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Abstract: This paper examines the squeezed hybrid nanofluid flow over a permeable sensor surface
with magnetohydrodynamics (MHD) and radiation effects. The alumina (Al2O3) and copper (Cu)
are considered as the hybrid nanoparticles, while water is the base fluid. The governing equations
are reduced to the similarity equations, using the similarity transformation. The resulting equations
are programmed in Matlab software through the bvp4c solver to obtain the numerical solutions. It
was found that the heat transfer rate was greater for the hybrid nanofluid, compared to the regular
nanofluid. It was observed that dual solutions exist for some values of the permeable parameter S.
The upper branch solutions of the skin friction coefficient (Re1/2

x C f ) and the heat transfer rate at the
surface (Re−1/2

x Nux) enhance with the added Cu nanoparticle (ϕ2) and for larger magnetic strength
(M). Moreover, the values of Re1/2

x C f decrease, whereas the values of Re−1/2
x Nux increase for both

branches, with the rise of the squeeze flow index (b). Besides, an increment of the heat transfer rate at
the sensor surface for both branches was observed in the presence of radiation (R). Temporal stability
analysis was employed to determine the stability of the dual solutions, and it was discovered that
only one of them was stable and physically reliable as time evolves.

Keywords: dual solutions; hybrid nanofluid; MHD; sensor surface; squeezed flow; stability analysis

1. Introduction

Nowadays, the problem of heat transfer in industrial processes has become the main topic of
interest to the researchers. Previously, fluids like water, oil, and ethylene glycol were regularly
considered as cooling liquids in those processes, but their heat transfer rates are limited. In 1995, Choi
and Eastman [1] introduced fluid called “nanofluid” to replace the use of regular fluids in industrial
processes. Nanofluid was composed by dispersing one type of nanoparticle in the aforementioned
fluids to enhance their thermal conductivity. However, the researchers found that the thermal properties
of the nanofluid could be improved with the addition of more than a single nanoparticle in the base
fluid and named it as ‘hybrid nanofluid’. Experimental studies that consider the hybrid nanocomposite
particles were conducted by several researchers, for example, Turcu et al. [2] and Jana et al. [3]. Besides,
Suresh et al. [4] synthesized the Al2O3–Cu nanocomposite powder by using a thermochemical method.
From the experimental data, it was revealed that the added hybrid nanoparticles enhanced the thermal
conductivity of the fluid.

Apart from that, the numerical studies of hybrid nanofluid were extended to the boundary layer
flow problem. For instance, the flow over a stretching surface with Al2O3–Cu hybrid nanoparticles
was studied by Devi and Devi [5]. They found that the enhancement in the heat transfer occurs at
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higher values of the nanoparticle volume concentrations. Besides, Waini et al. [6–13], in a series of
papers, extended the hybrid nanofluid flow problem to different surfaces, considering the dual nature
behaviour of the solutions. Additionally, the problem of hybrid nanofluid flow with different physical
parameters was also considered by several authors [14–20]. For further reading, one can refer to the
review papers of nanofluid [21–23] and hybrid nanofluid [24–29]. Besides, the use of hybrid nanofluid
can improve the heat transfer rate due to the synergistic effects as discussed by Sarkar et al. [24]. Due
to its capability to improve the heat transfer rate, most of the applications that involve heat transfer,
such as coolant in machining and electronic and transformer cooling, are considering hybrid nanofluid
as heat transfer fluid.

Squeezed flow over a sensor surface with heat transfer has significant applications in industrial,
chemical, and biomedical processes. The sensing element that is commonly used in these processes is
microcantilever [30]. This is due to its capability in diagnosing several terminal diseases and also its
rapid respond to biowarfare or hazardous agents. Besides, the microcantilever sensor also has high
sensitivity, the finest procedure characteristics, actual time sense, and lower cost [31]. Therefore, the
study on a sensor surface has gained a lot of consideration by scientists, engineers, and researchers. In
this respect, Khaled and Vafai [32] initially studied the flow over a sensor surface placed in a squeezed
channel with magnetohydrodynamics (MHD) effects. They found that the rising of the squeezing
free stream velocity tended to enhance the local Nusselt number and local wall shear stress. Then,
Mahmood et al. [33] investigated a similar problem, but they employed three different methods to
solve the locally non-similar momentum and energy equations. Since that, the topic of flow over
a sensor surface was vigorously investigated by researchers considering various type of fluids. For
example, Hayat et al. [34] examined the squeezed flow in a second-grade fluid. Furthermore, Khan
et al. [35] and Salahuddin et al. [36] considered the Carreau and Carreau–Yasuda fluids, respectively.
Besides, Ganesh Kumar et al. [37] studied the unsteady squeezed flow of a tangent hyperbolic fluid.
Apart from that, the nanofluid flow over a sensor surface was considered by several authors with
different aspects, such as Ul Haq et al. [38], Hamzah et al. [39], Akbar and Khan [40], Kandasamy et
al. [41], and Nayak et al. [42].

Thus, the objective of this paper is to examine the permeability effects on the hybrid nanofluid
flow over a sensor surface with the magnetic field and radiation by employing Tiwari and Das [43]
model. Here, we consider water as the base fluid, and copper (Cu) and alumina (Al2O3) as the hybrid
nanoparticles. The results are obtained for several physical parameters and presented graphically
through tables. Additionally, the comparison results for limiting cases are done with previously
published data. Besides, the theoretical analysis from this study is beneficial to other researchers or
engineers to further investigate the heat transfer problem that arises in the modern industry.

2. Mathematical Formulation

Consider an unsteady squeezed flow over a permeable sensor surface in a hybrid nanofluid, as
illustrated in Figure 1. Here, the x- and y-axes are the Cartesian coordinates, where x is assigned along
the sensor surface, and y is orthogonal from the surface. The sensor surface (having a length (L)) is
placed in a squeezed channel where the height of the channel (h(t)) is much larger than the thickness
of the boundary layer. Here, we assume that the squeezing in the free stream starts from the tip of
the surface, where the lower plate is fixed while the upper plate is squeezed. The surface permeable
velocity (vw(t)) through the sensor surface is considered. It was also assumed that a magnetic field
strength (B(t)) was applied normal to the flow. Therefore, the equations that govern the hybrid
nanofluid flow are (Khaled and Vafai [32]):

∂u
∂x

+
∂v
∂y

= 0, (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
1
ρhn f

∂p
∂x

+
µhn f

ρhn f

∂2u
∂y2 −

σhn f

ρhn f
B2u, (2)
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∂U
∂t

+ U
∂U
∂x

= −
1
ρhn f

∂p
∂x
−
σhn f

ρhn f
B2U, (3)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
khn f

(ρCp)hn f

∂2T
∂y2 −

1
(ρCp)hn f

∂qr

∂y
, (4)

where u and v represent the velocity components along the x- and y-axes, while p, qr, T, t, and U
represent the pressure, the radiative heat flux, the hybrid nanofluid temperature, time, and the axial
free stream velocity, respectively. Now, by substituting the pressure gradient term from Equation (3),
Equation (2) is transformed into the following form:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
∂U
∂t

+ U
∂U
∂x

+
µhn f

ρhn f

∂2u
∂y2 +

σhn f

ρhn f
B2(U − u). (5)
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The radiative heat flux is given as (see Rosseland [44], Cortell [45]):

qr = −
4σ∗

3k∗
∂T4

∂y
, (6)

where k∗ and σ∗ denote the mean absorption coefficient and the Stefan–Boltzmann constant, respectively.
Using Taylor series, T4 is expanded about T∞; and ignoring the higher-order terms, we have T4 �

4T3
∞T − 3T4

∞. Thus, Equation (4) becomes (see Waini et al. [8]; Cortell [45]):

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
1

(ρCp)hn f

[
khn f +

16σ∗T3
∞

3k∗

]
∂2T
∂y2 (7)

subject to:

u(x, 0, t) = 0, v(x, 0, t) = vw(t),−khn f
∂T(x,0,t)
∂y = qw(x)

u(x,∞, t) = U(x, t), T(x,∞, t) = T∞,

(8)

where U(x, t), qw(x), and T∞ represent the free stream velocity, the wall heat flux, and the free stream
temperature, respectively. Meanwhile, the thermophysical correlations of hybrid nanofluid are given
in Table 1 (see [5,46]). Besides, the physical properties of Al2O3, Cu, and water are provided in Table 2
(see [46,47]). Here, Al2O3 and Cu volume fractions are given by ϕ1 and ϕ2, and the subscripts n1 and
n2 correspond to their solid components, respectively. Additionally, we employed the uniform size of
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the spherical nanoparticles of Al2O3 and Cu. Besides, the fluid, nanofluid, and hybrid nanofluid were
designated by the subscripts f , n f , and hn f , respectively.

Table 1. Thermophysical properties of nanofluid and hybrid nanofluid.

Thermophysical
Properties Nanofluid Hybrid Nanofluid

Density ρn f = (1−ϕ1)ρ f + ϕ1ρn1 ρhn f = (1−ϕ2)
[
(1−ϕ1)ρ f + ϕ1ρn1

]
+ ϕ2ρn2

Heat capacity
(ρCp)n f =

(1−ϕ1)(ρCp) f + ϕ1(ρCp)n1

(ρCp)hn f =

(1−ϕ2)
[
(1−ϕ1)(ρCp) f + ϕ1

(
ρCp)n1

]
+ ϕ2(ρCp)n2

Dynamic
viscosity

µn f =
µ f

(1−ϕ1)
2.5 µhn f =

µ f

(1−ϕ1)
2.5(1−ϕ2)

2.5

Thermal
conductivity kn f =

kn1+2k f−2ϕ1(k f−kn1)
kn1+2k f +ϕ1(k f−kn1)

×

(
k f

) khn f =
kn2+2kn f−2ϕ2(kn f−kn2)
kn2+2kn f +ϕ2(kn f−kn2)

×

(
kn f

)
where

kn f =
kn1+2k f−2ϕ1(k f−kn1)
kn1+2k f +ϕ1(k f−kn1)

×

(
k f

)
Electrical

conductivity σn f = 1 +
3
(
σn1
σ f
−1

)
ϕ1

2+
σn1
σ f
−

(
σn1
σ f
−1

)
ϕ1

×

(
σ f

) σhn f =
σn2+2σn f−2ϕ2(σn f−σn2)
σn2+2σn f +ϕ2(σn f−σn2)

×

(
σn f

)
where

σn f =
σn1+2σ f−2ϕ1(σ f−σn1)
σn1+2σ f +ϕ1(σ f−σn1)

×

(
σ f

)
Table 2. Thermophysical properties of Al2O3, Cu, and water.

Thermophysical Properties Al2O3 Cu Water

ρ
(
kg/m3

)
3970 8933 997.1

Cp(J/kgK) 765 385 4179
k(W/mK) 40 400 0.613
σ(S/m) 3.69 × 107 5.96 × 107 0.05

Prandtl number, Pr 6.2

Referring to Khaled and Vafai [32], the following form of the free stream velocity, the surface
permeable velocity, the magnetic field, and the surface heat flux were considered:

U(x, t) = ax, vw(t) = v0
√

a, B(t) = B0
√

a, qw(x) = q0x, (9)

where v0 is the reference surface permeable velocity, B0 is the reference magnetic field strength, and q0

is the reference heat flux. An appropriate transformation is introduced as:

ψ =
√

av f x f (η), η = y
√

a/v f , θ(η) =
T − T∞(

q0x/k f
)√

v f /a
, a =

1
s + bt

, (10)

where ψ denotes the stream function with u = ∂ψ/∂y and v = −∂ψ/∂x so that Equation (1) is
identically fulfilled. Here, a is the squeeze flow strength with s as a constant, and b is the squeeze
flow index. According to Khaled and Vafai [32], the channel’s height movement is described by the
following condition: h(t) = h0e−st for b = 0; and h(t) = h0/(s + bt)(1/b) for b > 0, where h0 is a constant.
Employing these definitions, we get

u = ax f ′(η), v = −
√

av f f (η). (11)
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Thus, Equations (5) and (7) become:

µhn f /µ f

ρhn f /ρ f
f ′′′ +

(
f +

bη
2

)
f ′′ − f ′2 + b( f ′ − 1) +

σhn f /σ f

ρhn f /ρ f
M(1− f ′) + 1 = 0, (12)

1
Pr

1
(ρCp)hn f /(ρCp) f

(khn f

k f
+

4
3

R
)
θ′′ +

(
f +

bη
2

)
θ′ −

(
f ′ +

b
2

)
θ = 0, (13)

subject to:

f (0) = −S, f ′(0) = 0, θ′(0) = −
k f

khn f
,

f ′(∞) = 1, θ(∞) = 0,

(14)

where the notation (′) means the differentiation with respect to η, M represents the magnetic parameter, R
represents the radiation parameter, Pr represents the Prandtl number, and S represents the permeability
parameter; with S < 0 for suction and S > 0 for injection. These parameters are defined as:

M =
σ f B2

0

ρ f
, R =

4σ∗T3
∞

k∗k f
, Pr =

(µCp) f

k f
, S =

v0
√
ν f

. (15)

The skin friction coefficient (C f ) and the local Nusselt number (Nux) are defined as:

C f =
τw

ρ f U2 , Nux =
xqw

k f (Tw − T∞)
, (16)

where τw and qw symbolized the shear stress and the heat flux from the surface defined as (see Waini et
al. [8]; Cortell [45]):

τw = µhn f

(
∂u
∂y

)
y=0

, qw = −khn f

(
∂T
∂y

)
y=0

+ (qr)y=0. (17)

Using (10), (16), and (17), one gets:

Re1/2
x C f =

µhn f

µ f
f ′′ (0), Re−1/2

x Nux =

(
1 +

k f

khn f

4
3

R
)

1
θ(0)

, (18)

where Rex = Ux/ν f denotes the local Reynolds number.

3. Stability Analysis

It was found that dual solutions exist for some values of the physical parameters, so analysis to
determine the real solution was required. Therefore, the stability analysis introduced by Merkin [48]
and Weidman et al. [49] was considered for this purpose. The analysis was initiated by introducing the
new variables based on Equation (10) and given as follows:

ψ =
√

av f x f (η, τ), η = y
√

a/v f , θ(η, τ) =
T − T∞(

q0x/k f
)√

v f /a
, τ = at, a =

1
s + bt

. (19)

Using (19) and following the same procedure as the previous section, we have:

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 +

(
f +

bη
2

)
∂2 f
∂η2 −

(
∂ f
∂η

)2

+ b
(
∂ f
∂η
− 1

)
+
σhn f /σ f

ρhn f /ρ f
M

(
1−

∂ f
∂η

)
+ 1− (1− bτ)

∂2 f
∂η∂τ

= 0, (20)
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1
Pr

1
(ρCp)hn f /(ρCp) f

(khn f

k f
+

4
3

R
)
∂2θ

∂η2 +

(
f +

bη
2

)
∂θ
∂η
−

(
∂ f
∂η

+
b
2

)
θ− (1− bτ)

∂θ
∂τ

= 0, (21)

subject to:

f (0, τ) = −S, ∂ f
∂η (0, τ) = 0, ∂θ

∂η (0, τ) = −
k f

khn f
,

∂ f
∂η (∞, τ) = 1, θ(∞, τ) = 0.

(22)

According to Weidman et al. [49], the relations given in Equation (23) were employed to examine
the stability of the steady solution, f = f0(η), and θ = θ0(η) of Equations (12) to (14).

f (η, τ) = f0(η) + e−γτF(η), θ(η, τ) = θ0(η) + e−γτG(η), (23)

where γ indicates the unknown eigenvalue that determines the stability of the solutions, whereas F(η)
and G(η) are small compared to f0(η) and θ0(η). The stability of the steady flow, f0(η), and θ0(η) are
investigated by setting τ = 0 in Equations (20) and (21). By inserting Equation (23) into Equations (20)
to (22), one obtains:

µhn f /µ f

ρhn f /ρ f
F′′′ +

(
f0 +

bη
2

)
F′′ + f ′′0 F− 2 f ′0F′ + bF′ −

σhn f /σ f

ρhn f /ρ f
MF′ + γF′ = 0, (24)

1
Pr

1
(ρCp)hn f /(ρCp) f

(khn f

k f
+

4
3

R
)
G′′ +

(
f0 +

bη
2

)
G′ + θ′0F−

(
f ′0 +

b
2

)
G− θ0F′ + γG = 0, (25)

subject to:
F(0) = 0, F′(0) = 0, G′(0) = 0,

F′(∞) = 0, G(∞) = 0.
(26)

Without loss of generality, the values of γ from Equations (24) to (26) were obtained for the case of
F′′ (1) = 1, as proposed by Harris et al. [50].

4. Results and Discussion

Equations (12) to (14) are solved in Matlab software by bvp4c solver that employed the 3-stage
Lobatto IIIa formula (see Shampine et al. [51]). A suitable selection of the boundary layer thickness,
η∞, and the initial guess are required to obtain the solutions. Moreover, several researchers [52–56]
also employed this solver for solving the boundary layer flow problems. Here, we considered that
volume fractions of Cu varied from 0 to 0.04 (0 ≤ ϕ2 ≤ 0.04), while Al2O3 was kept fixed at ϕ1 = 0.1,
and water was used as the base fluid.

Table 3 provides the comparison values of f ′′ (0) under different values of M and S for regular fluid
(ϕ1 = ϕ2 = 0) when b = 0, with Sparrow et al. [57], and Yih [58]. It was observed that the comparison
was in excellent agreement with Sparrow et al. [57], and Yih [58], which supports the validity of the
present numerical procedure. Additionally, Table 4 displays the comparison values of f ′′ (0) and
1/θ(0) with those obtained by Ul Haq et al. [38] for different values of b and S when ϕ1 = ϕ2 = 0
(regular fluid), Pr = 6.2, R = 0, and M = 0.5. From the computation, we found that the comparison
showed good agreement with Ul Haq et al. [38]. Besides, the values of Re1/2

x C f and when Pr = 6.2 with
different physical parameters are presented in Table 5. It was found that the values of Re1/2

x C f and
Re−1/2

x Nux increased with the rise of ϕ2 and M, whereas these physical quantities decreased with the
rise of S. Moreover, the rise of b and R lead to an increase the local Nusselt number, Re−1/2

x Nux, whereas
the skin friction coefficient, Re1/2

x C f , decreased with the increase of b; but, as expected, remained
unchanged with variation of R. Additionally, the heat transfer rate of Al2O3-Cu/water hybrid nanofluid
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was intensified if compared to Cu/water nanofluid. This finding shows that the heat transfer rate was
higher in the hybrid nanofluid than in the regular nanofluid.

Table 3. Values of the skin friction coefficient f ′′ (0) under different values of the magnetic parameter
M and the permeability parameter S for regular fluid (ϕ1 = ϕ2 = 0) when b = 0.

M S Sparrow et al. [57] Yih [58] Present Results

0 1 0.7605 0.756575 0.756575
0 1.231 1.232588 1.232588
−1 1.889314 1.889314

1 1 1.124 1.116421 1.116421
0 1.584 1.585331 1.585331
−1 2.202940 2.202940

Table 4. Values of the skin friction coefficient f ′′ (0) and the local Nusselt number 1/θ(0) under
different values of b and S for regular fluid (ϕ1 = ϕ2 = 0) when Pr = 6.2, R = 0, and M = 0.5.

b S
Ul Haq et al. [38] Present Results

f”(0) 1/θ(0) f”(0) 1/θ(0)

0 −0.5 1.718541 3.840316
0.5 1.162236 0.46815 1.162236 0.468150

1 −0.5 1.481134 4.696999 1.481134 4.696999
0.5 0.866523 1.208932 0.866523 1.208932

2 −0.5 1.222208 5.380508
0.5 0.506833 1.839583

Table 5. Values of the skin friction coefficient Re1/2
x C f and the local Nusselt number Re−1/2

x Nux under
different physical parameters when Pr = 6.2.

ϕ2 b M R S
Cu/Water (ϕ1=0) Cu-Al2O3/Water (ϕ1=0.1)

Re1/2
x Cf Re−1/2

x Nux Re1/2
x Cf Re−1/2

x Nux

0 0 0 0 0 1.232588 1.573433 1.602057 1.860326
0.02 1.361008 1.655977 1.737286 1.947250
0.04 1.489346 1.736260 1.874379 2.033031
0.04 0.5 1.310038 2.261957 1.648715 2.611603

1 1.115515 2.712764 1.403904 3.110646
2 0.668444 3.469936 0.841253 3.952873
2 0.2 0.801908 3.489410 1.024317 3.978345

0.4 0.922159 3.506375 1.187917 4.000253
0.6 1.032259 3.521447 1.336850 4.019529
0.2 0.2 0.801908 3.903484 1.024317 4.342731

0.4 0.801908 4.282869 1.024317 4.682781
0.6 0.801908 4.635574 1.024317 5.003124
0.2 −0.2 1.012031 4.672733 1.278661 5.091581

0 0.801908 3.903484 1.024317 4.342731
0.2 0.596024 3.214263 0.775292 3.661256

On the other hand, the variations of the velocity profiles ( f ′(η)) and the temperature profiles
(θ(η)) when ϕ1 = ϕ2 = 0 (regular fluid), S = M = R = 0, and Pr = 6.7 for b = 0.5, 1, 1.5, 2 are
displayed in Figures 2a and 3a, respectively. The results exhibited qualitatively similarly to those
obtained by Khaled and Vafai [32]. It was observed that f ′(η) and θ(η) decreased with the rising
values of b (the decrease of the channel’s height) for the first solutions. Interestingly, we found that the
second solutions exist for this problem, which are displayed in Figures 2b and 3b. From these figures,
all profiles asymptotically satisfy the free stream conditions (14), thus supporting the validity of the
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numerical solutions. These behaviours reveal that the second solution was not physically stable, and
thus has no physical sense. Although such solutions are deprived of physical significance, they are
nevertheless of interest so far as the differential equations are concerned [59,60].
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The non-uniqueness of the solutions of Equations (12) to (14) are observed for S < Sc, and no
similarity solution was obtained when S > Sc, as shown in Figures 4–9. Separately, the effects of S
and ϕ2 on Re1/2

x C f and Re−1/2
x Nux when Pr = 6.2, b = 2, M = R = 0.2, and ϕ1 = 0.1 are given in

Figures 4 and 5. The dual solutions exist for the permeability parameter S ≤ Sc, where Sc1 = 1.1824,
Sc2 = 1.1300, and Sc3 = 1.0902 for ϕ2 = 0, 0.02 and 0.04, respectively. Moreover, for fixed values
of S, the upper branch solution of Re1/2

x C f and Re−1/2
x Nux was slightly enhanced with the rise of ϕ2.

These observations were consistent with Sarkar et al. [24], which stated that the addition of hybrid
nanoparticles tends to improve the heat transfer due to the synergistic effects. Furthermore, Figures 6
and 7 illustrate the variations of Re1/2

x C f and Re−1/2
x Nux against S when Pr = 6.2, M = R = 0.2,

ϕ1 = 0.1, and ϕ2 = 0.04 for various values of b. It was discovered that the increase of b tends to
decrease the skin friction coefficient, Re1/2

x C f , whereas the local Nusselt number, Re−1/2
x Nux, increases

for both branches. This implied that the reduction of the skin friction coefficient and the enhancement
of the heat transfer rate at the sensor surface were observed when the channel’s height decreases. It
was shown that the critical values for b = 2, 2.5, and 3 are Sc1 = 1.0902, Sc2 = 0.7676, and Sc3 = 0.5464,
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respectively. The plots of Re1/2
x C f and Re−1/2

x Nux against S for various values of M when Pr = 6.2,
b = 2, R = 0.2, ϕ1 = 0.1, and ϕ2 = 0.04 are depicted in Figures 8 and 9. The rise of M contributes to the
increment of Re1/2

x C f and Re−1/2
x Nux for the upper branch, whereas for the lower branch, the opposite

trends are observed. Here, we found that the presence of magnetic strength increases the range of S for
which the solutions are in existence, where Sc1 = 0.8217, Sc2 = 1.0902, and Sc3 = 1.4120 are the critical
values for M = 0, 0.2, and 0.4, respectively.Mathematics 2020, 8, x FOR PEER REVIEW 10 of 20 
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Further, the profiles of f ′(η) and θ(η) for several values of ϕ2 when Pr = 6.2, b = 2, S = M = R =

0.2, and ϕ1 = 0.1 are plotted in Figures 10 and 11. The increasing behaviour for both branch solutions
of f ′(η) were observed with the increase of ϕ2, but the observation was reversed for θ(η). Meanwhile,
Figures 12 and 13 display the impact of M on f ′(η) and θ(η) when Pr = 6.2, b = 2, S = R = 0.2,
ϕ1 = 0.1, and ϕ2 = 0.04. Note that, f ′(η) increases whereas θ(η) decreases for the first solution
with the increase of M, however, the observation is reversed for the second solution. Theoretically,
a magnetic field induces a drag or Lorentz force which decelerates the fluid flow. However, when
the flow is squeezed, the magnetic parameter (M) will act oppositely and consequently leads to an
increase in the fluid velocity. These observations are consistent with the results obtained by Khaled
and Vafai [32]. In addition, an increase in the velocity ( f ′(η)) was noticed for the second solution,
and it decreased for the first solution with increased values of S. Meanwhile, the temperature (θ(η))
increases for both branches when Pr = 6.2, b = 2, M = R = 0.2, ϕ1 = 0.1, and ϕ2 = 0.04, as displayed
in Figures 14 and 15.
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Figure 15. Impact of S on θ(η).

The effects of R and S on Re−1/2
x Nux when Pr = 6.2, b = 2, M = 0.2, ϕ1 = 0.1 and ϕ2 = 0.04 are

displayed in Figure 16. We found that Re−1/2
x Nux increased in the presence of radiation. Moreover,

Figure 17 portrays the velocity profiles θ(η) for various values of R when Pr = 6.2, b = 2, M = S = 0.2,
ϕ1 = 0.1, and ϕ2 = 0.04. Physically, larger values of R enhance the radiative heat energy in the
boundary layer. From the definition R = 4 σ∗T3

∞/k∗k f , it was noticed that R was related to Stephan
number, which measures the relative importance of thermal radiation heat transfer to the conduction
heat transfer. Therefore, for larger values of R, radiation is dominant over conduction that causes a rise
in the fluid temperature. We note that for all values of R, the critical value was Sc = 1.0902.

The variations of γ against S when b = 2, M = 0.2, ϕ1 = 0.1, and ϕ2 = 0.04 are portrayed in
Figure 18. It was noticed that the sign of γ for the first solution was positive, while it was negative
for the second solution. By the definition in Equation (23), as time evolves (τ→∞), e−γτ → 0 for the
positive value of γ and e−γτ →∞ for the negative value of γ. Thus, this implies that the first solution
is the real solution and stable, whereas the other is unstable and not physically relevant in the long run.



Mathematics 2020, 8, 898 15 of 20

Mathematics 2020, 8, x FOR PEER REVIEW 15 of 20 

 

 

Figure 15. Impact of 𝑆 on 𝜃(𝜂). 

The effects of 𝑅  and 𝑆  on 𝑅𝑒௫ି ଵ/ଶ 𝑁 𝑢௫  when Pr = 6.2, 𝑏 = 2, 𝑀 = 0.2, 𝜑ଵ = 0.1, and 𝜑ଶ =0.04 are displayed in Figure 16. We found that 𝑅𝑒௫ି ଵ/ଶ 𝑁 𝑢௫ increased in the presence of radiation. 
Moreover, Figure 17 portrays the velocity profiles 𝜃(𝜂) for various values of 𝑅 when Pr = 6.2, 𝑏 =2, 𝑀 = 𝑆 = 0.2, 𝜑ଵ = 0.1, and 𝜑ଶ = 0.04. Physically, larger values of 𝑅 enhance the radiative heat 
energy in the boundary layer. From the definition 𝑅 = 4 𝜎∗𝑇ஶଷ/𝑘∗𝑘௙ , it was noticed that 𝑅  was 
related to Stephan number, which measures the relative importance of thermal radiation heat transfer 
to the conduction heat transfer. Therefore, for larger values of 𝑅 , radiation is dominant over 
conduction that causes a rise in the fluid temperature. We note that for all values of 𝑅, the critical 
value was 𝑆௖ = 1.0902. 

 

Figure 16. Impact of 𝑅 and 𝑆 on 𝑅𝑒௫ି ଵ/ଶ 𝑁 𝑢௫. 
Figure 16. Impact of R and S on Re−1/2

x Nux.
Mathematics 2020, 8, x FOR PEER REVIEW 16 of 20 

 

 

Figure 17. Impact of 𝑅 on 𝜃(𝜂). 

The variations of 𝛾 against S when 𝑏 = 2, 𝑀 = 0.2, 𝜑ଵ = 0.1, and 𝜑ଶ = 0.04 are portrayed in 
Figure 18. It was noticed that the sign of 𝛾 for the first solution was positive, while it was negative 
for the second solution. By the definition in Equation (23), as time evolves (𝜏 → ∞), 𝑒ି ఊఛ → 0 for the 
positive value of 𝛾  and 𝑒ି ఊఛ → ∞  for the negative value of 𝛾 . Thus, this implies that the first 
solution is the real solution and stable, whereas the other is unstable and not physically relevant in 
the long run.  

 

Figure 18. Plot of 𝛾 against 𝑆. 

5. Conclusion 

In the present paper, the squeezed hybrid nanofluid flow over a permeable sensor surface with 
heat transfer was accomplished. Results validation was done for limiting cases, where the present 
results are comparable with the existing results. The rate of heat transfer for the hybrid nanofluid was 
greater than that of the regular nanofluid. Based on our computations, there exist two solutions for 
squeezed flow problems, due to an external free stream created by the squeezing strength. On the 
other hand, the numerical results revealed that the solutions were not unique for 𝑆 < 𝑆௖ , and no 
similarity solutions were obtained when 𝑆 > 𝑆௖. The values of 𝑅𝑒௫ଵ/ଶ 𝐶௙ and 𝑅𝑒௫ି ଵ/ଶ 𝑁 𝑢௫ increased 
with the rise in values of 𝜑ଶ and M. Besides, the values of 𝑅𝑒௫ଵ/ଶ 𝐶௙ decreased, whereas the values of 𝑅𝑒௫ି ଵ/ଶ 𝑁 𝑢௫  increased, with the increase of b . Additionally, the values of 𝑅𝑒௫ି ଵ/ଶ 𝑁 𝑢௫  were 

Figure 17. Impact of R on θ(η).

Mathematics 2020, 8, x FOR PEER REVIEW 16 of 20 

 

 

Figure 17. Impact of 𝑅 on 𝜃(𝜂). 

The variations of 𝛾 against S when 𝑏 = 2, 𝑀 = 0.2, 𝜑ଵ = 0.1, and 𝜑ଶ = 0.04 are portrayed in 
Figure 18. It was noticed that the sign of 𝛾 for the first solution was positive, while it was negative 
for the second solution. By the definition in Equation (23), as time evolves (𝜏 → ∞), 𝑒ି ఊఛ → 0 for the 
positive value of 𝛾  and 𝑒ି ఊఛ → ∞  for the negative value of 𝛾 . Thus, this implies that the first 
solution is the real solution and stable, whereas the other is unstable and not physically relevant in 
the long run.  

 

Figure 18. Plot of 𝛾 against 𝑆. 

5. Conclusion 

In the present paper, the squeezed hybrid nanofluid flow over a permeable sensor surface with 
heat transfer was accomplished. Results validation was done for limiting cases, where the present 
results are comparable with the existing results. The rate of heat transfer for the hybrid nanofluid was 
greater than that of the regular nanofluid. Based on our computations, there exist two solutions for 
squeezed flow problems, due to an external free stream created by the squeezing strength. On the 
other hand, the numerical results revealed that the solutions were not unique for 𝑆 < 𝑆௖ , and no 
similarity solutions were obtained when 𝑆 > 𝑆௖. The values of 𝑅𝑒௫ଵ/ଶ 𝐶௙ and 𝑅𝑒௫ି ଵ/ଶ 𝑁 𝑢௫ increased 
with the rise in values of 𝜑ଶ and M. Besides, the values of 𝑅𝑒௫ଵ/ଶ 𝐶௙ decreased, whereas the values of 𝑅𝑒௫ି ଵ/ଶ 𝑁 𝑢௫  increased, with the increase of b . Additionally, the values of 𝑅𝑒௫ି ଵ/ଶ 𝑁 𝑢௫  were 

Figure 18. Plot of γ against S.



Mathematics 2020, 8, 898 16 of 20

5. Conclusions

In the present paper, the squeezed hybrid nanofluid flow over a permeable sensor surface with
heat transfer was accomplished. Results validation was done for limiting cases, where the present
results are comparable with the existing results. The rate of heat transfer for the hybrid nanofluid was
greater than that of the regular nanofluid. Based on our computations, there exist two solutions for
squeezed flow problems, due to an external free stream created by the squeezing strength. On the other
hand, the numerical results revealed that the solutions were not unique for S < Sc, and no similarity
solutions were obtained when S > Sc. The values of Re1/2

x C f and Re−1/2
x Nux increased with the rise

in values of ϕ2 and M. Besides, the values of Re1/2
x C f decreased, whereas the values of Re−1/2

x Nux

increased, with the increase of b. Additionally, the values of Re−1/2
x Nux were enhanced in the presence

of radiation (R). The upsurge of ϕ2 contributed to the increment in f ′(η) for both branches, but the
observation was reversed for θ(η). Additionally, f ′(η) increased whereas θ(η) decreased for the first
solution with the increase of M, but the behavior was reversed for the second solution. The temporal
stability analysis showed, that between the two solutions, only one was stable and reliable in the long
run, while the other was unstable. The outcome from this study provides the theoretical analysis of
the flow and heat transfer in a hybrid nanofluid that is beneficial to other researchers or engineers in
choosing suitable parameters for heat transfer optimization in modern industry.
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Nomenclature

h0, s constant
a squeeze flow strength
b squeeze flow index
B magnetic field
B0 reference magnetic field strength
C f skin friction coefficient
Cp specific heat at constant pressure

(
Jkg−1K−1

)(
ρCp

)
heat capacitance of the fluid

(
JK−1m−3

)
f (η) dimensionless stream function
h height of the channel
k thermal conductivity of the fluid

(
Wm−1K−1

)
k∗ Rosseland mean absorption coefficient

(
m−1

)
L sensor surface length
Nux local Nusselt number
M magnetic parameter
Pr Prandtl number
p pressure
q0 reference heat flux
qr radiative heat flux in y direction

(
Wm−2

)
qw surface heat flux

(
Wm−2

)
R radiation parameter
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Rex local Reynolds number
S permeable parameter
t time (s)
T fluid temperature (K)
Tw surface temperature (K)
T∞ ambient temperature (K)
u, v velocity component in the x- and y- directions

(
ms−1

)
U free stream velocity

(
ms−1

)
v0 reference surface permeable velocity
vw surface permeable velocity

(
ms−1

)
x, y Cartesian coordinates (m)

Greek symbols
γ eigenvalue
η similarity variable
θ dimensionless temperature
µ dynamic viscosity of the fluid

(
kgm−1s−1

)
ν kinematic viscosity of the fluid

(
m2s−1

)
ρ density of the fluid

(
kgm−3

)
σ electrical conductivity of the fluid

(
Sm−1

)
σ∗ Stefan–Boltzmann constant

(
Wm−2K−4

)
τ dimensionless time variable
τw wall shear stress

(
kgm−1s−2

)
ϕ1 nanoparticle volume fractions for Al2O3 (alumina)
ϕ2 nanoparticle volume fractions for Cu (copper)
ψ stream function
Subscripts
f base fluid
n f nanofluid
hn f hybrid nanofluid
n1 solid component for Al2O3 (alumina)
n2 solid component for Cu (copper)
Superscript
′ differentiation with respect to η
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