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Abstract: Let Iv (x) be he modified Bessel function of the first kind of order v. We prove the double

inequality
√

sinh t
t cosh1/q (qt) < I0 (t) <

√
sinh t

t cosh1/p (pt) holds for t > 0 if and only if p ≥ 2/3
and q ≤ (ln 2) / ln π. The corresponding inequalities for means improve already known results.
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1. Introduction

The modified Bessel function of the first kind of order v, denoted by Iv (x), is a particular solution
of the second-order differential equation ([1], p. 77)

x2y′′ (x) + xy′ (x)−
(

x2 + v2
)

y (x) = 0, (1)

which can be represented explicitly by the infinite series as

Iv (x) =
∞

∑
n=0

(x/2)2n+v

n!Γ (v + n + 1)
, x ∈ R, v ∈ R\{−1,−2, . . .}, (2)

where Γ (x) is the gamma function [2–4]. There are many properties of Iv (x), see for example, [5–11].
In this paper, we are interested in a special case of Iv (x), that is, I0 (x), which is related to

Toader-Qi mean of positive numbers a and b defined by

TQ (a, b) =
2
π

∫ π/2

0
acos2 θbsin2 θdθ =

√
abI0

(
ln
√

a
b

)
(see [12–14]), where and in what follows a, b > 0 with a 6= b. It is undoubted that Toader-Qi mean
TQ (a, b) is a new newcomer. Recall that some classical means including the arithmetic mean, geometric
mean, logarithmic mean, exponential mean and power mean of order p defined by

A ≡ A (a, b) =
a + b

2
, G ≡ G (a, b) =

√
ab,

L ≡ L (a, b) =
a− b

ln a− ln b
, I ≡ I (a, b) = e−1

(
bb

aa

)1/(b−a)

,
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Ap ≡ Ap (a, b) =
(

ap + bp

2

)1/p
if p 6= 0 and A0 ≡ A0 (a, b) =

√
ab,

respectively. Clearly, A (a, b) = A1 (a, b) and G (a, b) = A0 (a, b). It is known that p 7→ Ap (a, b) is
increasing on R. A simple relation among these elementary means is the following inequalities:

G < L < A1/3 <
A + 2G

3
< A1/2 <

2A + G
3

< A2/3 < I < Aln 2 < A1 (3)

(see [15–21]). Another interesting relation proven in [22] is that:

√
AG <

√
LI <

L + I
2

<
A + G

2
. (4)

Let b > a > 0 and t = ln
√

a/b. Then those means mentioned above can be represented in terms
of hyperbolic functions:

L (a, b)√
ab

=
sinh t

t
,

I (a, b)√
ab

= exp
(

t
tanh t

− 1
)

,

TQ (a, b)√
ab

= I0 (t) ,
Ap (a, b)√

ab
= cosh1/p (pt) for p 6= 0.

Correspondingly, the inequalities mentioned above are equivalent to

1 <
sinh t

t
< cosh3

(
t
3

)
<

cosh t + 2
3

< cosh2
(

t
2

)
<

2 cosh t + 1
3

< cosh3/2
(

2t
3

)
< exp

(
t

tanh t
− 1
)
< cosh1/ ln 2 (t ln 2) ,

√
cosh t <

√
sinh t

t
exp

(
t

tanh t
− 1
)
<

1
2

[
sinh t

t
+ exp

(
t

tanh t
− 1
)]

<
cosh t + 1

2
.

for t > 0.
Let us return to Toader-Qi mean. In 2015, Qi, Shi, Liu and Yang [13] proved that the inequalities

L (a, b) < TQ (a, b) <
A (a, b) + G (a, b)

2
<

2A (a, b) + G (a, b)
3

< I (a, b) (5)

hold. Yang and Chu (Theorem 3.3 of [23]) established a series of sharp inequalities for TQ (a, b) and
I0 (t), for example, the inequalities√

sinh (2t)
πt

< I0 (t) <

√
sinh (2t)

2t
, (6)

√(
2
π

cosh t + 1− 2
π

)
sinh t

t
< I0 (t) <

√
(λ0 cosh t + 1− λ0)

sinh t
t

, (7)

(
sinh t

t

)3/4

(cosh t)1/4 < I0 (t) <
3
4

sinh t
t

+
1
4

cosh t, (8)

hold for t > 0 with λ0 = 0.6766 . . .. Inspired by the inequalities (3) and (4), Yang and Chu conjectured
further that the inequality

TQ (a, b) <
√

L (a, b) I (a, b) (9)
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holds, which was proven in Theorem 3.1 of [24] by Yang, Chu and Song. In fact, they proved the
following double inequality√

e
π

√
L (a, b) I (a, b) < TQ (a, b) <

√
L (a, b) I (a, b) (10)

holds with the best coefficients
√

e/π = 0.930 . . . and 1. More inequalities for TQ (a, b) can be seen
in [25,26].

Motivated by the inequalities (9) and A2/3 < I listed in (3), the aim of this paper is to find the
best constants p and q such that double inequality√

L (a, b) Aq (a, b) < TQ (a, b) <
√

L (a, b) Ap (a, b) (11)

holds, or equivalently, √
sinh t

t
cosh1/q (qt) < I0 (t) <

√
sinh t

t
cosh1/p (pt) (12)

for t > 0. Our main results are as follows.

Theorem 1. The function

F (t) =
tI0 (t)

2

cosh3/2 (2t/3) sinh t

is strictly decreasing from (0, ∞) onto
(√

8/π, 1
)

. Therefore, the double inequality

23/4
√

π

√
sinh t

t
cosh3/2

(
2t
3

)
< I0 (t) <

√
sinh t

t
cosh3/2

(
2t
3

)
holds for t > 0, or equivalently,

23/4
√

π

√
L (a, b) A2/3 (a, b) < TQ (a, b) <

√
L (a, b) A2/3 (a, b) (13)

holds, where the coefficients 23/4/
√

π = 0.94885 . . . and 1 are the best.

Theorem 2. The double inequality (12) holds for t > 0, or equivalently, (11) holds for a, b > 0 with a 6= b,
if and only if p ≥ 2/3 and q ≤ p0 = (ln 2) / ln π = 0.605 . . ..

2. Tools and Lemmas

To prove our results, we need two tools. The first tool was due to Biernacki and Krzyz [27],
which play an important role in dealing with the monotonicity of the ratio of power series.

Lemma 1 ( [27]). Let A (t) = ∑∞
k=0 aktk and B (t) = ∑∞

k=0 bktk be two real power series converging on (−r, r)
(r > 0) with bk > 0 for all k. If the sequence {ak/bk} is increasing (decreasing) for all k, then the function
t 7→ A (t) /B (t) is also increasing (decreasing) on (0, r).

Remark 1. Recently, another monotonicity rule in the case when the sequence {ak/bk}k≥0 is piecewise
monotonic was presented in Theorem 1 of [28], which is now applied preliminarily, see for example, [29–32].

The second tool is the so-called “L’Hospital Monotone Rule” (or, for short, LMR), which is very
effective in studying the monotonicity of ratios of two functions.
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Lemma 2 ([33], Theorem 2). Let −∞ < a < b < ∞, and let f , g : [a, b]→ R be continuous functions that
are differentiable on (a, b), with f (a) = g (a) = 0 or f (b) = g (b) = 0. Assume that g′(x) 6= 0 for each x in
(a, b). If f ′/g′ is increasing (decreasing) on (a, b) then so is f /g.

The following two lemmas will be used to prove Proposition 1.

Lemma 3 ([23], Lemma 2.8). We have

I0 (t)
2 =

∞

∑
n=0

(2n)!
22nn!4

t2n. (14)

Lemma 4 ([34], Problems 85, 94). The two given sequences {an}n≥0 and {bn}n≥0 satisfy the conditions

bn > 0;
∞

∑
n=0

bntn converges for all values of t; lim
n→∞

an

bn
= s.

Then ∑∞
n=0 antn converges too for all values of t and in addition

lim
t→∞

∑∞
n=0 antn

∑∞
n=0 bntn = s.

3. Three Propositions

The proofs of Theorems 1 and 2 rely on the following propositions.

Proposition 1. Let

f0 (t) = θ
2 cosh t + 1

3
sinh t

t
+ (1− θ)

(
1 +

1
2

t2 +
229

6720
t4
)

, (15)

where θ = 11, 009/10, 449. The function

F0 (t) =
I0 (t)

2

f0 (t)

is strictly decreasing from (0, ∞) onto (3/ (θπ) , 1).

Proof. Expanding in power series yields

f0 (t) = θ
sinh 2t + sinh t

3t
+ (1− θ)

(
1 +

1
2

t2 +
229

6720
t4
)

= θ
∞

∑
n=0

22n+1 + 1
3 (2n + 1)!

t2n + (1− θ)

(
1 +

1
2

t2 +
229

6720
t4
)

= 1 +
1
2

t2 +
387θ + 229

6720
t4 +

∞

∑
n=3

θ
(
22n+1 + 1

)
3 (2n + 1)!

t2n :=
∞

∑
n=0

vnt2n,

where v0 = 1, v1 = 1/2,

v2 =
387θ + 229

6720
and vn =

θ
(
22n+1 + 1

)
3 (2n + 1)!

for n ≥ 3.

By Lemma 3, we see that

I0 (t)
2 =

∞

∑
n=0

(2n)!
22nn!4

t2n :=
∞

∑
n=0

unt2n.
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Direct calculations gives

u0

v0
=

u1

v1
= 1,

u2

v2
=

630
387θ + 229

un

vn
=

(2n)!
22nn!4

/
θ
(
22n+1 + 1

)
3 (2n + 1)!

for n ≥ 3,

then

u1

v1
− u0

v0
= 0,

u2

v2
− u1

v1
= −387θ − 401

387θ + 229
< 0,

u3

v3
− u2

v2
= − 35

172
1161θ − 1145
θ (387θ + 229)

< 0,

un+1

vn+1

/
un

vn
− 1 = −

22n+1 −
(
3n2 + 6n + 2

)
(n + 1)2 (22n+3 + 1)

< 0 for n ≥ 3,

where the last inequality holds due to

22n+1 −
(

3n2 + 6n + 2
)

> 1 + (2n + 1) +
(2n + 1) (2n)

2!
+

(2n + 1) (2n) (2n− 1)
3!

−
(

3n2 + 6n + 2
)

=
1
3

n (4n + 5) (n− 2) > 0 for n ≥ 3.

This shows that the sequence {un/vn}n≥0 is strictly decreasing, so is I0 (t)
2 / f0 (t) on (0, ∞) by

Lemma 1. It is easy to check that

lim
t→0

I0 (t)
2

f0 (t)
=

u0

v0
= 1 and lim

t→∞

I0 (t)
2

f0 (t)
= lim

n→∞

un

vn
=

3
πθ

,

where the second limits holds due to Lemma 4, thereby completing the proof.

Proposition 2. Let f0 (t) be defined by (15). The function

F1 (t) =
t f0 (t)

cosh3/2 (2t/3) sinh t

is strictly decreasing from (0, ∞) onto
(√

8θ/3, 1
)

, where θ = 11, 009/10, 449.

Proof. Let

f1 (t) = ln F1 (t) = ln
[

θ
2 cosh t + 1

3
sinh t

t
+ (1− θ)

(
1 +

1
2

t2 +
229

6720
t4
)]

−3
2

ln
(

cosh
2t
3

)
− ln

sinh t
t

.

Differentiation yields

f ′1 (t) = −
1

6t sinh t cosh (2t/3)
f2 (t)
f0 (t)

,

where
f2 (t) = t5 f25 (t) + t4 f24 (t) + t3 f23 (t) + t2 f22 (t) + t f21 (t) + f20 (t) , (16)
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f25 (t) =
229
1120

(1− θ)

(
cosh

2t
3

cosh t + 3 sinh
2t
3

sinh t
)

,

f24 (t) =
229
224

(θ − 1) cosh
2t
3

sinh t,

f23 (t) =
3
2
(1− θ)

(
2 cosh

2t
3

cosh t + 3 sinh
2t
3

sinh t
)

f22 (t) = 9 (θ − 1) cosh
2t
3

sinh t,

f21 (t) = 3 (1− θ)

(
2 cosh

2t
3

cosh t + 3 sinh
2t
3

sinh t
)

,

f20 (t) = 6 (θ − 1) cosh
2t
3

sinh t− 4θ cosh
2t
3

sinh3 t

+3θ sinh
2t
3

sinh2 t + 6θ sinh
2t
3

cosh t sinh2 t.

Expanding in power series gives

f25 (3s) = − 229
4480

(θ − 1) (5 cosh 5s− cosh s) = − 229
4480

(θ − 1)
∞

∑
n=2

52n−3 − 1
(2n− 4)!

s2n−4,

f24 (3s) =
229
448

(θ − 1) (sinh 5s + sinh s) =
229
448

(θ − 1)
∞

∑
n=2

52n−3 + 1
(2n− 3)!

s2n−3,

f23 (3s) = −3
4
(θ − 1) (5 cosh 5s− cosh s) = −3

4
(θ − 1)

∞

∑
n=1

52n−1 − 1
(2n− 2)!

s2n−2,

f22 (3s) =
9
2
(θ − 1) (sinh 5s + sinh s) =

9
2
(θ − 1)

∞

∑
n=1

52n−1 + 1
(2n− 1)!

s2n−1,

f21 (3s) = −3
2
(θ − 1) (5 cosh 5s− cosh s) = −3

2
(θ − 1)

∞

∑
n=0

52n+1 − 1
(2n)!

s2n,

f20 (3s) =
1
4

θ sinh 11s +
3
4

θ sinh 8s− 5
4

θ sinh 7s +
(

15
4

θ − 3
)

sinh 5s

−3
4

θ sinh 4s− 3
2

θ sinh 2s +
(

21
4

θ − 3
)

sinh s

=
∞

∑
n=0

[
θ

4
112n+1 +

3θ

4
82n+1 − 5θ

4
72n+1 +

(
15θ

4
− 3
)

52n+1

−3θ

4
42n+1 − 3θ

2
22n+1 +

(
21
4

θ − 3
)]

s2n+1

(2n + 1)!

Then f2 (3s) defined by (16) can be written as

f2 (3s) = 243s5 f25 (3s) + 81s4 f24 (3s) + 27s3 f23 (3s) + 9s2 f22 (3s) + 3s f21 (3s) + f20 (3s)

= 54s3 + (θ − 1)
∞

∑
n=2

a[1]n
s2n+1

(2n + 1)!
+

∞

∑
n=2

a[2]n s2n+1 +
3θ

4

∞

∑
n=2

a[3]n
s2n+1

(2n + 1)!
,
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where

a[1]n = −55, 647
4480

(2n + 1)!
(2n− 4)!

52n−3 +
18, 549

448
(2n + 1)!
(2n− 3)!

52n−3

−81
4
(2n + 1)!
(2n− 2)!

52n−1 +
81
2
(2n + 1)!
(2n− 1)!

52n−1

−9
2
(2n + 1)!
(2n)!

52n+1 +
3
4

5θ − 4
θ − 1

52n+1 +
1
4

θ

θ − 1
112n+1,

a[2]n =
55, 647
4480

θ − 1
(2n− 4)!

+
18, 549

448
θ − 1

(2n− 3)!
+

81
4

θ − 1
(2n− 2)!

+
81
2

θ − 1
(2n− 1)!

+
9
2

θ − 1
(2n)!

+
1
4

3 (7θ − 4)
(2n + 1)!

,

a[3]n = 82n+1 − 5
3
× 72n+1 − 42n+1 − 22n+2.

It remains to prove a[i]n > 0 for i = 1, 2, 3 and n ≥ 2. It is clear that a[2]n > 0 due to θ =

11, 009/10, 449 > 1. For a[3]n , it is easy to check that

a[3]n+1 − 49a[3]n = 12
(

10× 24n + 11× 22n + 15
)
× 22n > 0,

which together with a[3]2 = 11, 005 > 0 yields a[3]n > 0 for all n ≥ 2. For a[1]n , since (5θ − 4) >

5 (θ − 1) and
θ

θ − 1
=

11, 009
560

= 19.659 . . . > 18,

we have

a[1]n > −55, 647
4480

(2n + 1)!
(2n− 4)!

52n−3 +
18, 549

448
(2n + 1)!
(2n− 3)!

52n−3

−81
4
(2n + 1)!
(2n− 2)!

52n−1 +
81
2
(2n + 1)!
(2n− 1)!

52n−1

−9
2
(2n + 1)!
(2n)!

52n+1 +
15
4
× 52n+1 +

9
2
× 112n+1

=
9
2
× 112n+1 − 3

(
18, 549

28
n5 − 154, 575

56
n4 +

138, 915
16

n3

−1, 357, 425
224

n2 +
848, 523

224
n +

3125
4

)
× 52n−4 := a[0]n .

The sequence
{

a[0]n

}
n≥2

satisfies the recurrence relation

a[0]n+1 − 121a[0]n

9× 52n−4 =
148, 392

7
n5 − 463, 725

4
n4 +

2, 202, 435
7

n3

−36, 754, 425
112

n2 +
3, 895, 809

56
n− 21, 875

2
,
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which can be written as

148, 392
7

(n− 2)5 +
2, 689, 605

28
(n− 2)4 +

1, 645, 965
7

(n− 2)3

+
52, 997, 895

112
(n− 2)2 +

29, 042, 799
56

(n− 2) +
312, 145

2
> 0

for n ≥ 2. This in combination with a[0]2 = 10, 126, 407/16 > 0 leads to a[0]n > 0 for n ≥ 2, and so is a[1]n .
Therefore, f1 (t) > 0 for t > 0, so f0 (t) is strictly increasing on (0, ∞). An easy computation yields

lim
t→0

f1 (t) = 0 and lim
t→∞

f1 (t) = ln

√
8θ

3
,

which completes the proof.

Using Lemma 2 we can prove the following lemma, which will be use to prove Theorem 2.

Proposition 3. Let q 6= 0, 1/2, 1. The ratio

t 7→ cosh1/q (qt)− 1
cosh t− 1

is strictly increasing on (0, ∞) if q ∈ (−∞, 0) ∪ (1/2, 1) and strictly decreasing on (0, ∞) if q ∈ (0, 1/2) ∪
(1, ∞). Consequently, the double inequality

q cosh t + 1− q < cosh1/q (qt) < cq cosh t + 1− cq (17)

holds for t > 0 if q ∈ (−∞, 0) ∪ (1/2, 1), where the weights q and cq = 21−1/q if q > 0 and cq = 0 if q < 0
are the best possible. If q ∈ (0, 1/2) ∪ (1, ∞), then the double inequality (17) is reversed.

Proof. Let
g1 (t) = cosh1/q (qt)− 1 and g2 (t) = cosh t− 1.

Clearly, g1 (0+) = g2 (0+) = 0, and

lim
t→0

g1 (t)
g2 (t)

= q and lim
t→∞

g1 (t)
g2 (t)

= cq =

{
21−1/q if q > 0,

0 if q < 0.

Differentiation yields

g′1 (t)
g′2 (t)

=
cosh1/q−1 (qt) sinh (qt)

sinh t
,[

g′1 (t)
g′2 (t)

]′
=

(1− 2q) t
2 sinh2 t cosh2−1/q (qt)

(
sinh |(1− 2q) t|
|(1− 2q) t| − sinh t

t

)
.

Since the function (sinh x) /x is strictly increasing on (0, ∞), we find that

[
g′1 (t)
g′2 (t)

]′ > 0 if (|1− 2q| − 1) (1− 2q) > 0, i.e., q ∈ (−∞, 0) ∪
(

1
2 , 1
)

,

< 0 if (|1− 2q| − 1) (1− 2q) < 0, i.e., q ∈ (1, ∞) ∪
(

0, 1
2

)
.

By Lemma 2, the desired monotonicity follows. The double inequality (17) and its reverse follow from
the monotonicity of g1 (t) /g2 (t) on (0, ∞). This completes the proof.
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Remark 2. Taking q = p0 = (ln 2) / ln π in the double inequality (17) we obtain the double inequality

p0 cosh t + 1− p0 < cosh1/p0 (p0t) <
2
π

cosh t + 1− 2
π

(18)

for t > 0.

Remark 3. The generalized Heronian mean [35] is defined by

Hw (a, b) =
a + b + w

√
ab

w + 2
.

Let t = ln
√

a/b with b > a > 0 and q = w/ (w + 2) > 0. Then Proposition 3 give a best approximation for
Hw (a, b) by power means:

Hw (a, b) < Aw/(w+2) (a, b) if w ∈ (2, ∞) ,

Hw (a, b) > Aw/(w+2) (a, b) if q ∈ (0, 2) .

Our proof is clearly concise than Li, Long and Chu’s given in [35].

4. Proofs of Theorem 1 and 2

We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1. We have

F (t) =
tI0 (t)

2

cosh3/2(2t/3) sinh t
=

I0 (t)
2

f0 (t)
× t f0 (t)

cosh3/2(2t/3) sinh t
= F0 (t)× F1 (t) .

As shown in Propositions 1 and 2, the functions F0 (t) and F1 (t) are both strictly positive and decreasing
on (0, ∞), so is F (t). And, we easily obtain

lim
t→0

F (t) = lim
t→0

F0 (t)× lim
t→0

F1 (t) = 1,

lim
t→∞

F (t) = lim
t→∞

F0 (t)× lim
t→∞

F1 (t) =
3

πθ

√
8θ

3
=

√
8

π
.

Using the monotonicity of F (t), the desired double inequality follows. This completes the proof.

Proof of Theorem 2. (i) The necessary condition for the right hand side inequality of (12) to hold
follows from the limit relation

lim
t→0

I0 (t)
2 − cosh1/p (pt) (sinh t) /t

t2 = −1
6
(3p− 2) ≤ 0.

The sufficiency follow from Theorem 1 and the increasing property of p 7→ cosh1/p(pt) on R.
(ii) The necessary condition for the left hand side inequality of (12) to hold follows from the

limit relation

lim
t→∞

(cosh (qt))1/q (sinh t) /t

I0 (t)
2 ≤ 1.

Since I0 (t) ∼ et/
√

2πt as t→ ∞ (see [36], 9.7.1) and

cosh1/q (qt)
sinh t

t
≤ sinh t

t
∼ et

2t
if q ≤ 0,

cosh1/q (qt)
sinh t

t
= et

(
1 + e−2qt

2

)1/q

et 1− e−2t

2t
∼ 1

21/q
e2t

2t
,
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we have

lim
t→∞

cosh1/q (qt) (sinh t) /t

I0 (t)
2 =

{
0 if q ≤ 0,
π

21/q if q > 0.

Therefore, the necessary condition is that π/21/q ≤ 1 if q > 0 and q ≤ 0, that is, q ≤ (ln 2) / ln π = p0.
By the increasing property of q 7→ cosh1/q (qt), to prove the sufficiency, it suffices to prove the

left hand side inequality of (12) holds when q = p0. From the first inequality of (7) and the second
inequality of (18) it follows that

I0 (t) >

√
sinh t

t

(
2
π

cosh t + 1− 2
π

)
>

√
sinh t

t
cosh1/p0 (p0t)

for t > 0, which proves the sufficiency, and the proof is completed.

5. Concluding Remarks

In this paper, we obtained the best constants p and q such that the double inequality (12) holds for
t > 0, or equivalently, (11) holds for a, b > 0 with a 6= b. This improved the result in [24]. We close the
paper by giving two remarks on our results.

Remark 4. It was shown in ([20], 5.25) that

A2/3 (a, b) < I (a, b) <
2
√

2
e

A2/3 (a, b) .

Then the double inequality (11) can be extended as√
e
π

√
L (a, b) I (a, b) <

23/4
√

π

√
L (a, b) A2/3 (a, b) < TQ (a, b)

<
√

L (a, b) A2/3 (a, b) <
√

L (a, b) I (a, b).

Remark 5. As a computable bound, the upper bound
√

t−1 sinh t cosh3/2 (2t/3) for I0 (t) is superior to those
given (6) and (8). In fact, we have

I0 (t) <

√
sinh t

t
cosh3/2

(
2t
3

)
<

√
sinh t

t
cosh t =

√
sinh (2t)

2t
(19)

and

I0 (t) <

√
sinh t

t
cosh3/2

(
2t
3

)
<

3
4

sinh t
t

+
1
4

cosh t (20)

for t > 0. The inequalities (19) are clear, and we have to check (20). Let

h (t) = ln

√
sinh (3t/2)

3t/2
cosh3/2 (t)− ln

[
3
4

sinh (3t/2)
3t/2

+
1
4

cosh (3t/2)
]

.

Differentiation yields

h′ (t) =
1
6

h1 (t)
t [sinh (3t) + t cosh (3t)] cosh (2t) sinh (3t)

,
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where

h1 (t) = t2
(

3 cosh 2t cosh2 3t + 3 sinh 2t cosh 3t sinh 3t− 6 cosh 2t sinh2 3t
)

+
(

3 sinh 2t sinh2 3t− 4 cosh 2t cosh 3t sinh 3t
)

t + cosh 2t sinh2 3t.

Using “product into sum" formulas for hyperbolic functions and expanding in power series give

h1 (t) =
9
2

t2 cosh 2t− 3
2

t2 cosh 4t− 3
2

t sinh 2t− 7
4

t sinh 4t− 1
4

t sinh 8t

+
1
4

cosh 4t− 1
2

cosh 2t +
1
4

cosh 8t

h1 (t) =
9
2

∞

∑
n=1

22n−2

(2n− 2)!
t2n − 3

2

∞

∑
n=1

42n−2

(2n− 2)!
t2n

−3
2

∞

∑
n=1

22n−1

(2n− 1)!
t2n − 7

4

∞

∑
n=1

42n−1

(2n− 1)!
t2n

−1
4

∞

∑
n=1

82n−1

(2n− 1)!
t2n +

1
4

∞

∑
n=0

42n

(2n)!
t2n

−1
2

∞

∑
n=0

22n

(2n)!
t2n +

1
4

∞

∑
n=0

82n

(2n)!
t2n = − 1

16

∞

∑
n=1

bn (2t)2n

(2n)!
,

where
bn = (n− 4) 42n +

(
6n2 + 11n− 4

)
22n − 4

(
18n2 − 15n− 2

)
.

Since b1 = b2 = 0, b3 = 756 and for n ≥ 4,

bn ≥
(

6n2 + 11n− 4
)

28 − 4
(

18n2 − 15n− 2
)

= 4
(

366n2 + 719n− 254
)
> 0,

we have h1 (t) < 0 for t > 0, so is h′ (t). This leads to h (t) < limt→0 h (t) = 0, which proves the second
inequality of (20) holds for t > 0.

Remark 6. Due to

L (a, b) =
a− b

ln a− ln b
=
∫ 1

0
asb1−sds,

TQ (a, b) =
2
π

∫ π/2

0
acos2 θbsin2 θdθ =

1
π

∫ 1

0
asb1−s (s (1− s))−1/2 ds,

the referee introduces a new family of means Lα (a, b) defined for α > 0 by

Lα (a, b) =
Γ (2α)

Γ (α)2

∫ 1

0
asb1−s (s (1− s))α−1 ds.

The referee also gives an interesting relation between this new mean and the modified Bessel functions of the
first kind:

Lα (a, b)√
ab

= Γ
(

α +
1
2

)(
t
2

)1/2−α

Iα−1/2 (t) , t = ln
√

a
b

.

It is easy to check that

lim
α→0

Lα (a, b) =
a + b

2
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and

Lα (a, b) =
Γ (2α)

Γ (α)2

∫ 1

0
asb1−s (s (1− s))α−1 ds

<
Γ (2α)

Γ (α)2

∫ 1

0
(sa + (1− s) b) (s (1− s))α−1 ds =

a + b
2

.

However, more problems remain to be researched on this new family of means, for example: (i) checking the
monotonicity of this mean with respect to the parameter α; (ii) finding the lower and upper bounds for this mean
in terms of elementary means; (iii) comparing this new mean with others.
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