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Abstract: Let I, (x) be he modified Bessel function of the first kind of order v. We prove the double

inequality \/%ht cosh7 (gt) < Iy (t) < \/%ht cosh!/? (pt) holds for t > 0if and only if p > 2/3
and q < (In2) / In 7. The corresponding inequalities for means improve already known results.
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1. Introduction

The modified Bessel function of the first kind of order v, denoted by I, (x), is a particular solution
of the second-order differential equation ([1], p. 77)

2y (x)+xy' (x) = (2 +2) y (x) = 0, M)
which can be represented explicitly by the infinite series as

I(x):iﬂ xe€R, veR\{-1,-2,..} )

v n:On!r(U‘f—n‘i‘l), 7 7 JAREN Y

where I (x) is the gamma function [2-4]. There are many properties of I, (x), see for example, [5-11].
In this paper, we are interested in a special case of I, (x), that is, Iy (x), which is related to

Toader-Qi mean of positive numbers 4 and b defined by

/2 .
TQ (ll, b) = E/ ac0529b5m2 070 = Vably <1n \/g)
0

7T

(see [12-14]), where and in what follows a,b > 0 with a # b. It is undoubted that Toader-Qi mean
TQ (a,b) is anew newcomer. Recall that some classical means including the arithmetic mean, geometric
mean, logarithmic mean, exponential mean and power mean of order p defined by

_ “;b, G =G (ab) = vab,

B b 1/(b—a)
L=L(ab)=—""0 I:I(a,b):el<b> ,

T Ina—1Inb’ ra

A= A(a,b)
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ppr\ VP
APEAp(a,b)—(a —;b) if p #0and Ay = Ag (a,b) = Vab,

respectively. Clearly, A (a,b) = Ay (a,b) and G (a,b) = Ag (a,b). It is known that p — A, (a,b) is
increasing on R. A simple relation among these elementary means is the following inequalities:
G

<A2/3<I<Aln2<A1 3)

A 2A
G<L<A1/3< <A1/2<

(see [15-21]). Another interesting relation proven in [22] is that:

VA <\ﬁ<L+I # @)

Letb > a > 0and t = Inv/a/b. Then those means mentioned above can be represented in terms
of hyperbolic functions:

L(a,b)  sinht I(ab) ( B 1)
Jab t " Vab P\ fanh ¢ ’
TQ(ab) I (t), Ap(@0) _ osnisr (pt) forp #0.

Vab Vab

Correspondingly, the inequalities mentioned above are equivalent to

inh t t ht+2 t
1 < SH; < cosh® <) < coshf+2 < cosh? <2>

3 3

200N o2 (23f>  exp (tht - 1) < cosh!/ "2 (+1n2),

sinh t 1 [sinht t cosht+1
Vcosht <\/ p( —l><2{ 7 +exp<tanht_l>]<2'

tanh t

fort > 0.
Let us return to Toader-Qi mean. In 2015, Qi, Shi, Liu and Yang [13] proved that the inequalities

A(a,b)+G(ab) 2A(ab)+G(ab)
2 < 3

L(a,b) <TQ(ab) < I(a,b) (5)

hold. Yang and Chu (Theorem 3.3 of [23]) established a series of sharp inequalities for TQ (a,b) and
Iy (t), for example, the inequalities

sinh (2t) smh
sinh (21) < /Smhz) ©)
7t

. he _ inh £
\/<Cosht+1_) ™ <\/)\ocoshf+1—7‘0) . @
s T t
R 374 inht 1
(Slt t) (cosht)'/* < Io () < %Slt -+ oot o

hold for t > 0 with Ay = 0.6766.. .. Inspired by the inequalities (3) and (4), Yang and Chu conjectured

further that the inequality
TQ(a,b) < \/L(a,b)I(a,b) )
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holds, which was proven in Theorem 3.1 of [24] by Yang, Chu and Song. In fact, they proved the
following double inequality

\/gq/L(a,b)I(a,b)<TQ(a,b)<\/L(a,b)l(a,b) (10)

holds with the best coefficients v/e/7 = 0.930... and 1. More inequalities for TQ (a,b) can be seen
in [25,26].

Motivated by the inequalities (9) and A;,3 < I listed in (3), the aim of this paper is to find the
best constants p and g such that double inequality

\/L(a,b)A;(a,b) <TQ(a,b) </L(a,b)Ap,(a,b) (11)

holds, or equivalently,

inh ¢ inh ¢
\/Slt cosh'/1 (gt) < I (t) < \/sn; cosh!/? (pt) (12)
for t > 0. Our main results are as follows.

Theorem 1. The function

to ()°
(t) = 3/2 ;
cosh™“ (2t/3) sinh t

is strictly decreasing from (0, c0) onto (\/g /T, 1). Therefore, the double inequality

23/4 [ginht 2t sinh t 2t
Z [ cosh¥? (= I " cosh??2 (=
NG - cos 5 ) <l (1) < ; cos 3

holds for t > 0, or equivalently,

23/4
N

holds, where the coefficients 23/4 / /7t = 0.94885. .. and 1 are the best.

VL (@,b) Ays(a,b) < TQ(a,b) < \/L (a,b) Ay (a,) (13)

Theorem 2. The double inequality (12) holds for t > 0, or equivalently, (11) holds for a,b > 0 with a # b,
ifandonly if p > 2/3and g < py = (In2) /Inm = 0.605.. ..

2. Tools and Lemmas

To prove our results, we need two tools. The first tool was due to Biernacki and Krzyz [27],
which play an important role in dealing with the monotonicity of the ratio of power series.

Lemma 1 ([27]). Let A (t) = Y5 o axt* and B (t) = Y52 bit* be two real power series converging on (—r,7)
(r > 0) with by > 0 for all k. If the sequence {ay/by} is increasing (decreasing) for all k, then the function
t — A(t) /B (t) is also increasing (decreasing) on (0,r).

Remark 1. Recently, another monotonicity rule in the case when the sequence {ay/by}yx>q is piecewise
monotonic was presented in Theorem 1 of [28], which is now applied preliminarily, see for example, [29-32].

The second tool is the so-called “L’'Hospital Monotone Rule” (oz, for short, LMR), which is very
effective in studying the monotonicity of ratios of two functions.
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Lemma 2 ([33], Theorem 2). Let —o0 < a < b < oo, and let f, g : [a,b] — R be continuous functions that
are differentiable on (a,b), with f (a) = g (a) = 0or f (b) = g (b) = 0. Assume that ¢’ (x) # 0 for each x in
(a,b). If f'/ ' is increasing (decreasing) on (a,b) then sois f/g.

The following two lemmas will be used to prove Proposition 1.

Lemma 3 ([23], Lemma 2.8). We have

Io (t)* = ZO 2(22}1’;)|'4 2. (14)

Lemma 4 ([34], Problems 85, 94). The two given sequences {ay },>o and {by },>0 satisfy the conditions

[e0]
. a
by > 0; n;)bnt" converges for all values of t; nl1_r)ro10 —: =s.

Then Y, ant™ converges too for all values of t and in addition

Eoo a,t"
lim =#=0"""_ — =s.
t—o0 Zn 0 bnt

3. Three Propositions

The proofs of Theorems 1 and 2 rely on the following propositions.

Proposition 1. Let

2cosht+ 1sinht 1, 229
t) =10 1-0) (14 -t 4+ —= 1
fo) I 10 (14 32+ gt (15)
where 6 = 11,009/10,449. The function
E (8) Io (1)
O =
fo(t)
is strictly decreasing from (0, c0) onto (3/ (67),1).
Proof. Expanding in power series yields
sinh 2t 4 sinh ¢ 1, 229,
ty = 60— 1—-0)(1+ =t —t
folt) 3t +( )(+2 * 6720 >
e 1, 229
= = T 1— 14 = il
n:03(2n+1)!t + 9)< taf +6720t)
B 1, 8870+229 , 022 +1) 5, -
= 1 g Tt L 3@ th
wherevg =1,v1 =1/2,
3876 + 229 6 (22111 +1)
f— —_— = - > .
2= gy A = By o2

By Lemma 3, we see that

[ee]
2 2
Io (t) - Z 22nn|4 Z Unt i
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Direct calculations gives

Moo w60
v v vy 38760+229
| g (22n+1 4 1
Un  _ (2n) ( + ) forn > 3,
o 2mp1d /3 (2n +1)!
then
Mo_uo _ oy M2 g 3870401
0. vo | vs vy 3876 +229
w35 16161145
vs vy,  1720(3870+229)
22n+1 _ 2 2
bt iy B +6152) (forn >3,
Unp1 /[ On (n+1)7 (22143 +1)

where the last inequality holds due to

(2n+1) (2n) n (2n+1)(2n) (2n—1)
2! 3!

—(3n2+6n+2) = %n(4n+5)(n—2) > 0forn > 3.

o241 _ (3n2+6n+2) > 1+ @2n+1)+

This shows that the sequence {u,/vn},> is strictly decreasing, so is Io (t)2 / fo (t) on (0,c0) by
Lemma 1. It is easy to check that

2 2
1m10(t) :@:1 and lim lo () = limu—nzi,
t=0 fo(t) o tooo fo(t) n—=eov, 76

where the second limits holds due to Lemma 4, thereby completing the proof. [
Proposition 2. Let fy (t) be defined by (15). The function

tfo (t)

F(t) =
1) cosh®/2 (2t/3) sinh t

is strictly decreasing from (0, 00) onto (\/50/3, l), where 6 = 11,009/10, 449.

Proof. Let
_ _ 2cosht 4 1sinht 1, 229 4
i) = InF () =In [6 3 n +(1-9) (1+2t +6720t ﬂ
3 2t sinh ¢
—Eln <cosh3) —In st
Differentiation yields
1 f2(t)

filt) = ~ 6tsinhtcosh (2t/3) fo (t) ’

where
fo(t) = £ fos5 (t) + 1 fou (£) + £ foz (1) + P faz (£) + 1 (£) + fao (1), (16)
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229 2t ., 2t
fos(t) = 1120 (1-9) (cosh 3 cosht + 3sinh 3 sinh t) ,
229 2t
foa(t) = >4 (6 —1) cosh 3 sinht,
2t 2t
fa(t) = % (1-9) (2 cosh 3 cosh t + 3sinh 3 sinh t)
2t
fo () = 9(6—1)cosh 3 sinh ¢,
2t . 2t .
fa(t) = 3(1-90) (2 cosh 3 cosht + 3sinh 3 sinh t) ,
2 2
foo(t) = 6(0—1)cosh gt sinh t — 46 cosh Et sinh® ¢

+360 sinh % sinh? f + 66 sinh % cosh tsinh? t.

Expanding in power series gives

229 229 > 523 1
= —— —_ 1 h — h _ - _ - = 2n—4
fa5 (3s) 1480 (60 — 1) (5cosh 5s — coshs) 1480 (6—1) le 2 _4)!5 ,
229 229 5273 4+ 1 5, s
f24 (35) m (9 ) (Sll’thS + smhs) 448 (9 ) ;2 WS 7
3 3 X 51 —1,, .,

f23 (3s) = ~I (6 —1) (5cosh5s — coshs) = -1 (6—1) ; [T

oo E2n—1
fr(35) = 3 (6 1) (sinh5s +sinhs) = 2 (0-1) ) 22—,
n

2 — (2n—1)!
3 3 o 52n+1 -1
=—=(0-1 h5s — coshs) = —= (6 -1 e
f21 (3s) 5 (60 —1) (5coshbs — coshs) 5 (0 )n:O 2! ,
1, . 3,. 5, . 15 .
f20 (3s) = 19 sinh 11s + 19 sinh 8s — 19 sinh 7s + ZG — 3 ) sinh 5s

3 . 3 . 21 .
—19 sinh 4s — 59 sinh 2s + (46 — 3) sinh s

_ i 2112n+1 + ?;798211‘?’1 _ %72”4’1 + <156 _ 3) 521’!+1

4 4
_%42%1 _ %22n+1 + EG 3 s2H
4 2 4 (2n+1)!

Then f;, (3s) defined by (16) can be written as

f2 (3s) = 2435° fo5 (3s) + 815 fog (3s) + 275° fa3 (3s) + 952 faz (35) + 35 fo1 (35) + fao (35)

2n+1 SZH'H

22nt1 30 5 0
@nrin +Z” Ty nZ”” n+ 1)

= 545> + ( i
n=2 =2
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where
] 55,647 (2n +1)! ,, 5 18,549 2n+1)!_,, »
4 = - o5y T s
4480 (2n—4)! 448 (21— 3)!
81 @2n+)lgy L8 (2n+1)! 9y
1 (2n—2)! 2 (2n—1)!
9@n+1)! oyiq 350 40,01 1 0 onpg
2 @ > tae—io Taeoatt
o _ 55647 6-1 18549 6-1 81 6-1
2 _ o2

480 (2n—4) T 448 (2n-3) " 4 (2n_2)!
81 6-1 96—1 13(760—4)

2 2n—1) T2 a2y
A3 = gl 5 g2l _ g0l _pmt2

It remains to prove a,[f] > 0fori = 1,2,3and n > 2. It is clear that a,[f] > 0duetof =

11,009/10,449 > 1. For a7, it is easy to check that

Aok — 4907 =12 (10 x 2% 411 x 221 4 15) x 22 > 0,

which together with a?] = 11,005 > 0 yields a,[f] > 0 for all n > 2. For ay), since (50 —4) >

n s
5(0—1)and

0 11,009
-1~ 560 =19.659... > 18,
we have
I 55,647 (204 1)! 5, 5 18,549 (2n+1)! 5,
" 4480 (2n —4)! 448 (2n —3)!
_g (2n + 1)!52,1,1 n g (2n + 1)!52,1,1
4 (2n—2)! 2 (2n—1)!

9(27’1"’1), 2n+1 15 2n+1 9 2
= 1)y n—+ - 5 n—+ - 11 n+1
2" (2n)! Ty T

_ g 112mH g <18,549n5 154,575 4 138,915 4

28 56 16
1,357,425 , 848,523 3125\ o4 [0]
— 5% =gy,
24 T 4 ”+4)X fin
The sequence {a,[qo] } - satisfies the recurrence relation
n>
o’ 1210 148,302 |5 463,725 , 2,202,435 4

9 x 52n—4 o 7 4 7
36,754,425 2 3,895, 809n 21,875
112 56 2 7
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which can be written as

148,392 5 2,689,605 4 1,645,965 3
7 (n—2)"+ TR (n—2)"+ — (n—2)
52,997,895 o 29,042,799 312,145

for n > 2. This in combination with ago] =10,126,407/16 > 0 leads to a,[qo} > 0forn > 2,and so is a,[}].

Therefore, f1 (t) > 0 for t > 0, so fo (t) is strictly increasing on (0, o). An easy computation yields

. . V86
1136]‘1 (t) =0 and tlggfl (1) =In =

which completes the proof. O

Using Lemma 2 we can prove the following lemma, which will be use to prove Theorem 2.
Proposition 3. Let q # 0,1/2,1. The ratio

cosh7 (gt) —1

t—
cosht—1

is strictly increasing on (0,00) if g € (—00,0) U (1/2,1) and strictly decreasing on (0,00) if g € (0,1/2) U
(1, 00). Consequently, the double inequality

geosht+1—q < cosh/1 (qt) < cgcosht +1—¢,4 (17)

holds for t > 0if g € (—o0,0) U (1/2,1), where the weights q and c; = 2'"Y9if g > 0and ¢, = 0if g < 0
are the best possible. If g € (0,1/2) U (1,00), then the double inequality (17) is reversed.

Proof. Let
g1 (t) = cosh/7 (qt) —1 and g (t) = cosht — 1.

Clearly, g1 (07) = g2 (01) = 0, and

1-1/q ;
lim &1 (£ =g and lim 81(t) =c¢q = 2 ?f 7>0,
t—0 g2 (t) t—oo g (1) 0 ifg <O0.
Differentiation yields
/ 1/q-1 .
g1 (t)  cosh (qt) sinh (qt)
g sinh t ’
[gg (t)]’ B (1—2q)t (sinh|(1—2q)t| _sinht)
8 (1) 2sinh? t cosh> 17 (gt) [(1—29) t| t .

Since the function (sinh x) /x is strictly increasing on (0, ), we find that

{gi(t)}/ >0 if(|1—2q|—1)(1—2q)>0,i.e.,q€(—oo,0)u<%,l),
M1 <o if(|1—2q|—1)(1—2q)<0,i.e.,q€(1,oo)u(0,%).

By Lemma 2, the desired monotonicity follows. The double inequality (17) and its reverse follow from
the monotonicity of g (t) /g2 (t) on (0, c0). This completes the proof. [
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Remark 2. Taking g = pg = (In2) / In 7t in the double inequality (17) we obtain the double inequality

2 2
pocosht+1— pg < coshP0 (pot) < - cosht+1— p (18)

fort > 0.

Remark 3. The generalized Heronian mean [35] is defined by

_a+b+wVab

Hu (a,b) w+2

Lett =Inv/a/bwithb >a > 0and g = w/ (w+2) > 0. Then Proposition 3 give a best approximation for
Hy, (a,b) by power means:

Hy, (Cl, b) < Aw/(w+2) (ﬂ, b) sz € (2, OO) ,
Hy (a,b) > Ayjwiz) (@,b) if g €(0,2).

Our proof is clearly concise than Li, Long and Chu’s given in [35].

4. Proofs of Theorem 1 and 2

We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1. We have

o (1)° o (1) to (£)
B = =F(t) xF (1).
cosh®?(2t/3)sinht  fo (¢) . cosh®2(2t/3) sinh t 0 () xR ()

As shown in Propositions 1 and 2, the functions F (t) and F; () are both strictly positive and decreasing
on (0,00),sois F (t). And, we easily obtain

ImF (t) = limF(t) xlimF (t) =1
£50 ®) t%o()xtl_%l() ’
, , : 3 V80 V8
HRE0 = iR Ui A () =T =

Using the monotonicity of F (), the desired double inequality follows. This completes the proof. [

Proof of Theorem 2. (i) The necessary condition for the right hand side inequality of (12) to hold
follows from the limit relation
Ip (t)* — cosh!/? (pt) (sinh t) /¢

lim = —1
t—0 t2 6

(3p—2) <.

The sufficiency follow from Theorem 1 and the increasing property of p — cosh!'/?(pt) on R.
(ii) The necessary condition for the left hand side inequality of (12) to hold follows from the

limit relation
(cosh (qt))"/7 (sinh t) /¢

lim > <1.
t—ro0 IO (t)
Since Iy (t) ~ et /\/27tt as t — oo (see [36],9.7.1) and
. . t
cosh!/1 (gt) < ST © e <

. —2gt\ /4 —2t 2t
cosh!/7 (gt) sinht o 1+e o 1—e 1 e ,
t 2 2t 21/q 2t
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we have

lim 5
t—o00 IO (t)

cosh'/7 (gt) (sinh t) /t { 0 ifg<0,

2174 ifg > 0.

Therefore, the necessary condition is that 77/21/4 < 1if g > 0 and g < 0, thatis, g < (In2) /In 7t = po.

By the increasing property of g — cosh!/7 (gt), to prove the sufficiency, it suffices to prove the
left hand side inequality of (12) holds when q = pg. From the first inequality of (7) and the second
inequality of (18) it follows that

sinht (2 2 sinh f 1/po
Ip (t) > \/ ; (7_[ cosht+1— 7'[) > \/t cosh™ /P (pot)

for t > 0, which proves the sufficiency, and the proof is completed. [

5. Concluding Remarks

In this paper, we obtained the best constants p and g such that the double inequality (12) holds for
t > 0, or equivalently, (11) holds for a,b > 0 with a # b. This improved the result in [24]. We close the
paper by giving two remarks on our results.

Remark 4. It was shown in ([20], 5.25) that

2V2
A2/3 (ﬂ,b) < I (ﬂ, b) < ?Az/a (ﬂ, b) .

Then the double inequality (11) can be extended as

3/4
\/gy/L(a,b)I(a,b) < z\/E\/L(a,b)Az/g,(a,b)<TQ(a,b)

< \JL(ab) Ays(ab) < \/L(a,b)I(a,b).

Remark 5. As a computable bound, the upper bound \/ t=1sinh t cosh®/2 (2t/3) for I (t) is superior to those
given (6) and (8). In fact, we have

I(t) < \/sn;ht cosh3/2 (?;) < \/sn;ht cosht = \/sm}ét@t) (19)
and
sinh 3/2 (2t 3sinht 1
I (t) < \/t cosh <3) <; 5t Ecosht (20)

fort > 0. The inequalities (19) are clear, and we have to check (20). Let

B sinh (3t/2) 3/2 1. |3sinh(3t/2) 1
h(t)—ln\/3t/2 cosh™“ (1) —In 1 32 +4cosh(3t/2) :

Differentiation yields

1 hi (t)
6 t [sinh (3t) + t cosh (3t)] cosh (2t) sinh (3t) ’

W(t) =
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where

mt) = £ (3 cosh 2t cosh? 3t + 3 sinh 2t cosh 3t sinh 3t — 6 cosh 2t sinh? 3t>

+ (3 sinh 2t sinh? 3t — 4 cosh 2t cosh 3t sinh St) t + cosh 2t sinh? 3t.

Using “product into sum” formulas for hyperbolic functions and expanding in power series give

_ 9p 3. 3 . 7, . 1, .
hi(t) = 2t cosh 2t 2t cosh 4t 2tstht‘ 4tsmhéhf 4tsmh 8t
-I—1 h4t—1 hZH—1 h 8¢
7 08 5 €os 4 08
9 22n—2 3 &> 42n—2
l’ll (t) = = n _ 2 o 42n

2n§1(2n—2)' 2’;(211—2)!

_§ i 2271—1 tZYl B Z i 42n—1 o
2 = (2n-1)! 4 = (2n-1)!
1> g2n—1 5 1 2, 42n

_ t n - t2f’l
O BRI § By
1 &, 922n ) 1>, 8§ 1 &b (Zt)Zn

_ - t n + - t2n - n ,
2 7;) (2n)! 4 r;) (2n)! 16 ngl (2n)!

where
by = (n—4)4%" + (6n? +11n —4) 22" — 4 (18n% — 151 —2)

Since by = by =0, by = 756 and for n > 4,

by > (6112 +11n — 4) 28 _4 (18n2 — 150 — 2)

4 (366112 7190 — 254) >0,

we have hy (t) < 0 for t > 0, so is h' (t). This leads to h () < limy_0h (t) = 0, which proves the second
inequality of (20) holds for t > 0.

Remark 6. Due to

= a—b — ! s3,1—s
L@ = g =y 0
/2 . 1
TQ ({Il,b) = %/0 acoSZGbSInZGdO _ %/0 asblfs (S (1 _S))*l/Z dS,

the referee introduces a new family of means Ly (a, b) defined for « > 0 by

I'(2«)
I (w)?

Ly (a,b) = /01 a*b 5 (s (1—s))* L.

The referee also gives an interesting relation between this new mean and the modified Bessel functions of the

first kind:
Ly (a,b) 1\ (£\V*" 3 \/E
Jab =T <0(+2> (2> Ii_1,2 (f), t=In 7

a+b
2

It is easy to check that

lim L, (a,b) =
a—0
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and

La(a,b) = 2 /01 a6 (s (1 — 5))* 1 ds

./(;1(sa+(1—s)b)(s(1—s))“7lds: anrb'

<

However, more problems remain to be researched on this new family of means, for example: (i) checking the
monotonicity of this mean with respect to the parameter «; (i) finding the lower and upper bounds for this mean
in terms of elementary means; (iii) comparing this new mean with others.
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