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Abstract: In this paper, we consider unsaturated filtration in heterogeneous porous media with
rough surface topography. The surface topography plays an important role in determining the flow
process and includes multiscale features. The mathematical model is based on the Richards’ equation
with three different types of boundary conditions on the surface: Dirichlet, Neumann, and Robin
boundary conditions. For coarse-grid discretization, the Generalized Multiscale Finite Element
Method (GMsFEM) is used. Multiscale basis functions that incorporate small scale heterogeneities
into the basis functions are constructed. To treat rough boundaries, we construct additional basis
functions to take into account the influence of boundary conditions on rough surfaces. We present
numerical results for two-dimensional and three-dimensional model problems. To verify the obtained
results, we calculate relative errors between the multiscale and reference (fine-grid) solutions for
different numbers of multiscale basis functions. We obtain a good agreement between fine-grid and
coarse-grid solutions.

Keywords: generalized multiscale finite element method; unsaturated flow

1. Introduction

Prediction of flows in unsaturated media is an important problem in many areas of science and
engineering. In this paper, we consider the problem in heterogeneous porous media with rough
surface topography. These problems occur in many applications related to the vadose (or unsaturated)
zone. Although unsaturated flow conditions occur below the surface, the surface topography plays
an important role in determining the flow process. Typical surface topography includes micro-scale
features, such as roughness, as well as macro-scale features, such as hills, slopes, and valleys. It has
been shown by previous studies on hydrological processes (e.g., [1–3]) that the surface topography
exerts varying control over soil hydrological processes at different spatial scales. It has been
demonstrated [2,4] that the topography plays a key role in redistribution of the surface water content
into runoff and infiltration, especially at the hillslope (kilometer) scales. However, thus far, studies on
mathematical modeling of the infiltration process have ignored the existence of surface topography and
assumed a flat top boundary for the domain. While this is easier to solve mathematically, the physical
reality is not matched by this assumption. In this study, we aim to address this mismatch by considering
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an uneven top boundary. For unsaturated infiltration, we formulate a mathematical model that is
based on the Richards’ equation [5–7].

To describe the flow with rough boundaries, we consider three different types of
boundary conditions: Dirichlet boundary conditions (represent head values on the boundary),
Neumann boundary conditions (represent the flux on the boundary), and Robin boundary conditions
(represent mixed boundary conditions). In addition, we consider our problem posed in highly
heterogeneous media, where the conductivity varies in space [8–10]. Therefore, we are faced with the
problem of a large number of unknowns of the discrete system. This leads to large computational
resources. For this reason, we design a model reduction technique based on homogenization and
multiscale approaches. Homogenization methods give macroscopic laws and parameters that are
based on local computations. These approaches are often based on a priori assumptions [11,12].
However, the multiscale methods have a two-way information exchange between micro- and
macro-scales.

Many multiscale methods can be used for such types of problems; for example, the multiscale
finite element method (MsFEM) [9], heterogeneous multiscale methods (HMM) [13], multiscale finite
volume method (MsFVM) [14], generalized multiscale finite element method (GMsFEM) [15,16],
constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) [17], and
nonlocal multi-continuum method (NLMC) [18–20]. Multiscale methods can be applied to unsaturated
filtration problems. For example, in [21–23], the authors present a multiscale methods for unsaturated
flow in heterogeneous media. An upscaling method for saturated flow is described in [24].

In this paper, we solve an unsaturated filtration model with rough boundaries using the
Generalized Multiscale Finite Element Method (GMsFEM) [9,25–27]. In GMsFEM, there are online and
offline stages. In the offline stage, we construct an offline space computing multiscale basis functions
by solving a local spectral problem on the snapshot space in each local domain. When we construct
a snapshot space, we will not take into account the rough boundary of the computational domain.
The main concept of snapshot space construction is that the snapshot vectors represent essential
solution properties and give a good approximation space. Snapshot space helps to better take into
account heterogeneities with high contrast, as well as complex heterogeneities, such as channels and
fractures. To treat rough boundaries, we calculate additional basis functions to take into account the
influence of top boundary conditions. Multiscale basis functions can describe small heterogeneities on
the micro-scale and provide a good approximation on the macro-scale. This work is a continuation
of the following works [23,28,29], where we used a similar technique of model reduction. In [28],
we consider a multi-continuum filtration problem with GMsFEM; in [23], we describe a GMsFEM
for an unsaturated filtration problem in heterogeneous media; in [29], we present a GMsFEM for
a multi-continuum unsaturated filtration problem in fractured media. The GMsFEM framework that
is presented in this paper is based on the listed works. We are expanding our approach with additional
basis functions. In [30], we used a similar approach with additional basis functions for Robin boundary
conditions.

Non-homogeneous boundary conditions occur in many applications. For example, pore-scale
modeling and simulations of reactive flows have many applications in many branches of science,
such as biology, physics, chemists, geomechanics, and geology [31–33]. We have already considered
the GMsFEM for unsaturated flow filtration with inhomogeneous Dirichlet boundary conditions in the
following papers [23,29]. In problems with rough boundaries, it is better to construct additional basis
functions to take into account the influence of inhomogeneous boundary conditions. In this paper,
we are going to investigate this approach for three types of boundary conditions.

We will present numerical results to illustrate the performance of our method. In our numerical
results, we consider both two-dimensional and three-dimensional examples. In all cases, the surface
boundaries are taken to be heterogeneous with smaller variations compared to the coarse-grid size.
All numerical results show a good accuracy.
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The paper is organized as follows. In Section 2, we present a mathematical model for unsaturated
filtration in heterogeneous porous media with rough boundary conditions on the surface. In Section 3,
we consider an approximation on the fine grid. In Section 4, we present the GMsFEM algorithm and
construction of additional basis functions for rough boundaries. In Section 5, we present numerical
results for two-dimensional and three-dimensional cases. We conclude the paper with a summary and
future directions.

2. Mathematical Model

For the modeling of unsaturated flow in porous media, we use a mathematical model that is
described by the nonlinear Richard’s equation in the domain Ω,

∂Θ(p)
∂t

−∇ · (k(x, p)∇p)− ∂k(x, p)
∂z

= 0, x ∈ Ω, t > 0, (1)

with the initial condition
p = p0(x), x ∈ Ω, t = 0. (2)

In the above equation, Θ is the water content representing the volume fraction of the porous
medium filled with fluid, k is the unsaturated hydraulic conductivity tensor, and z represents the
influence of the gravity on the flow processes.

The nonlinear coefficient k(x, p) and the water content Θ are related by the following constitutive
relations (Havercamp model):

Θ(p) =
A(Θs −Θr)

A+ |p|B
+ Θr, k(x, p) = ks(x)

S
S + |p|B

+ Θr, (3)

where ks(x) is a heterogeneous coefficient modeling the saturated hydraulic conductivity and A, S , B,
Θr, Θs are the Haverkamp model coefficients.

We consider domains with rough boundaries. To be specific, we consider a domain Ω, illustrated
in Figure 1. We consider three types of boundary conditions on the top boundary ΓD:

1. Dirichlet boundary condition:
p = p1, x ∈ ΓD,

2. Neumann boundary condition:

−k(x, p)
∂p
∂n

= g, x ∈ ΓD,

3. Robin boundary condition:

−k(x, p)
∂p
∂n

= α(p− p2), x ∈ ΓD.

On the other part of the boundary, denoted by ΓN , we impose the zero flux boundary condition

−k(x, p)
∂p
∂n

= 0, x ∈ ΓN ,

where ΓN = ∂Ω/ΓD.
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Figure 1. Computational domain Ω with rough boundaries on the top.

3. Fine Grid Approximation

In this section, we present the fine grid discretization of (1). For the approximation of the time
derivative, we use the backward Euler method coupled with simplified approximation from the
previous time step:

Cn pn+1 − pn

τ
−∇ ·

(
kn∇pn+1

)
− ∂kn

∂z
= 0, n = 0, 1, ..., (4)

where ∂Θ(p)/∂t = C(p)∂p/∂t, C = dΘ/dp, Cn = C(pn), and kn = k(x, pn). In (4), the number τ > 0
denotes the time step size, and the superscript n denotes the value at the time t = nτ. For instance,
pn denotes the value of the solution p at the time t = nτ.

For the approximation with respect to the spatial variables, we use the standard conforming finite
element method, which is based on the following variational formulations for each type of boundary
condition. Given pn, we find pn+1 using the following formulations:

1. Dirichlet boundary condition. Find pn+1 ∈ V = {v ∈ H1(Ω) : v(x) = p1, x ∈ ΓD} such that

∫
Ω

Cn pn+1 − pn

τ
v dx +

∫
Ω

(
kn∇pn+1,∇v

)
dx−

∫
Ω

∂kn

∂z
v dx = 0, ∀v ∈ V0, (5)

where V0 = {v ∈ H1(Ω) : v(x) = 0, x ∈ ΓD}.
2. Neumann boundary condition. Find pn+1 ∈ V = H1(Ω) such that

∫
Ω

Cn pn+1 − pn

τ
v dx +

∫
Ω

(
kn∇pn+1,∇v

)
dx−

∫
Ω

∂kn

∂z
v dx +

∫
ΓD

g v ds = 0, ∀v ∈ V. (6)

3. Robin boundary condition. Find pn+1 ∈ V = H1(Ω) such that

∫
Ω Cn pn+1−pn

τ v dx +
∫

Ω

(
kn∇pn+1,∇v

)
dx−

∫
Ω

∂kn

∂z v dx +
∫

ΓD
α (p− p2) v ds = 0, ∀v ∈ V. (7)

Let Th be the fine grid with mesh size h for the domain Ω. We write the approximate solution
as follows

ph =

N f

∑
i=1

ph,iψi,

where N f is the number of interior fine grid vertices for (5) (or number of fine grid vertices for (6) and
(7)) and {ψi} are the conforming piecewise linear basis functions. Using ph = (ph,1, ph,2, ..., ph,Nh

)T

again to denote the vector of the required unknowns, we have the following matrix form for the fully
discretized system:

Sn pn+1
h − pn

h
τ

+ An pn+1
h = Fn, (8)
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where
Sn = {sn

ij}, sn
ij =

∫
Ω

Cnψi ψj dx.

The following summarize the definitions of n and Fn for each of the considered boundary
conditions:

1. Dirichlet boundary condition:

An = {an
ij}, an

ij =
∫

Ω

(
kn∇ψi,∇ψj

)
dx,

Fn = { f n
j }, f n

j =
∫

Ω

∂kn

∂z
ψj dx.

2. Neumann boundary condition:

An = {an
ij}, an

ij =
∫

Ω

(
kn∇ψi,∇ψj

)
dx,

Fn = { f n
j }, f n

j =
∫

Ω

∂kn

∂z
ψj dx−

∫
ΓD

g ψj ds.

3. Robin boundary condition:

An = {an
ij}, an

ij =
∫

Ω

(
kn∇ψi,∇ψj

)
dx +

∫
ΓD

α ψi ψj ds,

Fn = { f n
j }, f n

j =
∫

Ω

∂kn

∂z
ψj dx +

∫
ΓD

α p2 ψj ds.

4. Coarse Grid Approximation Using GMsFEM

To reduce the size of the system, we construct a coarse grid approximation using the Generalized
Multiscale Finite Element Method (GMsFEM) [9,27]. Let TH = ∪iKi be the coarse grid for
computational domain Ω with size H and Ki be the i-th coarse grid cell. We define a local domain ωi
as the union of coarse grid cells around one coarse grid vertex, i = 1, ..., Nc, and Nc is the number of
coarse grid nodes. For the construction of the multiscale space for coarse grid approximation, we solve
spectral problems in each local domain ωi, i = 1, ..., Nc to identify the most important characteristics of
the problem.

The GMsFEM consists of the offline and the online stages. The construction of snapshot space
in offline stage solves local problems for different choices of input parameters. This space is used to
construct the offline space via a spectral decomposition of the snapshot space. In many applications,
the snapshot space can avoid expensive offline space construction, for example, in problems with
a finely perforated medium. The offline space is constructed by spectral decomposition on the snapshot
space, which is based on the eigenvalue problem. The spectral decomposition allows the selection of
high-energy elements from the offline space. It chooses eigenvectors corresponding to the smallest
eigenvalues. We obtain a set of multiscale basis functions ψi

k that contain dominant information
about micro-scale heterogeneities in the local domains. In the online stage, we compute the coarse
space for an input parameter. The online space is computed via a spectral decomposition by using the
eigenvectors corresponding to the smallest eigenvalues. The online coarse space is further used to solve
the original global problem. An illustration of the GMsFEM algorithm is presented in Figure 2. We note
that our temporal discretization is unconditionally stable. Some theoretical analysis of multiscale
methods is presented in [27,34].
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For the construction of multiscale basis functions, we first generate a snapshot space Vωi
snap for

each local domain ωi. The snapshot space is constructed by solving the following local problems:

−∇ · (ks(x)∇φi
j) = 0, x ∈ ωi,

φi
j = δj, ∂ωi/ΓD,

φi
j = 0, ΓD,

(9)

where δj is the discrete delta function that takes the value 1 at the j-th fine grid node x = xj and zero
elsewhere (j = 1, ..., Ji, Ji is number of fine grid nodes on boundary ∂ωi/ΓD). Then, we can define the
snapshot space and the projection matrix on the snapshot space in local domain ωi as follows:

Vsnap,i = span{φi
1, ..., φi

Ji
}, and Rsnap,i = (φi

1, ..., φi
Ji
)T .

Note that we do not calculate snapshots for boundary ΓD, and we will construct separate basis
functions for that.

Figure 2. Illustration of the Generalized Multiscale Finite Element Method (GMsFEM) algorithm.

To obtain the multiscale basis functions, we solve a local spectral problem on the snapshot space
in the local domain ωi:

ÃΨ̃i
snap,j = λS̃Ψ̃i

snap,j, (10)

with
Ã = Rsnap,i Aωi RT

snap,i, S̃ = Rsnap,iSωi RT
snap,i,

where

Aωi = {aln}, aln =
∫

ωi

(ks(x)∇ψl ,∇ψn)dx, Sωi = {sln}, sln =
∫

ωi

ks(x)ψl ψn dx. (11)

We compute the solution of the spectral problem by Ψi
j = Rsnap,iΨ̃i

snap,j. We note that for
computation of the multiscale basis function, we use only the linear part ks(x) of coefficient k(x, p)
from (3).
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Next, we select the smallest Mi eigenvalues and use them for multiscale basis function
construction (Ψi

j, j = 1, ..., Mi). We obtain the required multiscale basis functions after multiplication
by the linear partition of unity function

ψi
j = χiΨi

j,

where χi is the standard coarse grid nodal basis function for the coarse node i in local domain ωi.
To handle rough boundary ΓD with non-homogeneous boundary conditions, we calculate

an additional basis function in local domains ωi : ∂ωi ∩ ΓD 6= ∅. We solve the following local problem:

1. Dirichlet boundary condition

−∇ · (ks(x)∇Φi) = 0, x ∈ ωi,

φi = 1, x ∈ ΓD,

φi = 0, x ∈ ∂ωi/ΓD;

(12)

2. Neumann boundary condition

−∇ · (ks(x)∇Φi) = 0, x ∈ ωi,

−ks(x)
∂Φi

∂n
= 1, x ∈ ΓD,

Φi = 0, x ∈ ∂ωi/ΓD;

(13)

3. Robin boundary condition

−∇ · (ks(x)∇Φi) = 0, x ∈ ωi,

−ks(x)
∂Φi

∂n
= α(Φi − 1), x ∈ ΓD,

Φi = 0, x ∈ ∂ωi/ΓD.

(14)

To compute additional basis functions, we multiply the solution of the local problem to the linear
partition of unity function χi ∈ ωi

φi = χiΦi.

The solutions of problems (12)–(14) are presented in Figure 3.
Finally, we construct the multiscale space

Vms = span(ψ1
1 , ..., ψ1

M1
, ...., ψNc

1 , ..., ψNc
MNc

, φ1, ..., φL)

and projection matrix
RT = (ψ1

1 , ..., ψ1
M1

, ...., ψNc
1 , ..., ψNc

MNc
, φ1, ..., φL),

where L is the number of additional basis functions, which is equal to the number of ωi : ∂ωi ∩ ΓD 6= ∅.
Finally, we construct a coarse grid approximation

Sn
c

pn+1
c − pn

c
τ

+ An
c pn+1

c = Fn
c , (15)

where Sn
c = RSnRT , An

c = RAnRT , Fn
c = RFn and the fine grid solution can be reconstructed,

pms = RT pc.
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Figure 3. Illustration of the additional multiscale basis function. Left: The solution of the problem (12).
Middle: The solution of the problem (13). Right: The solution of the problem (14).

5. Numerical Results

We present numerical results for 2D and 3D model problems with three types of boundary
conditions on the rough top boundary. We consider the following test cases:

• Two-dimensional problem in Ω = [1× 0.5] (Figure 4) with

Test 1.DBC Dirichlet boundary condition on ΓD with p1 = −20.7 and Tmax = 10−6.
Test 1.NBC Neumann boundary condition on ΓD with g = 104 and Tmax = 2 · 10−6.
Test 1.RBC Robin boundary condition on ΓD with α = 103, p2 = −20.7 and Tmax = 2 · 10−6.

• Two-dimensional problem in Ω = [1× 0.5] (Figure 5) with

Test 2.DBC Dirichlet boundary condition on ΓD with p1 = −20.7 and Tmax = 10−6.
Test 2.NBC Neumann boundary condition on ΓD with g = 104 and Tmax = 2 · 10−6.
Test 2.RBC Robin boundary condition on ΓD with α = 103, p2 = −20.7 and Tmax = 2 · 10−6.

• Three-dimensional problem in Ω = [1× 0.5× 0.5] (Figure 6) with

Test 3.DBC Dirichlet boundary condition on ΓD with p1 = −20.7 and Tmax = 2.5 · 10−6.
Test 3.NBC Neumann boundary condition on ΓD with g = 104 and Tmax = 2 · 10−6.
Test 3.RBC Robin boundary condition on ΓD with α = 103, p2 = −20.7 and Tmax = 2.1 · 10−5.

In Figures 4–6, we depicted computational domains and heterogeneous coefficients ks(x) for these
test cases. In these figures, we depict the fine grid with green color and coarse grid with blue color.

Figure 4. Computational grids and heterogeneous properties for Tests 1.DBC, 1.NBC, 1.RBC
(two-dimensional problem). Left: Coarse grid (blue color) and fine grid (green color). Right:
Heterogeneous coefficient ks(x).

Figure 5. Computational grids and heterogeneous properties for Tests 2.DBC, 2.NBC, 2.RBC
(two-dimensional problem). Left: Coarse grid (blue color) and fine grid (green color). Right:
Heterogeneous coefficient ks(x).
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Figure 6. Computational grids and heterogeneous properties for Tests 3.DBC, 3.NBC, 3.RBC
(three-dimensional problem). Left: Coarse grid (blue color) and fine grid (green color). Right:
Heterogeneous coefficient ks(x).

We use following fine grids and uniform coarse grids:

Tests 1.DBC, 1.NBC, 1.RBC. Fine grid contains 13,600 vertices and 26,739 cells. Coarse grid is
10× 5.
Tests 2.DBC, 2.NBC, 2.RBC. Fine grid contains 13,760 vertices and 26,931 cells. Coarse grid is
10× 5.
Tests 3.DBC, 3.NBC, 3.RBC. Fine grid contains 43,524 vertices and 239,100 cells. Coarse grid is
10× 5× 5.

We use DOFf (Degrees of Freedom) to denote fine grid system size and DOFc to denote the
problem size of the coarse grid system using GMsFEM.

For the Haverkamp models, we use the following values of the coefficients: A = 1.511 · 106,
B = 3.96, Θs = 0.287, Θr = 0.075, and S = 1.175 · 106. In the numerical simulations, we solve the
problem for 100 time steps.

To compare the results, we use the relative L2 error in %:

eL2 =
||p− pms||L2

||p||L2

, ||v||2L2
= (v, v) (16)

where pms and p are the multiscale and reference solutions. As a reference solution, we use a solution
by the finite element method (FEM) on the fine grid. We use GMSH software [35] to construct
computational domains and grids. The implementation is based on the open-source library FEniCS [36].

The fine-scale solution and multiscale solution using 16 basis functions are presented in
Figures 7–9 for Tests 1.DBC, 1.NBC, and 1.RBC, respectively. In Tables 1–3, we present L2 relative
errors for different numbers of multiscale basis functions for three time layers. We observe that the
error decreases when we increase the number of basis functions for each type of boundary conditions.
Therefore, to obtain a good solution, we need to take eight basis functions in each local domain ωi.

Figure 7. Numerical results for Test 1.DBC. Solutions p and pms for different times: t25, t50, and t100

(from left to right). First row: Fine-scale solution DOFf = 13,600. Second row: Multiscale solution using
16 basis functions DOFc = 1066.
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Figure 8. Numerical results for Test 1.NBC. Solutions p and pms for different times: t25, t50, and t100

(from left to right). First row: Fine-scale solution DOFf = 13,600. Second row: Multiscale solution using
16 basis functions DOFc = 1066.

Table 1. Numerical results for Test 1.DBC. Relative L2 errors (%) for different numbers of multiscale
basis functions.

Number of Multiscale Basis Functions DOFc t25 t50 t100

1 76 10.271 11.519 15.397
2 142 8.679 10.183 14.026
4 274 2.308 2.162 2.388
8 538 1.163 0.883 0.885

12 802 0.779 0.542 0.509
16 1066 0.607 0.413 0.373
24 1594 0.465 0.307 0.265
32 2122 0.375 0.247 0.208

Table 2. Numerical results for Test 1.NBC. Relative L2 error (%) for different numbers of multiscale
basis functions.

Number of Multiscale Basis Functions DOFc t25 t50 t100

1 76 6.474 22.111 103.246
2 142 5.989 19.231 92.872
4 274 1.332 1.719 3.416
8 538 0.442 0.561 1.119

12 802 0.275 0.327 0.621
16 1066 0.189 0.229 0.428
24 1594 0.126 0.154 0.287
32 2122 0.105 0.123 0.221

Figure 9. Numerical results for Test 1.RBC. Solutions p and pms for different times: t25, t50, and t100

(from left to right). First row: Fine-scale solution DOFf = 13, 600. Second row: Multiscale solution
using 16 basis functions DOFc = 1066.
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Table 3. Numerical results for Test 1.RBC. Relative L2 error (%) for different numbers of multiscale
basis functions.

Number of Multiscale Basis Functions DOFc t25 t50 t100

1 76 7.665 21.611 83.572
2 142 7.067 18.645 63.629
4 274 1.384 1.691 2.834
8 538 0.449 0.564 0.941
12 802 0.278 0.332 0.531
16 1066 0.194 0.233 0.363
24 1594 0.131 0.155 0.242
32 2122 0.108 0.123 0.187

Next, we consider results in the 2D domain that is presented in Figure 5, where the top boundary
has a more complex form. We present fine-grid and multiscale solutions for problems Tests 2.DBC,
2.NBC, 2.RBC in Figures 10–12, respectively. In Tables 4–6, we present the L2 relative error for different
numbers of multiscale basis functions for three time layers. From the obtained results, we can see that
our approach can correctly take into account boundaries with such complex forms. The errors have
increased slightly, but are still at a good level.

Figure 10. Numerical results for Test 2.DBC. Solutions p and pms for different times: t25, t50, and t100

(from left to right). First row: Fine-scale solution DOFf = 13,760. Second row: Multiscale solution using
16 basis functions DOFc = 1066.

Table 4. Numerical results for Test 2.DBC. Relative L2 error (%) for different numbers of multiscale
basis functions.

Number of Multiscale Basis Functions DOFc t25 t50 t100

1 76 11.638 13.598 18.156
2 142 9.896 11.671 15.968
4 274 2.422 2.308 2.703
8 538 1.272 0.958 1.036

12 802 0.911 0.666 0.701
16 1066 0.711 0.507 0.496
24 1594 0.526 0.378 0.356
32 2122 0.432 0.306 0.277
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Figure 11. Numerical results for Test 2.NBC. Solutions p and pms for different times: t25, t50, and t100

(from left to right). First row: Fine-scale solution DOFf = 13,760. Second row: Multiscale solution using
16 basis functions DOFc = 1066.

Table 5. Numerical results for Test 2.NBC. Relative L2 error (%) for different numbers of multiscale
basis functions.

Number of Multiscale Basis Functions DOFc t25 t50 t100

1 76 12.599 56.362 105.404
2 142 10.662 48.594 106.478
4 274 2.935 8.343 34.101
8 538 0.883 1.886 6.951

12 802 0.568 1.171 4.132
16 1066 0.383 0.724 2.328
24 1594 0.276 0.487 1.535
32 2122 0.203 0.333 1.005

Figure 12. Numerical results for Test 2.RBC. Solutions p and pms for different times: t25, t50, and t100

(from left to right). First row: Fine-scale solution DOFf = 13,760. Second row: Multiscale solution using
16 basis functions DOFc = 1066.

Table 6. Numerical results for Test 2.RBC. Relative L2 error (%) for different numbers of multiscale
basis functions.

Number of Multiscale Basis Functions DOFc t25 t50 t100

1 76 12.907 39.998 92.513
2 142 10.889 32.043 91.271
4 274 2.607 5.064 11.835
8 538 0.841 1.324 2.765

12 802 0.551 0.827 1.671
16 1066 0.386 0.551 1.032
24 1594 0.279 0.381 0.704
32 2122 0.211 0.271 0.479
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Finally, we consider the three-dimensional model problems (Tests 3.DBC, 3.NBC, 3.RBC).
The fine-scale solution and multiscale solution using 32 basis functions are presented in Figures 13–15.
In Tables 7–9, we present relative L2 errors for different numbers of basis functions. We observe a
good convergence of the presented method for the 3D problem. In this case, we need to take at least
12 multiscale basis functions.

Figure 13. Numerical results for Test 3.DBC. Solutions p and pms for the final time. Left: Fine-scale
solution DOFf = 43,524. Right: Multiscale solution using 32 basis functions DOFc = 12,738.

Table 7. Numerical results for Test 3.DBC. Relative L2 error (%) for different numbers of multiscale
basis functions.

Number of Multiscale Basis Functions DOFc t25 t50 t100

1 462 9.505 10.401 12.483
2 858 8.074 9.198 11.376
4 1650 4.112 4.061 5.356
8 3234 2.609 2.374 3.068
12 4818 1.411 1.253 1.556
16 6402 0.997 0.889 0.997
24 9570 0.657 0.528 0.521
32 12,738 0.469 0.339 0.324

Figure 14. Numerical results for Test 3.NBC. Solutions p and pms for the final time. Left: Fine-scale
solution DOFf = 43,524. Right: Multiscale solution using 32 basis functions DOFc = 12,738.

Table 8. Numerical results for Test 3.NBC. Relative L2 error (%) for different numbers of multiscale
basis functions.

Number of Multiscale Basis Functions DOFc t25 t50 t100

1 462 8.598 26.347 54.516
2 858 7.554 24.525 52.081
4 1650 2.566 6.072 19.783
8 3234 1.292 2.594 7.792
12 4818 0.718 1.194 3.591
16 6402 0.577 0.744 2.163
24 9570 0.379 0.421 1.118
32 12,738 0.259 0.271 0.646
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Figure 15. Numerical results for Test 3.RBC. Solutions p and pms for the final time. Left: Fine-scale
solution DOFf = 43,524. Right: Multiscale solution using 32 basis functions DOFc = 12,738.

Table 9. Numerical results for Test 3.RBC. Relative L2 error (%) for different numbers of multiscale
basis functions.

Number of Multiscale Basis Functions DOFc t25 t50 t100

1 462 14.344 31.851 64.631
2 858 12.372 27.955 55.481
4 1650 3.834 5.904 13.551
8 3234 1.891 2.344 4.924

12 4818 0.862 1.111 2.138
16 6402 0.583 0.738 1.342
24 9570 0.339 0.409 0.691
32 12,738 0.221 0.251 0.398

From the presented results, we observe that we obtain 2–3% of relative error for four multiscale
basis functions and about 1% of relative error when we increase the number of basis functions to
eight for all types of boundary conditions in Test 1. For Test 2, we have similar errors for the case
of Dirichlet boundary conditions, and for other types of boundary conditions, we should take more
basis functions. In Test 3, we obtain accurate results for 12 multiscale basis functions. In addition,
for Robyn-type boundary conditions, we have about 2% of errors when we take 4, 8, and 12 basis
functions in Tests 1, 2, and 3, respectively. We note that the presented results are confirmed with
the analytical error estimation presented in [27,34], where authors showed that error depends on the
number of basis functions and on eigenvalues of the local spectral problems. We also mention that an
adaptive approach can be applied, where, to find an optimal number of basis functions, we can use
local eigenvalues in order to capture all local characteristics of the solution [34].

From the results, we can see that we can get a solution with a small error when using a small
number of degrees of freedom. For example, from Table 9, we can see that we need to use 4818 degrees
of freedom, which is 11% of the size of fine-grid system, to get very accurate results. We can observe
a decrease in the error with an increase in the number of basis functions. Error reduction is associated
with the theory of the method itself; for more details, see [27,34].

6. Conclusions

In conclusion, a multiscale method for the unsaturated flow problem in heterogeneous porous
media with rough boundaries on the top is presented. On the top boundary, we consider three different
types of boundary conditions: Dirichlet, Neumann, and Robyn boundary conditions. We perform
a fine grid approximation using the finite element method. To reduce the size of the discrete system,
we construct a coarse grid approximation using GMsFEM. To take into account rough boundaries with
non-homogeneous boundary conditions, we construct an additional basis function for each type of
boundary conditions. Numerical results are presented for two- and three-dimensional test problems.
Numerical comparisons of the relative error for different numbers of basis functions are presented.
The proposed methods provide a good accuracy for all types of boundary conditions. Note that this is
the first step to being validated on the synthetic model. In our future work, we plan to proceed with
more realistic cases.
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