observe that H̃ in [5] satisfies the Lyapunov
equation AT H̃ + AH̃ = −2I. Thus, Theorem 3 represents generalization to the time-varying systems.
Moreover, because x(t) = Φ(t, t0)x(t0), and from the properties of induced matrix norm we have

(
λmin[H(t)]
λmax[H(t)]

)1/2

e
− 1

2

t∫
t0

dτ
λmin [H(τ)]

≤ ‖Φ(t, t0)‖I ≤
(

λmax[H(t)]
λmin[H(t)]

)1/2

e
− 1

2

t∫
t0

dτ
λmax [H(τ)]

for t ≥ τ ≥ t0. The general idea of the proof follows, e.g., the proof of ([3], p. 100, Theorem 6.4) and so the
proof is omitted here. The last inequality generalizes ([5], Theorem 3.1) to the linear time-varying systems.
Moreover, we get also the lower bound on the solutions.

3. Simulation Results

Example 2 (Example 1 revisited). Let us consider again the system from Example 1. One gets

eAt =
e−t

3

(
3 cos 3 t + sin 3 t

√
10 sin 3 t

−
√

10 sin 3 t 3 cos 3 t− sin 3 t

)

and

H =

∞∫
0

eATτeAτdτ =

(
3/5

√
10/20√

10/20 1/2

)
.

Since the eigenvalues of H are λmin
[
H
]

= 11/20 −
√

11/20, λmax
[
H
]

= 11/20 +
√

11/20,
the inequality (7) for t0 = 0 becomes

‖x(0)‖H e−
10t

11−
√

11 ≤ ‖x(t)‖H ≤ ‖x(0)‖H e−
10t

11+
√

11 , (8)

where ‖x‖H =
(
3x2

1/5 +
(√

10/10
)

x1x2 + x2
2/2

)1/2. The result of simulation in the Matlab environment
demonstrating effectiveness of the developed approach is depicted in Figure 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 1. Solution of the linear time-invariant system from Example 1 and 2 with an initial state
x(0) = (x1(0), x2(0))T = (−4, 3)T (the solid line) and the lower and upper bound given by (8)
(the dashed lines).

Example 3. For the linear time-varying system ẋ = A(t)x, t ≥ 0 with

A(t) =

(
−1 e−t

0 −3

)

the fundamental matrix of the system (see [6]) is

X(t) =

(
e−t e−t

3 −
e−4 t

3
0 e−3 t

)
(see, [6]).
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The eigenvalues of AT(t)A(t), t ≥ 0 satisfy

λ1
[
AT(t)A(t)

]
=

e−2 t

2
− e−2 t

2

[ (
4 e2 t + 1

) (
16 e2 t + 1

) ]1/2

+ 5→ 1

as t→ ∞,

λ2
[
AT(t)A(t)

]
=

e−2 t

2
+

e−2 t

2

[ (
4 e2 t + 1

) (
16 e2 t + 1

) ]1/2

+ 5→ 9

as t → ∞; λ1
[
AT(t)A(t)

]
< λ2

[
AT(t)A(t)

]
for all t ≥ 0 and ‖A(0)‖I = 3.1796,

‖A(t)‖I =
(
λmax

[
AT(t)A(t)

])1/2 → 3 (monotonically) as t → ∞ and therefore the constant L in (4) is
equal to ‖A(0)‖I = 3.1796 (Figure 2).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

3

3.05

3.1

3.15

Figure 2. Time development of the ‖A(t)‖I , t ≥ 0.

The transition matrix is

Φ(t, τ) = X(t)X−1(τ) =

(
eτ−t e−t

3 −
e3 τ−4 t

3
0 e3 τ−3 t

)

and the matrix function H(t) from Theorem 3 is

H(t) =
∞∫

t

ΦT(τ, t)Φ(τ, t)dτ =

(
1
2

e−t

10
e−t

10
e−2 t

40 + 1
6

)

with the eigenvalues

λmin
[
H(t)

]
=

e−2 t

80
− e−2 t

240

[
336 e2 t + 1600 e4 t + 9

]1/2

+
1
3
→ 1/6 (9)

λmax
[
H(t)

]
=

e−2 t

80
+

e−2 t

240

[
336 e2 t + 1600 e4 t + 9

]1/2

+
1
3
→ 1/2 (10)

as t→ ∞ (Figure 3).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.162

0.163

0.164

0.165

0.166

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

0.505

0.51

0.515

0.52

0.525

0.53

Figure 3. Time development of the functions λmin(H(t)) and λmax(H(t)), t ≥ 0.
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The integrals in (3) can be calculated explicitly

−1
2

t∫
0

dτ

λmin
[
H(τ)

] = 3
2

ln (ρ− 1)− 5
2

ln

(
2
√

6
5
− ρ +

7
5

)

+
1
2

ln
(
(ρ + 1)

(
2
√

6− ρ + 5
))

+ 3.2375954052

and

−1
2

t∫
0

dτ

λmax
[
H(τ)

] = 3
2

ln (ρ + 1)− 5
2

ln

(
2
√

6
5

+ ρ +
7
5

)

+
1
2

ln
(
(ρ− 1)

(
2
√

6 + ρ + 5
))

+ 2.1447615497,

where

ρ =

(
100 e2 t + 3

√
6 + 21

2

100 e2 t − 3
√

6 + 21
2

)1/2

.

The result of simulation—the solution of system and the lower and upper bounds—are depicted in the
Figure 4.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5

Figure 4. Solution of the linear time-varying system from Example 3 with initial state x(0) = (2,−1)T

(the solid line) and the lower and upper bounds given by (3), (9) and (10) (the dashed lines).

Analyzing the properties of matrix function H(t) it is obvious that

λmin
[
H(0)

]
=

1
80
−
√

1945
240

+
1
3
(≈ 0.1621) ≤ λmin

[
H(t)

]
,

λmax
[
H(t)

]
≤ λmax

[
H(0)

]
=

1
80

+

√
1945
240

+
1
3
(≈ 0.5296)

and

(−t/2)
(
λmin

[
H(0)

])−1
= −3.0845t ≤ −1

2

t∫
0

1/λmin
[
H(τ)

]
dτ,

(−t/2)
(
λmax

[
H(0)

])−1
= −0.9441t ≥ −1

2

t∫
0

1/λmax
[
H(τ)

]
dτ

for every t ≥ 0. Thus we obtain more readable approximate estimate of the solutions

0.5531 ‖x(0)‖I e−3.0845t ≤ ‖x(t)‖I ≤ 1.8075 ‖x(0)‖I e−0.9441t
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and Theorem 2 is satisfied for

γ =

(
λmax[H(0)]
λmin[H(0)]

)1/2

=

(
0.5296
0.1621

)1/2
= 1.8075,

and
λ = (1/2)

(
λmax

[
H(0)

])−1
= 0.9441.

4. Conclusions

In this paper we established the lower and upper bounds of all solutions to uniformly
asymptotically stable linear time-varying systems from the knowledge of one fundamental matrix
solution. Our approach is based on the eigenvalue idea and a time-varying metric on the state space
Rn. The simulation experiments demonstrates the effectiveness of the proposed method for estimating
solutions, generally classified as “difficult to obtain”, especially in the case of the lower bounds.
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