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Abstract: Recently, block backward differentiation formulas (BBDFs) are used successfully for solving
stiff differential equations. In this article, a class of hybrid block backward differentiation formulas
(HBBDFs) methods that possessed A–stability are constructed by reformulating the BBDFs for the
numerical solution of stiff ordinary differential equations (ODEs). The stability and convergence of
the new method are investigated. The methods are found to be zero-stable and consistent, hence
the method is convergent. Comparisons between the proposed method with exact solutions and
existing methods of similar type show that the new extension of the BBDFs improved the stability
with acceptable degree of accuracy.
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1. Introduction

The aim of this paper is to develop a class hybrid multistep block method based on block backward
differentiation formulas (BBDFs) for the numerical solution of first order ordinary differential equations
(ODEs) of the form:

y′(x) = f (x, y(x)), y(x0) = y0, x ∈ [a, b] (1)

where f is continuous and second variable Lipschitzian over its existence domain, so that the existence
of Solution (1) is guaranteed.

Equation (1) frequently arise in many applications in science and engineering. Many of these
applications often results to stiff ODEs. Stiff systems are found in description of atmospheric phenomena,
chemical reactions occurring in living species, chemical kinetics (e.g., explosions), engineering control
systems, electronic circuits, lasers, mechanics, and molecular dynamics [1–3]. Several other examples
are given in [4]. There is no unique definition of stiffness. Various definition describing stiffness are
given in the literature [4–6]. The first identification of stiff equations as a special class of problems
is due to a chemist [5]. He states that stiff equations are equations where certain implicit methods,
in particular BDF, perform better, usually tremendously better, than explicit ones [6] and systems
containing very fast components as well as very slow components while [4] states that “stiff problems
are problems for which explicit methods don’t work”.

In many practical applications, the difficulty associated with stiff ODEs is in choosing an efficient
integration scheme since the choice of numerical methods is imposed by numerical stability. Besides
numerical stability, the efficiency of numerical methods also depends on whether the method is explicit
or implicit. Explicit schemes require the least amount of computation per time step but the allowable
time step is severely restricted by the stability requirements, see [7]. Furthermore, the implementation

Mathematics 2020, 8, 914; doi:10.3390/math8060914 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-8924-0681
http://dx.doi.org/10.3390/math8060914
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/6/914?type=check_update&version=2


Mathematics 2020, 8, 914 2 of 19

of implicit method can be very costly in terms of computer time since solvers for stiff equations require
the evaluation of the Jacobian, J = ∂ f /∂y.

The most widely used method to numerically solve (1) which is stiff are the backward differentiation
formulas (BDFs) which is popularly known as the Gear method, see [8,9]. Recently, a great deal
of effort has been proposed in the literature in the development of block methods for solving (1).
The block methods are extensively discussed by [10–15] and are proven to be efficient in improving
the accuracy and reduced the number of function evaluation. This approach is extended to various
type by increasing the order, varies the step size and orders with extended stability region. All the
methods, mentioned above, produced solutions at multiple points simultaneously at single iteration.
Independent solution at selected grid points was generated using block method without overlapping.
Despite the success of the block approach, there has been no guidance or recommendation on the choice
of the most suitable numbers of interpolation points or the suitable order in improving the accuracy
with lesser computational time when solving a very stiff problem. In deriving a good numerical
method, the challenge is to increase the stability region while maintaining or even improving efficiency.
Therefore, our objective is to construct a new class of hybrid methods by extending the existing block
methods by [10] to address the setbacks associated with solving stiff ODEs. The improvement is
obtained by considering [10] with a suitable hybrid points to find numerical solutions of (1).

The paper is organized as follows: in Section 2, we present the formulation of the hybrid method
by presenting a review of classical block methods and hybrid block methods from the literature;
Section 3 includes the analysis of the new method in terms of order, zero stability, and region of stability.
Implementation of the method is discussed in Section 4. In Section 5 numerical tests are performed
on first-order differential equation problems possessing stiffness and comparisons with MATLAB
solvers are applied in providing numerical solutions for initial value problems of ordinary differential
equations. Finally, conclusions are presented in Section 6.

2. Derivation of the Method

Various attempts have been proposed for solving (1) using block methods ranging from constant
step size to variable step size, fully implicit and then to diagonally implicit methods, see [10,12,13].
We will illustrate the idea of computation in block by reviewing the theory of block methods available
in the literature as follows.

2.1. Review of Block Methods

The idea of using block methods for solving ODEs was initially developed by [14,15] followed
by [16]. Later, [17] proposed block methods in the form of predictor-corrector for solving special
second-order ODEs of type non-stiff while [18] proposed parallel solution of solving (1). Adopting the
definition by [17], the general form of a block method can be expressed as follows:

Definition 1. A k—block, r—point block method is a matrix of finite difference equation of the form

Ym =
k∑

j=1

AiYm−i + h
k∑

i=0

BiFm−i (2)

where Ym and Fm are defined by Ym = (yn, yn+1, . . . , yn+r−1)
T, Fm = ( fn, fn+1, . . . , fn+r−1)

T. All the A′i s
and B′i s are properly chosen r× r matrix coefficients and m = 0, 1, 2, . . . represent the block number, and n = mr
is the first step number of the mth block and r is the block size.

The method derived in the form of (2) has the advantage of producing r—point solutions
simultaneously at each application. Lagrange Interpolation was adopted by some authors to generate
continuous linear multistep method, among them are [11–13].
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2.2. Hybrid Block Method

Recently many authors have extended existing block method by adding hybrid points which
is also referred as off-step points to find numerical solutions for (1). Some of the works on hybrid
methods when solving (1) has been developed by see [19–22]. From [21], the focus is on the construction
of explicit hybrid methods with nonnegative coefficients, which are a class of multistep methods
incorporating a function evaluation at an off-step point. In [22], researchers derived a two-step hybrid
methods for y′′ = f (x, y), with oscillatory or periodic solutions, through the usage of the exponential
fitting technique. Recently, [23] proposed a method by considering two intermediate points and the
approximation of the true solution by an adequate polynomial and imposing collocation conditions.
However, there are some drawbacks ranging from choosing the suitable order of the method and the
number of off-step points to be included as hybrid methods.

2.3. Formulation of Hybrid Block

The method derived in this section is a hybrid block multistep method. The formulation is based
on the existing BBDFs by adding off-step points in the formula that possessed A–stability property
can be generated. The formulas are commonly derived by using an integrated form of the ODEs and
replacing the integrals with interpolating polynomial. We consider the grid points,(xn, yn), (xn+1, yn+1)

and (xn+2, yn+2) with h = xn+1 − xn and three off-step-points (xn−1/2, yn−1/2), (xn+1/2, yn+1/2), and
(xn+3/2, yn+3/2) as illustrated in Figure 1.
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The basic idea to formulate hybrid block backward differentiation formulas (HBBDF) is to replace
f (x, y(x)) in (1) by an interpolating polynomial Pk(x) of degree k. Assume the solution y(x) to (1) is
approximated by the polynomial Pk(x):

y(x) � Pk(x) (3)

The polynomial associated with interpolating points (xn−1/2, yn−1/2), (xn, yn), (xn+1/2, yn+1/2),
(xn+1, yn+1), (xn+3/2, yn+3/2) and (xn+2, yn+2) is given by:

P(x) =
(x−xn)(x−xn+1/2)(x−xn+1)(x−xn+3/2)(x−xn+2)

(xn−1/2−xn)(xn−1/2−xn+1/2)(xn−1/2−xn+1)(xn−1/2−xn+3/2)(xn−1/2−xn+2)
yn−1/2

+
(x−xn−1/2)(x−xn+1/2)(x−xn+1)(x−xn+3/2)(x−xn+2)

(xn−xn−1/2)(xn−xn+1/2)(xn−xn+1)(xn−xn+3/2)(xn−xn+2)
yn

+
(x−xn−1/2)(x−xn)(x−xn+1)(x−xn+3/2)(x−xn+2)

(xn+1/2−xn−1/2)(xn+1/2−xn)(xn+1/2−xn+1)(xn+1/2−xn+3/2)(xn+1/2−xn+2)
yn+1/2

+
(x−xn−1/2)(x−xn)(x−xn+1/2)(x−xn+3/2)(x−xn+2)

(xn+1−xn−1/2)(xn+1−xn)(xn+1−xn+1/2)(xn+2−xn+3/2)(xn+1−xn+2)
yn+1

+
(x−xn−1/2)(x−xn)(x−xn+1/2)(x−xn+1)(x−xn+2)

(xn+3/2−xn−1/2)(xn+3/2−xn)(xn+3/2−xn+1/2)(xn+3/2−xn+1)(xn+3/2−xn+2)
yn+3/2

+
(x−xn−1/2)(x−xn)(x−xn+1/2)(x−xn+1)(x−xn+3/2)

(xn+2−xn−1/2)(xn+2−xn)(xn+2−xn+1/2)(xn+2−xn+1)(xn+2−xn+3/2)
yn+2

(4)
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Substituting x = xn+1 + sh in (4), we obtain:

P(xn+1 + sh) = (s+1)(s+1/2)(s)(s−1/2)(s−1)
(−15/4) yn−1/2

+
(s+3/2)(s+1/2)(s)(s−1/2)(s−1)

(3/2) yn

+
(s+3/2)(s+1)(s)(s−1/2)(s−1)

(−3/2) yn+1/2

+
(s+3/2)(s+1)(s+1/2)(s−1/2)(s−1)

(3/8) yn+1

+
(s+3/2)(s+1)(s+1/2)(s)(s−1)

(−3/2) yn+3/2

+
(s+3/2)(s+1)(s+1/2)(s)(s−1/2)

(15/4) yn+2

(5)

Generally, if we differentiate (3), yields the following:

y′(x) = f (x, y(x)) = P′k(x) (6)

In our case, we differentiate (5) once with respect to s at the point x = xn+1 , gives the following:

P′(xn+1+sh) = h fn+1

=
(
−

4
3 s4 + s2

−
1

15

)
yn−1/2 +

(
20
3 s4 + 8

3 s3
− 7s2

−
1
3 s + 1

2

)
yn

+
(
−

40
3 s4
−

32
3 s3 + 14s2 + 16

3 s− 2
)
yn+1/2 +

(
40
3 s4
− 10s3 + 16s2

− 10s + 2
3

)
yn+1

+
(
−

20
3 s4
−

32
3 s3 + s2 + 16

3 s + 1
)
yn+3/2 +

(
4
3 s4 + 8

3 s3 + s2
−

1
3 s− 1

10

)
yn+2

(7)

Upon substituting s = −1/2, 0, 1/2, 1 respectively into (7) we obtained the coefficients for the
HBBDF method as follows:

yn+1/2 = 3
20 yn−1/2 −

3
2 yn + 3yn+1 −

3
4 yn+3/2 +

1
10 yn+2 −

3
2 h fn+1/2

yn+1 = 1
10 yn−1/2 −

3
4 yn + 3yn+1/2 −

3
2 yn+3/2 +

3
20 yn+2 +

3
2 h fn+1

yn+3/2 = − 3
65 yn−1/2 +

4
13 yn −

12
13 yn+1/2 +

24
13 yn+1 −

12
65 yn+2 +

6
13 h fn+3/2

yn+2 = 12
137 yn−1/2 −

75
137 yn +

200
137 yn+1/2 −

300
137 yn+1 +

300
137 yn+3/2 +

30
137 h fn+2


(8)

3. Analysis of the Proposed Method

In this section our objective is directed towards the discussion of the properties of the HBBDF
method which includes order of the new method, zero stability and consistency which are the necessary
conditions for convergence of the method. Region of absolute stability of the HBBDF will also be
studied to determine its suitability of solving stiff ODEs.

3.1. Order

We start by defining the order and error constant as given in [24].

Definition 2. (Order)
The linear multistep method associated with the linear difference operator are said to be of order p if

C0 = C1 = . . . = Cp+1 = 0 and Cp+1 , 0.

Definition 3. (Error constant)
The term Cp+1 is called the error constant and it implies that the local truncation error is given by:

tn+k = Cp+2hp+2y(p+2)(xn) + O
(
hp+3

)
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In order to check the consistency of the method, first, we will determine the order of the method.
By rearranging the equation in (8), we get the following equation:

−
3

20 yn−1/2 +
3
2 yn + yn+1/2 − 3yn+1 +

3
4 yn+3/2 −

1
10 yn+2 = − 3

2 h fn+1/2

−
1

10 yn−1/2 +
3
4 yn − 3yn+1/2 + yn+1 +

3
2 yn+3/2 −

3
20 yn+2 = 3

2 h fn+1

3
65 yn−1/2 −

4
13 yn +

12
13 yn+1/2 −

24
13 yn+1 + yn+3/2 +

12
65 yn+2 = 6

13 h fn+3/2

−
12

137 yn−1/2 +
75

137 yn −
200
137 yn+1/2 +

300
137 yn+1 −

300
137 yn+3/2 + yn+2 = 30

137 h fn+2


(9)

Based on the matrix form of Equation (2), Equation (9) can be written as follows:
0 0 −3/20 3/2
0 0 −1/10 3/4
0 0 3/65 −4/13
0 0 −12/137 75/137




yn−3/2
yn−1

yn−1/2
yn


+


1 −3 3/4 −1/10
−3 1 3/2 −3/20

12/13 −24/13 1 12/65
−200/137 300/137 −300/137 1




yn+1/2
yn+1

yn+3/2
yn+2


= h


−3/2 0 0 0

0 3/2 0 0
0 0 6/13 0
0 0 0 30/137




fn+1/2
fn+1

fn+3/2
fn+2

.
with

A0 = A1 =


0
0
0
0

, A2 =


−3/20
−1/10
3/65
−12/137

, A3 =


3/2
3/4
−4/13
75/137

, A4 =


1
−3

12/13
−200/137

, A5 =


−3
1

−24/13
300/137

,

A6 =


3/4
3/2

1
−300/137

, A7 =


−1/10
−3/20
12/65

1

,

B0 = B1 = B2 = B3 =


0
0
0
0

, B4 =


−3/2

0
0
0

, B5 =


0

3/2
0
0

, B6 =


0
0

6/13
0

, B7 =


0
0
0

30/137


We defined the linear difference operator L associated with the hybrid BBDFs method in Equation (2)

which is given by [20] as:

L[y(x), h] =
7∑

j=0

[
A jy(x + jh/2) − hB jy′(x + jh/2)

]
(10)
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where A j and B j are constants. Expanding y(x + jh/2) and y′(x + jh/2) in Equation (10) using Taylor
series at x, and collecting the coefficients of h, we obtained:

L[y(x), h] =
7∑

j=0
A j

[
y(x) + ( jh/2)

1! y′(x) + ( jh/2)2

2! y(2)(x) + ( jh/2)3

3! y(3)(x) + · · ·
]

−

7∑
j=0

hB j

[
y′(x) + ( jh/2)

1! y(2)(x) + ( jh/2)2

2! y(3)(x) + ( jh/2)3

3! y(4)(x) + · · ·
]

=
7∑

j=0

[
A j

]
y(x) + 1

2

7∑
j=0

[
jA j − 2B j

]
hy′(x) + 1

4

7∑
j=0

[
1
2! j2A j − 2 1

1! jB j
]
h2y(2)(x)

+ 1
8

7∑
j=0

[
1
3! j3A j − 2 1

2! j2B j
]
h3y(3)(x) + . . .

(11)

By letting the collected terms of y(x), y′(x), y′′(x) in (11) as Cp where p = 0, 1, 2 . . . , we can
determine the order of the method and the error constant of the method:

C0 =
7∑

j=0
A j = A0 + A1 + A3 + . . .+ A7 = 0

=


0
0
0
0

+


0
0
0
0

+

−3/20
−1/10
3/65
−12/137

+


3/2
3/4
−4/13
75/137

+


1
−3

12/13
−200/137

+


−3
1

−24/13
300/137


+


3/4
3/2

1
−300/137

+

−1/10
−3/20
12/65

1

 =


0
0
0
0


C1 =

7∑
j=0

(
jA j

)
−2

7∑
j=0

B j = 0

= (0.A0 + 1.A1 + 2A2 + 3A3 + 4A4 + 5A5 + 6A6 + 7A7) − 2(B0 + B1 + B2 + B3

+B4 + B5 + B6 + B7)

= 2


−3/20
−1/10
3/65
−12/137

+ 3


3/2
3/4
−4/13
75/137

+ 4


1
−3

12/13
−200/137

+ 5


−3
1

−24/13
300/137

+ 6


3/4
3/2

1
−300/137


+7


−1/10
−3/20
12/65

1

− 2



−3/2

0
0
0

+


0
3/2

0
0

+


0
0

6/13
0

+


0
0
0

30/137


 =


0
0
0
0
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C2 =
7∑

j=0

( j2A j)
2! −2

7∑
j=0

(
jB j

)
= 0

= 1
2!

(
02A0 + 12A1 + 22A2 + 32A3 + 42A4 + 52A5 + 62A6 + 72A7

)
− 2(0.B0

+1.B1 + 2B2 + 2B3 + 4B4 + 5B5 + 6B6 + 7B7)

= 1
2


4


−3/20
−1/10
3/65
−12/137

+ 9


3/2
3/4
−4/13
75/137

+ 16


1
−3

12/13
−200/137

+ 25


−3
1

−24/13
300/137



+36


3/4
3/2

1
−300/137

+ 49


−1/10
−3/20
12/65

1




−2

4


−3/2

0
0
0

+ 5


0

3/2
0
0

+ 6


0
0

6/13
0

+ 7


0
0
0

30/137


 =


0
0
0
0



(12)

C3 =
7∑

j=0

( j3A j)
3! − 2

7∑
j=0

(
j2B j
2!

)
=


0
0
0
0


C4 =

7∑
j=0

( j4A j)
4! − 2

7∑
j=0

(
j3B j
3!

)
=


0
0
0
0


C5 =

7∑
j=0

( j5A j)
5! − 2

7∑
j=0

( j4B j)
4! =


0
0
0
0


C6 =

7∑
j=0

( j6A j)
6! − 2

7∑
j=0

( j5B j)
5! =


−1/20
−1/20
2/65
−10/137


We obtained C6 , 0, hence the HBBDF is of order 5. Since the HBBDF method is of order p = 5 ≥ 1,

it is consistent by definition. The error constant is just C6 above.

3.2. Convergence of the Derived Method

In this section we investigate the convergence of the HBBDFs. The convergence of a
numerical method is generally determined by analysing consistency and zero stability given in
the following theorem.

Theorem 1. (Convergence):
The necessary and sufficient conditions for the linear multistep method to be convergent are that it be both

consistent and zero-stable.

Proof of Theorem 1. See [24].
In order to check the consistency of the method, we use the following definition given by [24]. �
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Definition 4. (Consistent)
The linear multistep method is said to be consistent if it has the order of p ≥ 1.
Hence, HBBDF in (8) is consistent. Next, we discuss the zero stability associated with HBBDFs.

Definition 5. (Zero stable)
The block method is zero stable provided the roots R j, j = 1(1)k of the first characteristics polynomial ρ(R)

specified as:

ρ(R) = det

 k∑
i=0

A(i)R(k−i)

 = 0, A(0) = −I

This satisfies
∣∣∣R j

∣∣∣ ≤ 1, and for those roots with
∣∣∣R j

∣∣∣ = 1, the multiplicity must not exceed two.

We find the stability polynomial of HBBDF by applying linear test problem

y′ = f = λy, λ < 0, (13)

into Equation (8) yields,

yn+1/2 = 3
20 yn−1/2 −

3
2 yn + 3yn+1 −

3
4 yn+3/2 +

1
10 yn+2 −

3
2 hλn+1/2

yn+1 = 1
10 yn−1/2 −

3
4 yn + 3yn+1/2 −

3
2 yn+3/2 +

3
20 yn+2 +

3
2 hλn+1

yn+3/2 = − 3
65 yn−1/2 +

4
13 yn −

12
13 yn+1/2 +

24
13 yn+1 −

12
65 yn+2 +

6
13 hλn+3/2

yn+2 = 12
137 yn−1/2 −

75
137 yn +

200
137 yn+1/2 −

300
137 yn+1 +

300
137 yn+3/2 +

30
137 hλn+2


(14)

Next, we transformed Equation (14) into matrix form as below:


1 + 3

2 hλ −3 3/4 −1/10
−3 1− 3

2 hλ 3/2 −3/20
12/13 −24/13 1− 6

13 hλ 12/65
−200/137 300/137 −300/137 1− 30

137 hλ





yn+1/2

yn+1

yn+3/2

yn+2



=


0 0 3

20 −
3
2

0 0 1
10 −

3
4

0 0 −
3

65
4

13
0 0 12

137 −
75

137





yn−3/2

yn−1

yn−1/2

yn
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with

A =


1 + 3

2 hλ −3 3/4 −1/10
−3 1− 3

2 hλ 3/2 −3/20
12/13 −24/13 1− 6

13 hλ 12/65
−200/137 300/137 −300/137 1− 30

137 hλ

,

B =


0 0 3

20 −
3
2

0 0 1
10 −

3
4

0 0 −
3

65
4

13
0 0 12

137 −
75

137

,

Ym−1 =



yn−3/2

yn−1

yn−1/2

yn



and Ym =



yn+1/2

yn+1

yn+3/2

yn+2


which is equivalent to AYm = BYm−1.

Denote ĥ = hλ, the associated stability polynomial, ρ
(
R, ĥ

)
of the HBBDF method is obtained by

computing det(AR− B),

ρ
(
R, ĥ

)
= − 17109

1781 R4 + 16938
1781 R3 + 19251

1781 R4ĥ− 38709
7124 R4ĥ2 + 2727

1781 R4ĥ3
−

405
1781 R4ĥ4

+ 171
1781 R2 + 63

1781 R2ĥ + 27
7124 R2ĥ2 + 15246

1781 R3ĥ + 10341
3562 R3ĥ2 + 81

137 R3ĥ3
(15)

Substitute ĥ = 0 into (15) to find the roots of the stability polynomial,

ρ(R, 0) = −
17109
1781

R4 +
16938
1781

R3 +
171

1781
R2

Next, we solve for R as follows:

−
17109
1781 R4 + 16938

1781 R3 + 171
1781 R2 = 0.

This yields the roots 0, 0, 1, and −0.00999. All of the roots have modulus less than one which
satisfied the zero stable conditions given in definition 5. Thus, we conclude that HBBDF is zero stable.
We have shown that the HBBDF method is consistent and zero stable. From Theorem 1, we conclude
the HBBDF converged.

3.3. Stability of Mathematical Components

Before we construct the region of absolute stability of the HBBDF method derived in Section 2,
we give some definitions adopt from [25].

Definition 6. (A–stable)
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A numerical method is said to be A–stable if the left-hand half-plane with Re
(
ĥ
)
< 0, ĥ = hλ, is contained

by the absolute stability regions of the method used. This means that the stability region covers the entire negative
left half plane.

Definition 7. (A(α)−stable)
A method is said to be A(α)−stable if it is stable for all λ such that π− α ≤ arg(λ) ≤ π+ α. The boundary

of the stability region is given by the set of points determined by R = eiθ, 0 ≤ θ ≤ 2π for which |R| ≤ 1.
Note that the set of values of λ for which the method is stable is called the stability domain. Below we present the
stability region which corresponds to the HBBDF method drawn in the hλ plane. The region of absolute stability
is shown in Figure 2.
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The shaded region represents the set of points for which |R| < 1. Evidently, from Figure 2,
this region of stability includes all the negative real axis which corresponds to an A–stable method.
Next, we make comparison of stability region of HBBDF with the existing BBDF of the same order.
The region for both methods are presented in Figure 3.
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(BBDF, 5).

Looking at the stability regions in Figure 3, we see that the HBBDF is A–stable while the BBDF(5)
is A(α) stable. The absolute instability interval of both methods is tabulated in Table 1.
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Table 1. Instability boundaries for HBBDF versus BBDF (5).

Method Interval of Instability

HBBDF (0, 9.14)

BBDF(5) (0, 10.80)

From Table 1, the interval of instability for HBBDF is smaller than BBDF (5).

4. Implementation of HBBDF Method

In this section, we discussed the application of Newton’s method in the implementation of the
HBBDF method for integrating stiff ODEs. Let i denote the iteration, y[i+1]

n+ j denote the (i + 1)th iterative

value of yn+ j and e[i+1]
n+ j denote as the differences between [i]th and [i + 1]th iteration values of yn+ j

as follows:
e[i+1]

n+ j = y[i+1]
n+ j − y[i]n+ j, j = 1/2, 1, 3/2, 2 (16)

Newton’s iteration for the HBBDF takes the following form,

y[i+1]
n+ j = y[i]n+ j −

[
F j

(
y[i]n+ j

)][
F′j

(
y[i]n+ j

)]−1
, j = 1/2, 1, 3/2, 2

where
F 1

2
= yn+ 1

2
− 3yn+1 +

3
4 yn+ 3

2
−

1
10 yn+2 +

3
2 h f p

n+ 1
2
− η 1

2

F1 = −3yn+ 1
2
+ yn+1 +

3
2 yn+ 3

2
−

3
20 yn+2 −

3
2 h f p

n+1 − η1

F 3
2
= 12

13 yn+ 1
2
−

24
13 yn+1 + yn+ 3

2
+ 12

65 yn+2 −
6

13 h f p
n+ 3

2
− η 3

2

F2 = − 200
137 yn+1/2 +

300
137 yn+1 −

300
137 yn+3/2 + yn+2 −

30
137 h f p

n+2 − η2

η1/2, η1, η3/2 and η2 are the back-values as follows,

η1/2 = 3
20 yn−1/2 −

3
2 yn , η1 = 1

10 yn−1/2 −
3
4 yn, η3/2 = − 3

65 yn−1/2 +
4

13 yn,

η2=
12

137 yn−1/2 −
75

137 yn.
(17)

Therefore, from Equations (16) and (17), we get the following equation to calculate the
approximation, [

F′j

(
y[i]n+ j

)]
e[i+1]

n+ j = −
[
F j

(
y[i]n+ j

)]
, j = 1/2, 1, 3/2, 2 (18)

and the matrix form of Equation (19) becomes,
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1 + 3
2 h

∂ f [i]1/2

∂y[i]1/2

−3 3/4 −1/10

−3 1− 3
2 h

∂ f [i]1

∂y[i]1

3/2 −3/20

12/13 −24/13 1− 6
13 h

∂ f [i]3/2

∂y[i]3/2

12/65

−200/137 300/137 −300/137 1− 30
137 h

∂ f [i]2

∂y[i]2





e[i+1]
n+1/2

e[i+1]
n+1

e[i+1]
n+3/2

e[i+1]
n+2


=


−1 3 −3/4 1/10
3 −1 −3/2 3/20

−12/13 24/13 −1 −12/65
200/137 −300/137 300/137 −1




y[i]n+1/2

y[i]n+1

y[i]n+3/2

y[i]n+2


+h


−3/2 0 0 0

0 3/2 0 0
0 0 6/13 0
0 0 0 30/137




f [i]n+1/2

f [i]n+1

f [i]n+3/2

f [i]n+2

+

η1/2
η1

η3/2
η2



(19)

The code developed will be using the PECE (predict–evaluate–correct–evaluate) mode. f p
n+ j denote

the predicted value of fn+ j. For example, to approximate point yn+1 using PECE mode, a predictor

equation for yn+1 is denoted as y[0]n+1 which can be expressed as follows,

Predict (P) y[0]n+1 = yn−2 − 5yn−3/2 + 10yn−1 − 10yn−1/2 + 5yn

y[0]n+2 = 35yn−2 − 160yn−3/2 + 280yn−1 − 224yn−1/2 + 70yn

Evaluate (E) y[1]n+1 = 1
10 yn−1/2 −

3
4 yn + 3yn+1/2 −

3
2 yn+3/2 +

3
20 f

(
xn+2, y[0]n+2

)
+ 3

2 h f
(
xn+1, y[0]n+1

)
Correct (C) y[2]n+1 = 1

10 yn−1/2 −
3
4 yn + 3yn+1/2 −

3
2 yn+3/2 +

3
20 f

(
xn+2, y[1]n+2

)
+ 3

2 h f
(
xn+1, y[1]n+1

)
Evaluate (E) y[3]n+1 = 1

10 yn−1/2 −
3
4 yn + 3yn+1/2 −

3
2 yn+3/2 +

3
20 f

(
xn+2, y[2]n+2

)
+ 3

2 h f
(
xn+1, y[2]n+1

)
5. Numerical Results and Discussion

In this section, we present some numerical results in order to illustrate the performance of the
new method in solving stiff ODEs. Three sets of stiff problems are tested under various step sizes
10−2, 10−4, and 10−6. The numerical results will be compared with stiff solver ode15s in MATLAB and
with the existing BBDF by [26] of the same order. For error calculations, the error formula is given by:

E(xn) = yn − y(xn) (20)

In (20), y(xn) is the exact solution for the problem considered and yn is the computed solution.

Problem 1. Source [9]

y′ = −100(y− x) + 1, y(0) = 1, 0 ≤ x ≤ 10,λ = −100

Exact Solution: y(x) = e−100x + x.
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Problem 2. Source [27]

y′ = −20y + 20 sin x + cos x, y(0) = 1, 0 ≤ x ≤ 2,λ = −20

Exact Solution: y(x) = sin x + e−20x.

Problem 3. Source [28]
y′1 = 42y2 − 43y1, y1(0) = 8, 0 ≤ x ≤ 1,

y′2 = −8y2 + 7y1 , y2(0) = 1,

λ1 = −1, λ2 = −50

Exact Solution:
y1(x) = 2e−x + 6e−50x,

y2(x) = 2e−x
− e−50x.

The evaluation of maximum error, MAXE is computed as follows,

MAXE = max
1≤x≤TS

(
max
1≤i≤N

E(xi)
)

with N is the number of equations, and TS is the total number of step. The results obtained by HBBDF
are summarized in the following Tables 2–7 and Figures 4–10.

Table 2. Numerical results for Problem 1.

h Method MAXE

10−2
BBDFO(5) 3.17747 × 10−2

BBDF(5) 2.47875 × 10−2

ode15s 8.36936 × 10−3

10−4
BBDFO(5) 6.24695 × 10−5

BBDF(5) 2.56073 × 10−4

ode15s 1.66333 × 10−4

10−6
BBDFO(5) 6.41334 × 10−9

BBDF(5) 2.69869 × 10−8

ode15s 2.75058 × 10−6

Table 3. Solutions for Problem 1.

x Exact Solution New HBBDF BBDF(5) ode15s

0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000

0.1 0.1000453999 0.1000478886 0.1000503772 0.0994412895

0.2 0.2000000021 0.2000025021 0.2000050021 0.2054339092

0.3 0.3000000000 0.3000025000 0.3000050000 0.2978049816

0.4 0.4000000000 0.4000025000 0.4000050000 0.4000000064

0.5 0.5000000000 0.5000025000 0.5000050000 0.4999999998

0.6 0.6000000000 0.6000025000 0.6000050000 0.5841506756

0.7 0.7000000000 0.7000025000 0.7000050000 0.7000000008

0.8 0.8000000000 0.8000025000 0.8000050000 0.8000000000

0.9 0.9000000000 0.9000025000 0.9000050000 0.8999999998

1.0 1.0000000000 1.0000025000 1.0000050000 0.9775502641
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Table 4. Numerical results for Problem 2.

h Method MAXE

10−2
HBBDF 1.49360×10−2

BBDF(5) 3.56801×10−2

ode15s 8.36909×10−3

10−4
HBBDF 2.55244×10−6

BBDF(5) 1.06868×10−5

ode15s 1.66322×10−4

10−6
HBBDF 2.56588×10−10

BBDF(5) 1.07993×10−9

ode15s 2.75074×10−6

Table 5. Approximated solutions for Problem 2.

x Exact HBBDF BBDF(5) ode15s

0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000

0.1 0.2351686998 0.2351644208 0.2351601419 0.2333555364

0.2 0.2169849697 0.2169865041 0.2169880385 0.2147135216

0.3 0.2979989589 0.2980012232 0.2980034877 0.2974433131

0.4 0.3897538049 0.3897560908 0.3897583767 0.3847970907

0.5 0.4794709385 0.4794731302 0.4794753219 0.4768615143

0.6 0.5646486176 0.5646506806 0.5646527437 0.5590250294

0.7 0.6442185187 0.6442204308 0.6442223429 0.6493777179

0.8 0.7173562034 0.7173579452 0.7173596869 0.7100931674

0.9 0.7833269248 0.7833284789 0.7833300329 0.7919088442

1.0 0.8414709869 0.8414723376 0.8414736884 0.8405372397

Table 6. Numerical results for Problem 3.

h. Method MAXE

10−2
HBBDF 2.37429×10−1

BBDF(5) 1.97128×10−1

ode15s 5.02584×10−2

10−4
HBBDF 9.49700×10−5

BBDF(5) 3.94490×10−4

ode15s 9.96987×10−4

10−6
HBBDF 9.62257×10−9

BBDF(5) 4.04965×10−8

ode15s 1.81196×10−5
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Table 7. Approximated solutions for Problem 3.

x Exact HBBDF BBDF(5) ode15s

y1(x)

0.0 8.0000000000 8.0000000000 8.0000000000 8.0000000000

0.1 1.8501025180 1.8500929407 1.8500833638 1.8545518680

0.2 1.6377339060 1.6377297781 1.6377256504 1.6351481569

0.3 1.4816382760 1.4816345725 1.4816308682 1.4734657183

0.4 1.3406401040 1.3406367529 1.3406334013 1.3406398807

0.5 1.2130613190 1.2130582869 1.2130552542 1.2092413617

0.6 1.0976232720 1.0976205282 1.0976177841 1.0707188433

0.7 0.9931706076 0.9931681247 0.9931656418 1.0240545524

0.8 0.8986579282 0.8986556817 0.8986534350 0.8959146678

0.9 0.8131393194 0.8131372867 0.8131352538 0.8195251399

1.0 0.7357588824 0.7357570430 0.7357552036 0.7357585308

y2(x)

0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000

0.1 1.8029368890 1.8029332071 1.8029295250 1.8046095992

0.2 1.6374161060 1.6374120183 1.6374079303 1.6348536019

0.3 1.4816361350 1.4816324314 1.4816287274 1.4734642088

0.4 1.3406400900 1.3406367384 1.3406333868 1.3406401219

0.5 1.2130613190 1.2130582868 1.2130552541 1.2092413372

0.6 1.0976232720 1.0976205282 1.0976177841 1.0976231642

0.7 0.9931706076 0.9931681247 0.9931656418 0.9931705121

0.8 0.8986579282 0.8986556816 0.8986534350 0.8959145584

0.9 0.8131393194 0.8131372867 0.8131352538 0.8195251888

1.0 0.7357588824 0.7357570430 0.7357552036 0.7357585295
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𝑦2(𝑥) 
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Figure 8. Accuracy curves for Problem 3.
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Figure 10. The graph of exact and approximated solutions for Problem 3 of y2(x).

Tables 3, 5 and 7 gives the comparison of numerical solution at ten points equally spaced in the
interval of integration to exact solution when h = 10−6.

Here we observe that the graph of the approximated solution and the graph of the exact solution
coincide with each other.
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6. Conclusions

In this paper we have derived a class of hybrid BBDF for the numerical integration of stiff ordinary
differential equations. By restricting the method to three off-step points, the results presented in show
that the stability region for the HBBDF with three off-step points are larger than the stability of the
BBDF method without the off-step points even though both methods are of the same order. We also
establish the convergence of the new method by investigate the zero-stability and consistency which
are the necessary conditions for convergence. Our numerical experiments support the conclusion
that HBBDF solve the problem with acceptable efficiency when compared to MATLAB solver, ode15s,
especially when we are integrating at smaller step sizes. It is recommended to extend the HBBDF to a
variable step size variable order, VSVO code.
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version of the manuscript.
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Abbreviations

HBBDF Hybrid Block Backward Differentiation Formula of order 5
BBDF(5) Fifth Order Block Backward Differentiation Formula by [26]
ode15s Variable order solver based on numerical differentiation formulas, NDFs.
h Step size
MAXE Maximum global error
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