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Abstract: Product recycling issues have gained increasing attention in many industries in the last
decade due to a variety of reasons driven by environmental, governmental and economic factors.
Closed-loop supply chain (CLSC) models integrate the forward and reverse flow of products. Since the
optimization of these CLSC models is known to be NP-Hard, competition on optimization quality in
terms of solution quality and computational time becomes one of the main focuses in the literature in
this area. A typical six-level closed-loop supply chain network is examined in this paper, which has
great complexity due to the high level of echelons. The proposed solution uses a multi-agent and
priority based approach which is embedded within a two-stage Genetic Algorithm (GA), decomposing
the problem into (i) product flow, (ii) demand allocation and (iii) pricing bidding process. To test and
demonstrate the optimization quality of the proposed algorithm, numerical experiments have been
carried out based on the well-known benchmarking network. The results prove the reliability and
efficiency of the proposed approach compared to LINGO and the benchmarking algorithm discussed
in the literature.

Keywords: closed-loop supply chain; genetic algorithm; product recycling; linear programming

1. Introduction

The closed-loop supply chain (CLSC) has become more popular in recent years due to several
reasons. One of the most prominent reasons is that environmental issues have gained increasing
attention. European regulations have increased a producer’s responsibility in several branches of
industry, such as WEEE (waste electrical and electronic equipment) 2001 for consumer electronics [1].
Customers also expect to trade-in old products when buying new ones, making producers pay more
attention to the reversion of used products or materials. Another crucial reason for operating in the
CLSC is the cost. A well-designed CLSC network can provide significant cost savings in procurement,
inventory, transportation and recovery processing. Hewlett-Packard estimated that the cost of returns
was as much as 2% of their gross outbound sales [2].

Guide and Van Wassenhove [3] defined closed-loop supply chain management (CLSCM) as the
design, control and operation of a system to creat maximum value in the entire life cycle of a product,
and dynamically restore value from different types and volumes of returns over time. The management
of CLSC describes the discipline of optimizing the delivery of goods, services and information from
supplier to customer and simultaneously from customer recovery to supplier [4]. With the same
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principle as in supply chain management, the goals of closed-loop supply chain management typically
include transportation network design, location of manufacture, distribution or dismantling center,
product recycling and other efforts to improve cost savings. Location selection and transportation
network design are two of the most important fields of CLSCM.

Many research studies related to the recovery of products have been conducted in the filed of
the supply chain including both academic and industrial applications. Fleischmann et al. [5] and
Wells and Seitz [6] believed that the forward and reverse logistics chains should be combined in
operations and the flow of materials to establish a closed-loop supply chain. The practical applications
of CLSC can be found in many fields. Krikke, Bloemhof-Ruwaard and Van Wassenhove [1] developed a
quantitative model which was applied to a refrigerators’ CLSC network design of a Japanese company
concerning its European strategies. Abu Bakar and Rahimifard [7] investigated into a real case of the
WEEE recycling process and indicated that systematic planning for an individual product’s recycling
process will improve the value of recovery significantly. Olugu and Wong [8] implemented a CLSC
performance evaluation system for an automotive industry company and reduced the cost of the
whole CLSC network significantly. Yan and Yan [9] investigated the open loop and closed loop supply
chain for product remanufacturing and proved the effectivity of closed loop reverse logistics through
numerical examples.

In the literature, it can be seen that the research of CLSC covers many aspects. In this paper,
the focus is the optimization of the CLSC network. The CLSC network links the forward logistics and
reverse logistics, in which the reverse part is connected by the action of customer recovery. It focuses
on the design of transportation routes and decisions on the facility operational state, instead of
investigation into the interactions between demands and returns or uncertainties [10,11]. The focused
CLSC network problem covers both the transportation and facility location problems at several stages.
Firstly, the transportation problem (TP) was originally proposed and solved by Hitchcock [12] and
became a well-known basic network problem. The facility location problem has received much
attention since 1985, with the aim of deciding on the number of distribution centers and finding
good locations so as to satisfy customer demand at minimum facility operation costs and delivery
costs [13]. Since the CLSP problem contains the capacitated p-median facility location problem, it is
also NP-hard [14].

In this academic area, most of these NP-hard CLSC problems are formulated into linear or
nonlinear problems [15]. To solve these kinds of NP-hard problems, exact algorithms can be an option
but for large scale problems, the computational time is too long and not useful practically. Hence,
heuristic algorithms such as the Genetic Algorithm (GA) have become an efficient method and have
gained more popularity. Although GA can solve this kind of NP-hard problem more efficiently than
exact algorithms, especially for large scale ones, the genetic seeking ability has not been exploited
sufficiently. In the literature, there are several kinds of adapted GA to solve the above mentioned
problem but all of the encoding processes are single-stage. The encoding of these adapted GA is mainly
classified into two categories. One with chromosomes only expresses the transportation route and
facilities operation state, not considering the product flows. These methods separate the problem
and use GAs to solve part of it. The others, with chromosomes, express all the information including
transportation route, product flows and facilities operation state. Since one chromosome in a single
stage contains vast information, the genetic operations will become difficult due to a huge number
of combinations. It will also dramatically decrease the genetic searching ability and increase the
calculation time. Chen, Chan and Chung [16] proposed a two-stage priority based GA and implemented
a basic scale experiment to show the feasibility of overcoming the above mentioned problem.

In this investigation, a priority and multi-agent based two-stage encoding GA approach is
developed, which can resolve the focused CLSC network optimized problem. This algorithm consists
of two stages, decomposing the CLSP into two sub-problems. The novel two-stage priority based
encoding enhances the genetic searching ability of GA when solving this type of location and
transportation problem. In the numerical calculation experiments, the proposed approach is adopted to
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deal with problems at different scales and comparisons with single-stage encoding GA and LINGO are
also implemented. In Experiment 1, the same dataset used by Wang and Hsu [17] is used for comparison.
In Experiments 2 and 3, the data sets are generated randomly and available for readers. The results
show that the proposed approach can be successfully used to solve the integrated closed-loop problem.

2. Literature Review

In this academic area, many researchers have conducted extensive study on the optimal CLSC
network. Barros et al. [18] developed a heuristic algorithm to optimize a location model considering
product recycling. Sheu, Chou and Hu [10] solved a comprehensive CLSC model with a multi-objective
linear programming. Paksoy et al. [19] balanced the equilibrium between various costs using a linear
programming model. Özkır and Başlıgıl [20] formulated an integer linear programming model to
optimize a recovery process in CLSC. Amin and Zhang [21] introduced a multi-objective mixed-integer
model to determine the uncertainty of the CLSC configuration and selection process simultaneously.
Atabaki et al. [22] developed a firefly algorithm to solve large scale problems in CLSC network design
with price sensitive demand.

Besides using linear programming for formulation, genetic algorithm has become popular as an
efficient method to deal with problems with NP-hardness. Lee and Chan [23] optimized the location
problem of collection points using genetic algorithm. Kannan et al. [24] studied a multi-level product
return network model in CLSC with genetic algorithm. Zhang et al. [25] developed a genetic algorithm
to solve a CLSC strategy problem with remanufacturing. Lee and Lee [26] proposed an optimization
approach integrate fuzzy control with genetic algorithm to solve a CLSC model, which efficiency
was demonstrated by a real data experiment. Akbari et al. [27] formulated a two-level supply chain
network, and solved with three approaches as genetic algorithm and two meta-heuristics.

In the particular area of focused CLSC network optimization, GA is also widely used. Min et al. [28]
formulated a nonlinear programming to describe the location problem for return points in CLSC,
and solved it using a binary chromosome encoding genetic algorithm, which can only deal with the open
and shut information of facilities. Gen, Altiparmak and Lin [4] proposed a two-stage transportation
problem, and optimized it with a priority-based encoding genetic algorithm. Their encoding method
conveyed information of product flow and transportation route, without considing flow allocation.
Similarly, Wang and Hsu [17] designed a spanning-tree based genetic algorithm to optimize an
integrated CLSC network. The product flow information was added by a spanning-tree method
to the chromosome encoding. Tuzkaya et al. [29] proposed a genetic algorithm with chromosome
encoding of binary strings, representing the collection periods and states of facilities, to optimize the
white goods recovery network. Yun, Chuluunsukh and Gen [30] proposed a hybrid genetic algorithm
approach to solve the sustainable closed-loop supply chain design problem and prove it outperforms
its competitors.

From the literature, it can be seen that in solving the CLSC problem with GA, most of the
encoding methods included either the delivery route information or the freight volume information
only. While in the CLSC problem, the delivery route decision and freight volume decision are integrated
with each other. Hence an integrated genetic algorithm which can solve the transportation route design
problem and the product flow allocation problem simultaneously may improve the performance of
GA in solving this kind of CLSC problem. In this research, a multi-agent and priority based GA
is proposed to optimize the CLSC network compresensively. The numerical experiments provide
different scales of problems to test the proposed approach. It also been compared with single-stage
encoding GA and LINGO. The experiments results prove the high quality performance and efficiency
of the proposed approach.

3. Problem Descriptions

In this research, the model established by Wang and Hsu [17] is used to describe the CLSC problem.
Six levels are included in this CLSC as shown in Figure 1.
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Figure 1. Concept model of the closed-loop supply chain (CLSC).

In Figure 1, the three solid lines represent three levels of product flow in the forward chain and the
three dotted lines represent the three levels of product recycle flow in the reverse chain. In the forward
chain, customer demands are given and the distribution centers transport the finished products to
customers to meet the demand. Manufacturers transport the corresponding finished products to the
distribution centers. In order to produce sufficient products, manufacturers need enough raw materials.
In this CLSC, both suppliers and dismantlers can provide raw materials to the manufactures. The raw
materials provided by dismantlers are from the recycling of used products collected by the distribution
centers from customers. There are many different manufacturers, distribution centers and dismantlers
located in different places. Each transportation route has its own unit shipping cost. The purpose of
this model is to optimize the transportation network where the facilities are located. The notation and
functions are defined as follow.

Indices
I the subscript of suppliers with i = 1, 2, . . . , I
J the subscript of manufacturers with j = 1, 2, . . . , J
K the subscript of distribution centers with k = 1,2, . . . , K
L the subscript of customers with l = 1, 2, . . . , L
M the subscript of dismantlers with m = 1, 2, . . . , M

Parameters
ai capacity of supplier i
b j capacity of manufacturer j
Sck total capacity of forward and reverse flow in the Distribution Center (DC) k
pdk the percentage of total capacity for reverse logistics in DC k
pcl recovery percentage of customer l
plm the landfilling rate of dismantler m
dl demand of the customer l
em capacity of dismantler m
si j production unit cost in manufacturer j using materials from supplier i
t jk transportation unit cost from each manufacturer j to each DC k
ukl transportation unit cost from DC k to customer l
vkm transportation unit cost from DC k to dismantler m
wmj transportation unit cost from dismantler m to manufacturer j
Rulk recovery unit cost in DC k from customer l
f j fixed cost for operating manufacturer j
gk fixed cost for operating DC k
hm fixed cost for operating dismantler m
ϕ fixed cost for landfilling per unit

Variables
xi j Production quantity at manufacturer j using raw materials from supplier i
y jk Shipping amount from manufacturer j to DC k
zkl Shipping amount from DC k to customer l
okm Shipping amount from DC k to dismantler m
Rdmj Shipping amount from dismantler m to manufacturer j
Rzlk Recovery quantity at DC k from customer l
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α j =

{
1 if production takes place at manufacturer j
0 otherwise

βk =

{
1 if DC k is opened
0 otherwise

δm =

{
1 if dismantler m is opened
0 otherwise

Object function:

min TC =
∑
i

∑
j

si jxi j +
∑
j

∑
k

t jky jk +
∑
k

∑
l

uklzkl +
∑
k

∑
m

vkmokm +
∑
m

∑
j

wmjRdmj

+
∑
l

∑
k

RulkRzlk +
∑
j

f jα j +
∑
k

gkβk +
∑
m

hmδm + ϕ
∑
m

⌊
plm

∑
k

okm

⌋ (1)

Subject to ∑
j

xi j ≤ ai, ∀i (2)

∑
k

y jk ≤ b jα j, ∀ j (3)

∑
l

zkl +
∑

m
okm ≤ Sckβk, ∀k (4)

∑
m

okm ≤
⌊
pdkSckβk

⌋
, ∀k b c : floor for Gauss’ symbol (5)

∑
j

Rdmj +

plm
∑

k

okm

 ≤ emδm, ∀m (6)

∑
k

Rzlk ≥

pcl

∑
k

zkl

, ∀l d e: ceiling for Gauss’ symbol (7)

∑
i

xi j +
∑

m
Rdmj =

∑
k

y jk, ∀ j (8)

∑
j

y jk =
∑

l

zkl, ∀k (9)

∑
l

Rzlk =
∑

m
okm, ∀k (10)

∑
k

okm =
∑

j

Rdmj +

plm
∑

k

okm

, ∀m (11)

∑
k

zkl ≥ dl, ∀l (12)

α j, βk, δm ∈ {0, 1}, ∀ j, k, m (13)

xi j, y jk, zkl, okm, Rdmj, Rzlk ∈ N ∪ {0} ∀i, j, k, l, m (14)

The objective function (1) is constructed to minimize the total cost including transportation and
operatation costs. The capacity limitation of the suppliers and manufacturers is stipulated by the
Equations (2) and (3). Equation (4) is used to ensure that the total capacity of DC can take account
of the gross flows, forwards and backwards. Equations (5) and (6) formulate the capacity limitation



Mathematics 2020, 8, 888 6 of 20

of the distribution ceters and dismantlers in reverse logistics. Equation (7) is used to express the
relationship between recovery rate and customer recovery. The equality of the in-flow and the out-flow
is guaranteed by the Equations (8), (9), (10) and (11). Equation (12) is used to guarantee that customer
needs are met. Equations (13) and (14) respectively show the binary and integer variables.

The CLSC is modeled by using the multi-agent based approach shown in Figure 2. It consists
of 5 types of agents: Supplier Agents (Si), Manufacturing Agents (Mj), Distribution Center Agents
(DCk), Customer Agents (Cl) and Dismantler Agent (dm). The operation of the system is driven by the
demands coming from customers, which are supplied by the DCs. Meanwhile, DCs are supplied by
the manufacturers, who will then determine the production quantity and further initiates demand to
suppliers. In this CLSC multi-agent model, this demand information will only be shared between two
layers, such as the agents in the layer of S with M, M with DC, DC with C, DC with d and d with M in
order to simplify the problem complexity. Accordingly, we propose a novel two-stage priority based
Genetic Algorithm (GA) for this multi-agent modeling approach. The algorithm deals with 2 main
issues, (i) pairing up each pair of agents between every layer and (ii) determining the actual quantity.
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4. A Two-Stage Priority-Based Genetic Algorithm Encoding with Multi-Agent

In this proposed CLSC problem, the objective is to identify an applicable delivery route and
corresponding product flow volume to obtain the minimum cost of transportation and facility operation.
Here two problems have to be solved simultaneously; one is to decide the handling quantity of each
active facility and the other is to decide the transportation route among the whole network. Additionally,
these two problems are under a six-level CLSC which makes the problem more complicated.

By using the single-stage encoding GA, these two problems have to be expressed in a single
chromosome, which means the chromosome must be able to convey the information on the route and
volume and also the active state of the facilities. These vast amounts of information will make the
genetic operation too complicated to handle because of too many possible combinations. In addition,
this chromosome structure will obviously increase the calculation time. Since all the information is
considered at the same time, the search is easy to get lost in the local optimum.

To deal with the problem, a two-stage priority-based GA with multi-agent approach is established.
The proposed approach divides the encoding process into two stages, which express the above
mentioned two problems in the CLSC network respectively. Figure 3 shows the flow diagram of this
developed approach.

From Figure 3, it can be observed that this GA approach has two stages in the encoding process
including Stage 1 “Route Decision”, Stage 2 “Freight Volume Decision”. Route Decision stage is used
to decide the delivery route in the proposed CLSC network. It also applied to determine the pairing of
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agents. Freight Volume Decision stage is applied to determine the freight volume for each selected
route according to the results of stage 1. These two stages are carefully described in Sections 4.1 and 4.2
respectively. The “Cost Rank” process before “Route Decision” is the preparation of the priority-based
“Freight Volume Decision” which is explained in Section 4.2. The right part of Figure 3 describes the
genetic operations. Section 4.3 gives details.
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4.1. Stage 1—Route Decision

The first stage of encoding is to decide the applicable delivery route. In the first stage,
the chromosome generated consist of binary genes, which only represent the information of delivery
route. Since the chromosomes, in stage 1 only deliver the information of transportation route except
for the quantity of product flow, it makes the genetic operations, especially the validation, much more
concise than the traditional GA.

The chromosome possesses six sections corresponding to the six levels of the CLSC model. In each
section, the amount of genes is equal to the product of the amount of suppliers and the amount of
demanders. In general, the number of genes in a chromosome, is expressed by I × J + J ×K + K × L +
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L×K + K×M + M× J, where I, J, K, L and M are the number of suppliers, manufacturers, distribution
centers, customers and dismantlers respectively.

To explain the proposed algorithm clearly, a numerical example is provided. In this example, I = 3,
J = 5, K = 2 which means that three suppliers provide materials to five manufacturers and these five
manufacturers provide finished products to two DCs. The chromosome at this stage in the example is
shown in Figure 4 and the corresponding delivery route is shown in Figure 5a.
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In Figure 4, each gene holds a binary number, where 1 indicates the delivery route is adopted and
0 indicates it is not. Figure 4 shows that there has 15 genes for the first section of the chromosome.
The first five genes illustrates the condition where supplier 1 provises materials to manufacturers 2
and 4 but does not provide materials to manufacturers 1, 3 and 5. The second five genes and the third
five genes illustrate the related information of supplier 2 and supplier 3, respectively. Figure 4 also
shows that there has 10 genes for the second section of the chromosome. The first two genes describe
the condition where manufacturer 1 does not provide finished products to both two DCs. Similarly,
the following four groups of genes describe the related information of the corresponding manufacturers.
Figure 5a illustrates the delivery route. The numbers in parentheses means the unit transportation cost
of each delivery route and the numbers in circles means the capacity of each partners.

4.2. Stage 2—Freight Volume Decision

After the pairing, a delivery route is determined. Now, we have to decide the quantity for each
agent needs to obtain. The second stage is to determine the freight volume of materials or products,
and the chromosome encoded in the second stage is shown in Figure 6.
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Figure 6 show that the structure of the chromosome in stage 2 is the same as that in stage 1,
but the composition of each gene is indeed different. The first five genes illustrates the condition
where supplier 1 will deliver 50 units of raw materials to manufacture 2 and supplier 4, but will not
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delivery any raw materials to manufacturers 1, 3 and 5. The second five genes and the third five genes
illustrate the related information of supplier 2 and supplier 3, respectively. The last two genes for
the second section of the chromosome describe the condition where manufacturer 5 will deliver 200
units of products to distribution center 2 but will not deliver any products to distribution center 1.
The network including delivery route and freight volume are shown in Figure 5b.

4.2.1. Process Outline

It is turned out that six steps are needed to determine the freight volume during freight volume
decision process. To explain the freight volume decision process in detail, the numerical example
in Section 4.1 is used. In this three stage supply chain example, the step details are illustrated in
Figure 5 and described as below. The numbers in parentheses indicate the unit transportation cost of
the delivery route. The numbers in the circles indicate the request of the distribution centers and the
capacity of suppliers and manufacturers.

Step I: Determine the start level in the supply chain network. In this case, the terminal demand is at
the distribution centers, hence the freight volume decision process begins at the level from
manufacturer to distribution center.

Step II: Detect the top priority delivery route with the lowest unit shipping cost in the current level.
According to the result of “Cost Rank,” the lowest unit shipping cost within current level is
3, which is from manufacturer 3 to distribution center 1. The detail of “Cost Rank” will be
explained in Section 4.2.2.

Step III: Check if there are other delivery routes with the same unit shipping cost and also the same
demand as the one found in Step 2. In other words, check if the top priority delivery route is
multiple or not. If the result is yes, count out the number, mark as N and go to Step 4a, if not,
go to Step 4b. Step 4a and Step 4b are parallel. In this example, this unit shipping cost 3 is
unique at this level, so go to Step 4b.

Step IVa: Devide the demand into N parts randomly and assigned them to the N delivery routes with
the top priority.

Step IVb: Assign the smaller one to the transport flow through the comparison between the supply
capability and the demand. Due to the supply capability of manufacturer 3 is 300 units
and the demand of distribution center 1 is 500 units, the freight volume between them is
300 units.

Step V: Renew the corresponding supply capability and demand. The remaining supply capability
of manufacturer 3 is 300 − 300 = 0 and the renewed demand of distribution center 1 is
500 − 300 = 200.

Step VI: Move to the next delivery route on the basis of the result of “Cost Rank” and then repeat
Step 2 to Step 6. When the entire level is completed, return to the next level. In this example,
the delivery route between manufacturer 4 and distribution center 1 is found out according
to “Cost Rank” as the next operand.

Specifically, when the unit transportation cost of several different suppliers delivering to the
same demander is the same, the delivery flow will be randomly produced. In this case, since the
unit transportation cost of both manufacturer 2 and manufacturer 5 to distribution center 2 are 6,
the corresponding flows are randomly generated to be 50 and 200 respectively.

4.2.2. Order Bidding Strategy: Cost Priority Rule

At this stage, every agent will now be allocated with a certain quantity on hand. This quantity has
to be supplied by its immediate up stream suppliers. To determine the winning supplier, we propose a
Cost Priority Rule. In this case, each delivery route produces its own unit transportation cost. The route
with low transportation costs will have priority for use, which is called cost priority rule.
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This cost priority rule is much proper in this problem than other rules such as demand priority
and equal distribution. With this rule, the freight volume decision process can reach the edge value
of the transportation cost in the whole CLSC under the pre-decided delivery route. Hence it can
enhance the efficiency of the genetic search and increase the calculation speed. The flow allocation has
to begin at the last stage of the proposed supply chain due to the imperative satisfaction of demand.
It means the flow allocation begins from the level of distribution centers delivery to customers in the
forward chain and then, move to the level of the manufacturers’ delivery to the distribution centers.
After that, rather than moving to the suppliers, it jumps to the reverse chain, which starts at the level of
customers’ recovery to the distribution centers and then, to dismantlers and manufacturers. The flow
allocation of suppliers delivering to manufacturers is implemented as the end procedure, because the
manufacturing demand depends on both the demand of the distribution centers in the forward chain
and the supply quantity of the dismantlers in the reverse chain.

4.3. Genetic Operations

Genetic operations are indispensable parts in genetic algorithms. In the proposed problem,
one-point crossover and one-point mutation is implemented to avoid dramatic changes in genetic
structure due to the particular chromosome properties, which will prevent random genetic
searches additionally.

4.3.1. Fitness Function

The fitness function is to calculate the fitness value of each chromosome which represents the
viability of the chromosomes. In the proposed model, the fitness is assigned as reciprocal of the total
cost. Lower total cost indicates stronger chromosome viability.

Fitness =
1

Total Cost

Total cost = Fix cost + Transportation cost
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∑
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4.3.2. Selector Operator

In this proposed GA, after generating the initial pool randomly, generation of the mating pool is
based on the roulette wheel selection. In this roulette wheel selection, the fitness function is used to
decide the selected probability for each chromosome. The roulette wheel function is

pi =
fi∑

j
f j

,

here pi means the selected probability for chromosome i, fi means the fitness of chromosome i.

4.3.3. Crossover

In this algorithm, one-point crossover is applied. The characteristic of one-point crossover is that
genes within parent chromosome will not change greatly, therefore, after several evolution, weak genes
will be identified easily [31]. In this CLSC problem, the chromosomes contains several sections, each
section represents one stage in the supply chain network. Since weak genes cause weak section, weak
genes identification is crucial. This crossover process contains three steps as shown in Figure 7.



Mathematics 2020, 8, 888 11 of 20

Step 1: Pick up two parents from the mating pool randomly.
Step 2: Randomly generate the cut point.
Step 3: Generate two offspring according to the cut point.
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4.3.4. Mutation

Due to the special feature of this two-stage encoding, the search of the proposed method is more
easily trapped in a local optimum. Mutation process can prevent this situation. Therefore, one-point
mutation is implemented, in which the mutation rate is set to 1. The process of mutation contains three
steps as shown in Figure 8.

Step 1: Pick up one chromosome from the mating pool.
Step 2: Randomly generate a mutation point and read the number of this gene as A.
Step 3: Calculate the result of 1 minus A and load this result to the gene of the selected mutation point.Mathematics 2020, 8, x FOR PEER REVIEW 12 of 20 
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4.3.5. Validation

In order to guarantee the feasibility after crossover and mutation, validation is implemented.
Due to the characteristics of two-stage encoding, the validation contains two parts.

Part 1: Check Capacity Requirements

There are several situations for offspring invalidation after crossover and mutation. In Part 1,
the procedure checks on the binary chromosome, which is the chromosome before the “freight volume
decision.” If one of the situations in Table 1 occurs, rollback of crossover and mutation processes will
be implemented.

Table 1. Capacity requirements.

Validation Requirements

1. Active distribution centers must have enough capacity to satisfy customers demand totally.
2. Active manufacturers must have enough capacity to satisfy customers demand totally.
3. Since each customer must recovery at least one return product to distribution centers, the customer genes
are forbidden to be zero simultaneously.
4. Customer must have at least one corresponding distribution center due to the satisfaction need of customers.

Take Figure 7 for example, the active manufacturers in offspring 1 is M3, M4 and M5. In this
case, the total capacity can’t satisfy the total customer demand, which causes invalidation to rollback
the whole crossover process. The selected parents chromosome will be assigned as the offspring
after crossover.

Part 2: Check Penalty

If the offspring get through the capacity check in Part 1, the penalty check in Part 2 will
be implemented. In Part 2, this validation procedure acts on the integer chromosome, which is
the chromosome after the “freight volume decision.” In this step, the penalty for the transformed
chromosome is examined. If the penalty is not equal to zero as before, the procedure will undo the
whole process of respective crossover and mutation.

In Figure 8, offspring 2 after mutation shows the invalidation of the penalty in Part 2. To show the
detail and explain the calculation process of the penalty, the network of offspring 2 is drawn in Figure 9.
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4.3.6. Stopping Condition

The proposed approach will improve the initial pool iteratively until one of the stopping conditions
below is met: a preset maximum number of generations is reached or a feasible solution is generated
in twenty successive generations.

5. Computational Experiments

In this section, three computational experiments are implemented to demonstrate the efficiency
and stability of the proposed approach. For the convenience of comparison, the same dataset as Wang
and Hsu’s paper [17] is used for Experiment 1. In this referenced paper, a revised spanning-tree
based GA was proposed to optimize the CLSC model. The great difference between the fixed costs
of the entities in Experiment 1 shows that it is an extreme case in this computational experiment.
Hence, Experiment 2 and Experiment 3 are needed to illustrate more usual cases. Based on existing
literature, such as Atabaki et al. [22] and Min et al. [28], we make some changes and improvements in
the following experiments. Their exist similar values within the capacity and fixed cost of distribution
centers in Experiment 2, which make the optimal search become difficult. In Experiment 3, the fixed
cost and the corresponding capacity within same level entities are set to be even more closer to make
the optimal search even more difficult. All of the three experiments include five sub-problems with a
scale from basic to large. Table 2 shows the five scales.

Table 2. Scale of computational experiments.

Supplier Manufacture DC Customer Dismantler

Basic Scale 3 5 3 4 2
Second Scale 6 10 6 8 4
Third Scale 12 20 12 16 8

Fourth Scale 24 40 24 32 16
Fifth Scale 48 80 48 64 32

5.1. Experiment 1

In this experiment, the dataset in Wang and Hsu’s paper [17] has been used. With the same input
data, the comparison between the single-stage encoding spanning tree based GA and the proposed GA
is convincing.

After computing the proposed two stage priority and multi-agent based GA, the result of the
basic scale problem turns to be uniform with the referenced paper. In other words, with the uniform of
the total costs, their exist slightly differents in the flow volume between each level. This result indicates
the acquirement of another optimal solution for this NP-hard problem.

To further test the proposed approach, four larger scale problems have been computed. The dataset
is also the same as the original paper. Table 3 shows the comparison between the proposed approach
and the revised spanning tree based GA (Revised ST-GA) in Wang and Hsu’s paper [17]. Table 4 shows
the comparison between the proposed GA and Lingo. The results of Lingo and the provided GA are
worked out using a HP PC with Intel(R) Core(TM) i7-2600 CPU @ 3.4 GHz, 8.0 G RAM. The result of the
referenced paper was obtained using a PC with Intel® Pentium® M processor 1.86 GHz, 1.0 G RAM.
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Table 3. Comparison of the proposed approach and the spanning tree based GA.

30 Times EACH Problems Scale
Numerical Examples

1 2 3 4 5

Revised ST-GA (population
size = 100) in original paper

Min-cost (US$) 29,848 58,368 115,866 235,309 469,089
Ave-cost (US$) 29,966 58,999 117,524 237,820 470,310

Ave-time (s) 2.04 6.35 22.49 72.74 356.28

Two stage priority based
GA (population size = 100)

Min-cost (US$) 29,848 58,325 115,246 232,983 463,117
Ave-cost (US$) 29,931 58,867 116,865 234478 464,445

Ave-time (s) 0.09 1.21 9.25 40.25 230.80

Results comparison Absolute difference 0 43 620 2326 5972
Percentage difference 0 0.07% 0.54% 0.99% 1.27%

Average time comparison Absolute difference 1.95 5.14 13.24 32.49 125.48
Percentage difference 95.6% 80.9% 58.9% 44.7% 35.2%

Table 4. Comparison between the proposed approach and Lingo.

30 Times Each Problems Scale
Numerical Examples

1 2 3 4 5

Lingo 11.0 Optimal (US$) 29,848 58,306 114,805 228,092 455,041
Time (s) 1 12 >1000 >2700 >9000

Two stage priority based
GA (population size = 100)

Min-cost (US$) 29,848 58,325 115,246 232,983 463,117
Absolute difference 0 −19 −447 −4891 −8076

Percentage difference 0 −0.03% −0.38% −2.14% −1.77%
Average-cost (US$) 29,931 58,867 116,865 234,478 464,445

Average-time (s) 0.09 1.21 9.25 40.25 230.80
Percentage of time 9% 10.1% <0.93% <1.49% <2.56%

In Table 3, the results of revised ST-GA are from the original paper. Suite reference again, from the
optimal value comparison and the average time comparison, it is obvious that the proposed approach
can produce higher quality results within a shorter computing time. Take Scale 2 for example, in the
optimal value comparison, the percentage difference is 0.07%, which means the result of the proposed
approach is 0.07% better than the spanning tree GA. Furthermore, in the average time comparison,
the percentage difference is 80.9%, which means the running time of the proposed approach is 80.9%
faster than the spanning tree GA. When the scale of problem increases, the accuracy of the proposed
approach is improving and the running time is always shorter. In Scale 3, the result of the proposed
approach is 0.54% better than the spanning tree GA and the average running time is 58.9% better.
In Scale 4, the result of the proposed approach increases to 0.99% better with 44.7% of the running time,
which is twice as fast as the speed of the spanning tree GA. Furthermore, in Scale 5, when the number
of variables is almost 19,000, the quality result is 1.27% better than the spanning tree GA with about
one third of the running time 35.2%.

Table 4 indicates the comparison results of Lingo 11.0 and the proposed approach with five scales.
The “absolute difference” row shows the value of the Lingo values minus the results of the proposed
approach. The minus sign means disparity. For instance, in Scale 2, the absolute difference value is −19,
the value of percentage difference is −0.03%, which indicates the disadvantageous of the proposed
approach is 0.03% compared to Lingo. However, the average running time of the proposed approach
is 1.21 s, which is only 10.1% of the time from Lingo. When the scale of the problem grows larger,
the speed advantage of proposed approach is more obvious. In Scale 3, the disadvantageous of the
proposed approach is 0.38% compared to Lingo, but the running time is less than 0.93% compared
with Lingo. In Scale 4, the disadvantageous of the proposed approach is 2.14% compared to Lingo,
but the time of running is less than 1.49%. In Scale 5, while the performance of the proposed approach
is 1.77% behind Lingo, the running time is better than Lingo by almost 40 times. Furthermore, if the
scale of problems keeps growing, Lingo cannot even give out an optimal result within an acceptable
time. However, the proposed approach can solve it effectively.

In this basic scale model, the landfilling rate is set to 0.1 currently. To test the robustness of the
results and study the influence of the landfilling rate on the total cost, we provide a sensitivity analysis.
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Since it is an integer programming, which is discrete, we illustrate an arithmetic sequence in the range
of landfilling rate which is from 0 to 1. Where 0 means no landfilling and 1 means landfilling all
without recycling. Table 5 shows the calculation results of the landfilling rate and the corresponding
total cost. Figure 10 shows the line graph of the relationship between landfilling rate and the total cost.
From Table 5 and Figure 10, it can be seen that the total cost increases slightly with the increase of the
landfilling rate and remains basically constant, which indicates that the model has a good robustness.

Table 5. The relationship between landfilling rate and total cost.

Variable Value

Landfilling Rate 0 0.05 0.1 0.15 0.2 0.25 0.3
Total cost 29,743 29,849 29,848 29,961 29,953 30,019 30,058

Landfilling rate 0.35 0.4 0.45 0.5 0.55 0.6 0.65
Total cost 30,185 30,163 30,297 30,268 30,409 30,373 30,521

Landfilling rate 0.7 0.75 0.8 0.85 0.9 0.95 1
Total cost 30,478 30,551 30,583 30,754 30,688 30,857 30,793
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5.2. Experiment 2

The results of Experiment 1 show that, manufacturer 1, manufacturer 4 and distribution center
3 are not used due to their high fixed cost and low capacity. To make the model more complex,
manufactures fixed cost and distribution centers fixed cost are reset. To release more active entities, the
unit shipping costs are reset too. After the data changing, the parameters within distribution centers
become similar, which tight the optimal solution to make the optimal search more difficult. Table 6
shows the capacity and fixed cost. Table 7 indicates the unit shipping costs.

Table 6. Capacity, fixed cost (US$) and demand in Experiment 2.

Supplier Capacity
Manufacture DC Customer Dismantler

Capacity Fixed Cost Capacity Fixed Cost Demand Capacity Fixed Cost

500 400 1100 870 1000 500 540 900
650 550 900 890 900 300 380 800
390 490 2100 600 800 400

300 800 300
500 900
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Table 7. Unit shipping cost for each stage (US$) in Experiment 2.

Manufacture
DC

Customer
DC

1 2 3 1 2 3

1 5 8 5 1 3 7 4
2 8 6 8 2 8 5 5
3 5 7 4 3 4 4 4
4 3 5 3 4 3 3 5
5 5 6 6

Since the dataset is different to that in the original paper [17], the comparison is only between the
proposed approach and Lingo. For simplicity, only the dataset of the basic scale is shown. The other
four scales are doubled and redoubled to the basic scale, which was the same data building method as
that in the original paper [17]. The optimal solution is shown in Table 8. Table 9 is the comparison
with Lingo.

Table 8. The optimal solution of Experiment 2.

Objective Value 29,099

xi j x13 = 100 x15 = 365 x22 = 510 x33 = 390
y jk y22 = 510 y33 = 490 y51 = 500
zkl z12 = 290 z14 = 210 z21 = 500 z22 = 10 z33 = 400 z34 = 90
okm o12 = 87 o22 = 3 o32 = 60

Rdmj Rd25 = 135
Rzlk Rz11 = 50 Rz22 = 3 Rz23 = 27 Rz31 = 7 Rz33 = 33 Rz41 = 30
α j α2 = 1 α3 = 1 α5 = 1
βk β1 = 1 β2 = 1 β3 = 1
δm δ2 = 1

Table 9. Comparison with Lingo in Experiment 2.

30 Times Each Problems Scale
Numerical Examples

1 2 3 4 5

Lingo 11.0 Optimal (US$) 29,099 55,817 110,137 218,677 436,697
Time (s) 1 4 >1000 >2700 >9000

Two stage priority based
GA (population size = 100)

Min-cost (US$) 29,099 55,936 111,172 226,053 447,644

Absolute difference 0 −119 −1035 −7376 −10,947
Percentage difference 0 −0.21% −0.94% −3.37% −2.50%

Average cost (US$) 29,173 56,385 112,258 228,165 449,377

Average time (s) 0.15 1.12 9.37 73.33 258.40
Percentage of time 15% 28% <0.94% <2.72% <2.87%

Since Lingo is an exact algorithm and GA is a heuristic algorithm, it is usual that Lingo can get
better results when the calculation scale is relatively small. But when the calculation scale gets large,
Lingo may cannot get an acceptable result within an acceptable period of time. That’s where heuristic
algorithm works.

From Table 9, it can be seen that although the quality of results is reduced, the calculation speed is
far faster than Lingo. In Scale 1, the proposed approach can find the same optimal solution as Lingo
within a shorter time, which is only 15% of the Lingo running time. In Scale 2, the disadvantageous is
0.21% compare to Lingo, but the time of running is only 28%. When the scale grows to Scale 3, the
result is 0.94% poorer than Lingo but the running time shorts to less than 0.94% of it. In Scale 4, the
disadvantageous is 3.37% compare to Lingo, however the running time shortens to 2.72%. In Scale 5,
the disadvantageous becomes 2.5% compare to Lingo, while the time of running is less than 2.87%.
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It is observed from the “Percentage difference” row that all of the disadvantageous are below 3.5%,
however, the running time in the “Percentage of time” row are 100 times faster than Lingo.

5.3. Experiment 3
In order to further tight the optimal solution of the whole network to add difficulties in the

searching, the parameters are further modified. From the optimal solution of the basic scale in
Experiment 3 shown in Table 10, it can be seen that four manufacturers and three distribution centers
are being used.

Table 10. The optimal solution of Experiment 3.

Objective Value 26,771

xi j x11 = 400 x22 = 200 x25 = 450 x32 = 150 x32 = 150 x34 = 165
y jk y13 = 400 y22 = 350 y41 = 300 y51 = 300 y52 = 150
zkl z12 = 300 z14 = 300 z21 = 500 z33 = 400
okm o11 = 61 o21 = 89

Rdmj Rd14 = 135
Rzlk Rz11 = 50 Rz22 = 30 Rz32 = 40 Rz41 = 11 Rz42 = 19
α j α1 = 1 α2 = 1 α4 = 1 α5 = 1
βk β1 = 1 β2 = 1 β3 = 1
δm δ1 = 1

For clarity, only the changed part of the unit shipping cost is shown, the other part is the same as
that in Experiment 2. Table 11 shows the capacity and fixed cost. Table 12 shows the unit shipping cost
for each stage. The optimal solution is shown in Table 10. Table 13 is the comparison with Lingo.

Table 11. Capacity, fixed cost (US$) and demand in Experiment 3.

Supplier
Capacity

Manufacture DC Customer
Demand

Dismantler

Capacity Fixed Cost Capacity Fixed Cost Capacity Fixed Cost

500 450 400 870 1000 500 540 900
650 350 740 890 900 300 380 800
390 400 1900 600 800 400

300 600 300
600 600

Table 12. Unit shipping cost for each stage (US$) in Experiment 3.

Supplier
Manufacture

Manufacture
DC

1 2 3 4 5 1 2 3

1 5 6 4 7 5 1 6 8 5
2 6 5 6 6 4 2 4 3 5
3 7 6 3 5 6 3 5 7 4

4 3 5 3
5 5 6 6

Table 13. Comparison with Lingo in Experiment 3.

30 Times Each Problems Scale
Numerical Examples

1 2 3 4 5

Lingo 11.0 Optimal (US$) 26,771 51,667 101,947 202,097 403,570
Time (s) 1 8 >1000 >2700 >9000

Two stage priority based
GA (population size = 100)

Min-cost (US$) 26,771 51,892 103,714 211,602 419,135
Absolute difference 0 −225 −1767 −9505 −15565

Percentage difference 0 −0.44% −1.73% −4.70% −3.86%
Average cost (US$) 26,772 52,528 104,793 213,463 421,102

Average time (s) 0.12 1.25 9.21 49.52 267.34
Percentage of time 12% 15.60% <0.90% <1.83% <2.97%
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Table 13 shows the results and comparison with Lingo. In Scale 1, the proposed approach can
obtain the optimal solution within just 12% of the running time of Lingo. In Scale 2, the disparity is
0.44% to Lingo but the running time is 15.6%. When the problem scale grows to Scale 3, the result is a
1.73% disadvantage to that of Lingo but the time is less than 0.9%. In Scale 4, the disadvantageous is
4.7% compare to Lingo, but the running time is less than 1.83%. In Scale 5, the disparity is 3.86% to
Lingo, however, the running time is less than 2.97%. In Experiment 3, the optimal search becomes more
difficult, while the error rate is still below 5%, which can be checked from the “Percentage difference”
row. The “Percentage of time” row indicates the obvious advantage of the running time performance.
From the results of Experiment 3, it can be further demonstrated that when the scale of the problem
grows, the proposed approach can still give a near optimal solution with a fast calculation time.

6. Conclusions and Suggestions of Future Work

Due to growing environmental issues nowadays, product recycling problems within closed-loop
supply chain draws more attention. To solve these problems, many CLSC models have been established
in this research area. A six-level CLSC model studied in this paper can be transformed into an integer
linear programming model. The small-scale calculation of this model can be solved by using LINGO.
However, LINGO cannot solve the large-scale model in an acceptable time. This is due to that the
complexity of the model will increase as the scale increases. A spanning-tree based GA is proposed by
Wang and Hsu [17] in 2010 so as to solve the problem. However, the single-stage encoding method
cannot reach a fully exploit of the search ability of GA. In this study, a new two-stage priority-based
GA encoding with multi-agent has been established to improve the solution of this kind of CLSC
model. It helps to the research of implementing GA more efficiently on the CLSC problem.

Three computational experiments have been implemented. Experiment 1 has the same dataset as
Wang and Hsu’s experiment and the results show that the proposed algorithm can reliably obtain higher
quality solutions in a shorter computation time. Since Experiment 1 is an extreme case with several
entities idling, Experiment 2 and Experiment 3 are implemented to demonstrate the performance of
the proposed approach in usual cases. In Experiment 2, all of the distribution centers are close in
fixed cost and capacity which makes the optimal search more difficult. The results of Experiment 2
demonstrate that the proposed approach can get high quality results within shorter running times.
Experiment 3 reset the parameters within the whole network to further tight the optimal solution, so as
to make the optimal search even more difficult. The results of Experiment 3 show that the proposed
approach still can provide a competent solution. Throughout these three computational experiments,
the efficiency and stability of the proposed algorithm is proven. In the real case, the product flow in
the CLSC network contains different kinds of products. In this sence, multi-product can be considered
in future research.
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