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Abstract: In this paper we deal with Abel equations of the form dy/dx = A1(x)y + A2(x)y2 +

A3(x)y3, where A1(x), A2(x) and A3(x) are real polynomials and A3 6≡ 0. We prove that these Abel
equations can have at most two rational (non-polynomial) limit cycles when A1 6≡ 0 and three rational
(non-polynomial) limit cycles when A1 ≡ 0. Moreover, we show that these upper bounds are sharp.
We show that the general Abel equations can always be reduced to this one.
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1. Introduction and Statement of the Results

In this paper we study the existence of rational (non-polynomial) limit cycles of the Abel
polynomial equations.

The Abel polynomial equations are equations of the form

dy
dx

= A1(x)y + A2(x)y2 + A3(x)y3, (1)

where x, y are real variables and A1(x), A2(x) and A3(x) are polynomials with A3 6≡ 0.
A periodic solution of Equation (1) is a solution y(x) defined in the closed interval [0, 1] such that

y(0) = y(1). We say that a limit cycle is a periodic solution isolated in the set of periodic solutions of a
differential Equation (1). Without loss of generality we will assume that the period is 1. The limit cycle
is called a polynomial limit cycle if the periodic solution y(x) is a polynomial in the variable x.

The polynomial limit cycles of these equations have been intensively investigated (see for
instance [1,2]). The problem of finding solutions for polynomial equations of these type have attracted
the attention of many authors. See for instance [3–27] and the references therein. Here, we are interested
in the rational limit cycles of Equation (1) (when the functions Ai(x) are polynomials).

In particular, the authors in [16] proved that any polynomial limit cycle of system (1) is of the
form y = c with c ∈ R, and that if a polynomial limit cycle exists with c 6= 0, then no other polynomial
limit cycles can exist. So, in the present paper we will focus on the case in which the limit cycles
are non-polynomials.

The objective of this paper is to consider the existence of rational limit cycles for system (1), i.e., we
want to consider limit cycles of the form y(x) = q(x)/p(x) where p, q ∈ R[x] with p 6∈ R and
(p(x), q(x)) = 1. As usual R[x] denotes the set of all real polynomials in the variable x. Note that
we will study only the rational limit cycles that are not polynomial limit cycles. We will also provide
examples of differential equations (1) having the prescribed number of rational limit cycles.

We recall that if we have a general Abel equation of the form

y′ = A0(x) + A1(x)y + A2(x)y2 + A3(x)y3 (2)
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with Ai(x) being polynomials for i = 0, . . . , 3 and A3 6≡ 0, then with the change of variables w =

y− y0(x), being y0(x) a solution of (2), we get

w′ = y′ − y′0 = A0(x) + A1(x)y + A2(x)y2 + A3(x)y3

− A0(x)− A1(x)y0 + A2(x)y2
0 + A3(x)y3

0

= A1(x)(w + y0(x)) + A2(x)(w(x)2 + 2w(x)y0(x) + y0(x)2)

+ A3(x)(w(x)3 + 3w(x)2y0(x) + 3w(x)y0(x)2 + y0(x)3)

− A1(x)y0 − A2(x)y2
0(x)− A3(x)y3

0(x)

= Ã1(x)w(x) + Ã2(x)w(x)2 + A3(x)w(x)3

where

Ã1(x) = A1(x) + 2A2(x)y0(x) + 3A3y0(x)2,

Ã2(x) = A2(x) + 3y0(x)A3(x),

and so
w′(x) = Ã1(x)w(x) + Ã2(x)w(x) + A3(x)w(x)3.

In short we can always work with Equation (1).
The case A1(x) ≡ 0 was studied in [28]. In particular the authors proved the following theorem.

Theorem 1. System (1) with A1 ≡ 0 has at most three rational (non-polynomial) limit cycles, and there are
examples with three rational limit cycles.

In this paper we will focus in the case in which A1 6≡ 0. We note that with these two theorems we
cover all the rational limit cycles in the Abel Equation (1) (and as explained above in Equation (2)).

Our main theorem is the following one.

Theorem 2. System (1) with A1(x) 6≡ 0 has at most two rational (non-polynomial) limit cycles, and there are
examples with two rational limit cycles.

The proof of Theorem 2 and the example are given in Section 2.

2. Proof of Theorem 2

We start the proof with an auxiliary lemma.

Lemma 1. The rational function y = q(x)/p(x) with p(x) non-constant is a periodic solution of system (1) if
and only if q(x) = c ∈ R \ {0}, p(0) = p(1) and p(x) has no zero in [0, 1] and

p(x)A2(x) +
p′(x)p(x)

c
+

A1(x)p2(x)
c

+ A3(x)c = 0. (3)

Proof. For the reverse implication we note that if q(x) = c ∈ R \ {0}, p(0) = p(1), p(x) has no zero in
[0, 1] and equality (3) holds then it is clear that the rational function y = c/p(x) is a periodic solution
of system (1).

For the direct implication we note that if y(x) = q(x)/p(x) is a periodic solution of system (1)
then p(x) 6= 0 for x ∈ [0, 1]. Let g(x, y) = p(x)y− q(x). Then

0 =
dg(x, y)

dx
|g(x,y)=0 = p′(x)y + p(x)

dy
dx
− q′(x)

= p′(x)y + p(x)(A1(x)y + A2(x)y2 + A3(x)y3)− q′(x).
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Note that g(x, y) is irreducible, so there exists a polynomial k(x, y) so that

p′(x)y + p(x)(A1(x)y + A2(x)y2 + A3(x)y3)− q′(x) = k(x, y)g(x, y). (4)

Since the highest degree in y in the left-hand side is 3 and the highest degree in y in g(x, y) is 1
we get that the highest degree in y in k(x, y) is 2 and so it can be written as k(x, y) = k0(x) + k1(x)y +

k2(x)y2, where k0, k1, k2 ∈ R[x]. Comparing the coefficients of y0, y1, y2 and y3 in (4) we get

q′(x) = k0(x)q(x),

p′(x) + A1(x)p(x) = k0(x)p(x)− k1(x)q(x),

p(x)A2(x) = k1(x)p(x)− k2(x)q(x),

p(x)A3(x) = k2(x)p(x).

(5)

From the first relation we get that q(x)|q′(x). This implies that q(x) is a constant that we denote by
c, that is, q(x) = c ∈ R. If c = 0 then y = q(x)/p(x) = 0. This is not possible and so c 6= 0. Moreover,
y = q(x)/p(x) = c/p(x) is a periodic solution, then p(0) = p(1). From the second relation we get that
k1(x) = −p′(x)/c− A1(x)p(x)/c and from the fourth relation we obtain k2(x) = A3(x). Substituting
them in the third relation we get (3) and the direct inclusion is proved.

In view of Lemma 1 it is not restrictive to take c = 1 and consider all rational limit cycles of the
form y = 1/p(x) with p(x) satisfying p(0) = p(1) with p(x) having no zero in [0, 1] and satisfying (3).

From (3) we must have that A3(x) is multiple of p(x) and so A3(x) = p(x)r(x) for some
polynomial r(x). Therefore, (3) becomes

A2(x) + p′(x) + A1(x)p(x) + r(x) = 0. (6)

Assume that Equation (1) has two rational limit cycles, y(x) = 1/p1(x) and y(x) = 1/p2(x) with
p1(x), p2(x) ∈ R[x] \R. Denote by q(x) = (p1(x), p2(x)), i.e., the maximum common divisor of the
polynomials p1(x) and p2(x), and consequently

p1(x) = q(x)s1(x), p2(x) = q(x)s2(x) (7)

with q(x), si(x) ∈ R[x] and (s1(x), s2(x)) = 1. Note that in view of the above observation we must
have that

A3(x) = q(x)s1(x)s2(x)s3(x) (8)

for some s3(x) ∈ R[x].

Lemma 2. The following equalities hold

s3(x) = q′(x) + A1(x)q(x) and s1(x)− s2(x) = c ∈ R. (9)

Proof. Note that in view of (6) we have

q′(x)s1(x) + q(x)s′1(x) = −A1(x)q(x)s1(x)− A2(x)− s2(x)s3(x),

q′(x)s2(x) + q(x)s′2(x) = −A1(x)q(x)s2(x)− A2(x)− s1(x)s3(x),

and so

q′(x)s1(x) + q(x)s′1(x)− q′(x)s2(x) + q(x)s′2(x)

= −s2(x)s3(x) + s1(x)s3(x)− A1(x)q(x)(s1(x)− s2(x))

= (s1(x)− s2(x))(s3(x)− A1(x)q(x)),
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which gives

q′(x)(s1(x)− s2(x)) + q(x)(s1(x)− s2(x))′ = (s1(x)− s2(x))(s3(x)− A1(x)q(x)),

that is
q(x)(s1(x)− s2(x))′ = (s1(x)− s2(x))(s3(x)− A1(x)q(x)− q′(x)).

Hence
(s1(x)− s2(x))′

(s1(x)− s2(x))
=

s3(x)− A1(x)q(x)
q(x)

− q′(x)
q(x)

.

Therefore

s1(x)− s2(x) = κ2
1

q(x)
exp

(∫ s3(s)− A1(s)q(s)
q(s)

ds
)

, (10)

for some κ2 ∈ R.
If deg(s3(x)) ≤ deg(q(x)) then we get

s1(x)− s2(x) = κ2
1

q(x)
exp

(∫
−A1(x) dx

)
exp

(∫ s3(x)
q(x)

dx
)

. (11)

The first factor in (11) cannot cancel with the second factor of (11) and this gives a contradiction
because s1(x)− s2(x) is a polynomial. So, we must have deg(s3(x)) > deg(q(x)). Then we make the
Euclidean division and we get

s3(x) = s4(x)q(x) + s5(x)

where deg(s5(x)) < deg(q(x)). Therefore we have

s3(x)
q(x)

− A1(x) = s4(x)− A1(x) +
s5(x)
q(x)

.

Integrating we get

s1(x)− s2(x) = κ2
1

q(x)
exp

(∫
s4(x)− A1(x) dx

)
exp

(∫ s5(x)
q(x)

dx
)

. (12)

The first factor in (12) cannot cancel with the second factor of (12) and this gives a contradiction
because s1(x) − s2(x) is a polynomial. So, we must have s4(x) = A1(x). Now we write H(x) =

(s5(x), q(x)). Then
s5(x)
q(x)

=
H(x)s̄5(x)
H(x)q̄(x)

=
s̄5(x)
q̄(x)

.

Assume first that q̄(x) is not-square free. Using the affine transformation x 7→ x + α with α ∈ C
(if necessary) we can write q̄(x) = xµr(x) where µ > 1 and r(0) 6= 0. Moreover, s̄3(0) 6= 0 because
s̄3(x) and q̄(x) are coprime. If we develop s̄3(x)/q̄(x) in simple fractions of x we obtain

s̄5(x)
q̄(x)

=
cµ

xµ +
cµ−1

xµ−1 + · · ·+ c1

x
+

α(x)
r(x)

where α(x) is a polynomial with deg(α(x)) < deg(r(x)) and ci ∈ C for i = 1, . . . , µ. Note that
cµ = s̄3(0)/q̄(0) 6= 0. Integrating, we get

s1(x)− s2(x) = κ2
1

q(x)
exp

(
cµ

1− µ

1
xµ−1

)
× exp

(∫ ( cµ−1

xµ−1 + · · ·+ c1

x
+

α(x)
r(x)

)
dx
)

.
(13)
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The first exponential factor cannot cancel with any part of the second exponential factor and we
get to a contradiction with the fact that s1(x)− s2(x) is a polynomial. So, q̄(x) is square-free. Then we
have that ∫ s̄5(s)

q̄(s)
ds = log h(x), h(x) ∈ R[x] \ {0}. (14)

Therefore,
s̄5(x)
q̄(x)

=
h′(x)
h(x)

,

where h(x) is square-free and so h′(x) and h(x) are coprime. Hence q̄(x) = h(x) and s̄5(x) = κ3q̄′(x).
From (10) and (14) we have

s1(x)− s2(x) = κ2
1

H(x)

Since s1(x)− s2(x) must be a polynomial, it follows that H(x) can be one. Hence,

s5(x) = κ3q′(x) and s1(x)− s2(x) = κ2q(x)κ3−1. (15)

On the other hand, doing a change of variables of the form Y = βy where β2 = sign(κ3)κ3,
the Abel Equation (1) becomes

dY
dx

=
A1(x)

β2 Y +
A2(x)

β
Y2 +

A3(x)
β2 Y3 = A1(x)Y + A2(x)Y2 + A3(x)Y3. (16)

Since A3(x) = q(x)s1(x)s2(x)κ3q′(x), then A3(x) = ±q(x)s1(x)s2(x)q′(x). In what follows we
shall work with the Abel Equation (16).

Repeating the previous computations starting with the Abel Equation (16) we will arrive to
Equation (15) which now writes

s3(x) = A1(x)q(x) + q′(x) and s1(x)− s2(x) = κ2,

because κ3 = ±1 and only can be one. This concludes the proof of the lemma.

Note that from (7), (8) and Lemma 2 we have that

A3(x) = q(x)s1(x)s2(x)(q′(x) + A1(x)q(x)). (17)

Proof of Theorem 2. Assume that Equation (1) has three rational limit cycles, y = 1/p1(x) and
y = 1/p2(x) and y3 = 1/p3(x) with p1, p2, p3 ∈ R[x] \R. Denote by q1(x) = (p1(x), p2(x)), q2(x) =
(p1(x), p3(x)) and q3(x) = (p2(x), p3(x)). In view of Lemma 2 we have

p1(x) = q1(x)s1(x) = q2(x)s2(x),

p2(x) = q1(x)(s1(x) + c1) = q3(x)s3(x),

p3(x) = q2(x)(s2(x) + c2) = q3(x)(s3(x) + c3),

(18)

for some polynomials s1(x), s2(x), s3(x) and constants c1, c2, c3 ∈ R \ {0} (we recall that the
polynomials s1(x), s2(x) in (18) need not be the same as the ones in (17). In fact, the polynomial
q(x) in Equation (17) will be q1(x), q2(x) and q3(x) in formula (18) (or other polynomials that will
appear in the paper) and polynomials s1(x) and s2(x) in formula (17) will be s1(x), s2(x) and s3(x) in
formula (18) (or other forms that will appear along the paper, when appropriate). Hence, we get

p2(x)− p1(x) = q1(x)c1, c1 ∈ R,

p3(x)− p1(x) = q2(x)c2, c2 ∈ R,

p3(x)− p2(x) = q3(x)c3, c3 ∈ R,
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and so
q2(x)c2 = q1(x)c1 + q3(x)c3. (19)

We consider two situations.

Case 1. q1(x) and s2(x) are coprime. Note that from (18) we have that q1(x)s1(x) = q2(x)s2(x), and then
from (19) we get

q1(x)s1(x)c2

s2(x)
= q2(x)c2 = q1(x)c1 + q3(x)c3.

In particular there exists T(x) ∈ R[x] so that

q3(x) = q1(x)T(x),

and consequently
s1(x)c2

s2(x)
= c1 + T(x)c3,

which yields

s1(x) =
s2(x)

c2
(c1 + T(x)c3).

Therefore from (18) we get

q2(x)s2(x) = q1(x)s1(x) = q1(x)
s2(x)

c2
(c1 + T(x)c3),

and so

q2(x) = q1(x)
c1 + T(x)c3

c2
.

Hence we have

p1(x) = q1(x)s1(x) = q1(x)
s2(x)

c2
(c1 + T(x)c3),

p2(x) = q1(x)(s1(x) + c1) = q1(x)
(

s2(x)
c2

(c1 + T(x)c3) + c1

)
,

p3(x) = q2(x)(s2(x) + c2) = q1(x)
c1 + T(x)c3

c2
(s2(x) + c2).

(20)

We consider two subcases.

Subcase 1.1: Assume that T(x) and s2(x) + c2 are coprime. Then the maximum common divisor
between p2(x) and p3(x) is q1(x). Indeed, we will show that

r1(x) =
s2(x)

c2
(c1 + T(x)c3) + c1

and
r2(x) = (c1 + T(x)c3)(s2(x) + c2)

are coprime. Note that if x∗ is a zero of c1 + T(x)c3 then we have that r2(x∗) = 0 but r1(x∗) = c1 6= 0.
Moreover, if x̂ is a solution of s2(x)+ c2 = 0 then r2(x̂) = 0 but r1(x̂) = −(c1 + T(x̂)c3)+ c1 = T(x̂)c3 6= 0.
Therefore, using p1(x) and p2(x) from (17) and (20) we can write

A3(x) = q1(x)(q′1(x) + A1(x)q1(x))
s2(x)

c2
(c1 + T(x)c3)

(
s2(x)

c2
(c1 + T(x)c3) + c1

)
,
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and from p1(x) and p3(x) we can write

A3(x) = q1(x)(q′1(x) + A1(x)q1(x))
(

s2(x)
c2

(c1 + T(x)c3) + c1

)
c1 + T(x)c3

c2

· (s2(x) + c2),

and so
s2(x) = s2(x) + c2

which is not possible because c2 6= 0.

Subcase 1.2: Assume that T(x) and s2(x) + c2 are not coprime. Write

T(x) = α1(x)α2(x), s2(x) + c2 = α1(x)α3(x),

where α2, α3 ∈ R[x] and α1(x) ∈ R[x] \R. Then

p3(x) = q1(x)α1(x)α3(x)
c1 + T(x)c3

c2
,

p2(x) = q1(x)
α1(x)

c2
(c1α3(x) + s2(x)α2(x)c3).

We first note that the maximum common divisor between p2(x) and p3(x) is q1(x)α1(x). To do so, we
will show that

r3(x) = α3(x)(c1 + T(x)c3) and r4(x) = c1α3(x) + s2(x)α2(x)c3

are coprime. If x∗ is a zero of α3(x) then r3(x∗) = 0 but r4(x∗) = s2(x∗)α2(x∗)c3 = −c2α2(x∗)c3.
Since α2(x) and α3(x) are coprime, we get that α2(x∗) 6= 0, and then r4(x∗) 6= 0. Moreover, if c1 + T(x̂)c3 = 0
then r4(x̂) = c1 6= 0. So r3(x) and r4(x) are coprime.

From p1(x), p2(x), (17) and (20) we get

A3(x) = q1(x)(q′1(x) + A1(x)q1(x))
s2(x)

c2
(c1 + T(x)c3)

α1(x)
c2

· (c1α3(x) + s2(x)α2(x)c3).
(21)

Note that from p2(x), p3(x), (17) and (20) we have

A3(x) =
q1(x)

c2
2

α1(x)
(
(q1(x)α1(x))′ + A1(x)q1(x)α1(x)

)
α3(x)(c1 + T(x)c3)

· (c1α3(x) + s2(x)α2(x)c3).
(22)

Comparing (21) with (22) we obtain

α3(x)
(
(q1(x)α1(x))′ + A1(x)q1(x)α1(x)

)
=
(
q′1(x) + A1(x)q1(x)

)
(α1(x)α3(x)− c2),

i.e.,
−c2q′1(x) = −q1(x)(α3(x)α′1(x) + c2 A1(x)),

which is not possible because the left-hand side of this equality has less degree than the right-hand side and
c2 6= 0 and q′1(x) 6= 0 (otherwise would be constant a contradiction). In short, Case 1 is not possible.
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Case 2. q1(x) and s2(x) are not coprime We write

q1(x) = R1(x)R2(x), s2(x) = R1(x)R3(x)

with R1(x), R2(x), R3(x) ∈ R[x] and R1(x) 6∈ R.
We consider two different subcases.

Subcase 2.1: R3(x) = R ∈ R. So s2(x) = R1(x)R and q1(x) = R2(x)s2(x)/R.
We also consider two cases

2.1.1: R2(x) = R2 ∈ R. From (7) we have q1(x)s1(x) = q2(x)s2(x) and so q2(x) = R2s1(x)/R. Then

p1(x) =
R2

R
s1(x)s2(x),

p2(x) =
R2

R
s2(x)(s1(x) + c1),

p3(x) =
R2

R
s1(x)(s2(x) + c2).

Note that taking ŝ1 = s1/c1 we can write

p1(x) =
R2c1

R
ŝ1(x)s2(x),

p2(x) =
R2c1

R
s2(x)(ŝ1(x) + 1),

p3(x) =
R2c1

R
ŝ1(x)(s2(x) + c2).

From p1(x), p2(x), (17) and (20) we get

A3(x) =
(R2c1

R

)2
s2(x)s1(x)(s1(x) + c1)(s′2(x) + A2(x)s2(x)),

and from p1(x), p3(x), (17) and (20) we obtain

A3(x) =
(R2c1

R

)2
s2(x)ŝ1(x)(ŝ′1(x) + A1(x)ŝ1(x))(s2(x) + c2),

and so
(s′2(x) + A1(x)s2(x))(ŝ1(x) + 1) = (ŝ′1(x) + A1(x)ŝ1(x))(s2(x) + c2),

which yields
s′2(x)

s2(x) + c2
−

ŝ′1(x)
ŝ1(x) + 1

=
A1(x)(ŝ1(x)c2 − s2(x)c1)

(s2(x) + c2)(ŝ1(x) + 1)
.

We consider two cases: if deg(A1(x)(ŝ1(x)c2− s2(x)c1)) > deg((s2(x) + c2)(ŝ1(x) + 1)) then we write

A1(x)(ŝ1(x)c2 − s2(x)c1) = Â1(x)(s2(x) + c2)(ŝ1(x) + 1) + A∗1(x)

where deg(A∗1(x)) < deg(s2(x) + c2)(ŝ1(x) + 1). Integrating we get

(s2(x) + c2) = (ŝ1(x) + 1) exp
(

κ +
∫

Â1(x) dx
)

· exp
(∫ A∗1(x)

(s2(x) + c2)(ŝ1(x) + 1)

)
,

(23)
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where κ is the constant of integration. Note that the first factor in (23) cannot cancel with the second factor of
(23) and this gives a contradiction because s2(x) + c2 and ŝ1(x) + 1 are polynomials. So, we must have that
deg(A1(x)(ŝ1(x)c2 − s2(x)c1)) ≤ deg((s2(x) + c2)(ŝ1(x) + 1)). Then we introduce the notation

B(x) = A1(x)(ŝ1(x)c2 − s2(x)), C(x) = (s2(x) + c2)(ŝ1(x) + 1).

Let D(x) = (B(x), C(x)) and write B(x) = B̄(x)D(x), C(x) = C̄(x)D(x). Then if C̄(x) is not
square-free with an affine change of variables we can write C̄(x) = xµr(x) with r(0) 6= 0. Moreover, B̄(0) 6= 0
because C̄(x) and B̄(x) are coprime. Therefore, if we develop B̄(x)(x)/C̄(x) in simple fractions of x we obtain

B̄(x)
C̄(x)

=
dµ

xµ +
dµ−1

xµ−1 + · · ·+ d1

x
+

α(x)
r(x)

where α(x) is a polynomial with deg(α(x)) < deg(r(x)) and di ∈ C for i = 1, . . . , µ. Note that dµ =

B̄(0)/C̄(0) 6= 0. Integrating we get

(s2(x) + c2) = (ŝ1(x) + 1) exp
(

κ +
dµ

1− µ

1
xµ−1

)
× exp

(∫ ( dµ−1

xµ−1 + · · ·+ d1

x
+

α(x)
r(x)

)
dx
)

,
(24)

where κ is the constant of integration. The first exponential factor cannot cancel with any part of the second
exponential factor and we get to a contradiction with the fact that s1(x)− s2(x) is a polynomial. So, C̄(x) is
square-free. Then we have that

∫ B̄(s)
C̄(s)

ds = log h(x), h(x) ∈ R[x] \ {0}. (25)

Therefore,
B̄(x)
C̄(x)

=
h′(x)
h(x)

,

where h(x) is square-free and so h′(x) and h(x) are coprime. Hence C̄(x) = h(x) and B̄(x) = C̄′(x). From (10)
and (25) we have

(s2(x) + c2) = (ŝ1(x) + 1)
(
(s2(x) + c2)(ŝ1(x) + 1)

D(x)

)
.

Therefore, we have that
D(x) = (ŝ1 + 1)2.

So,
(s2 + c2) = C̄(x)(ŝ1 + 1)2, A1(x)(ŝ1(x)c2 − s2(x)) = (ŝ1 + 1)2C̄(x)′ (26)

which yields

A1(x)((ŝ1(x) + 1)c2 − (s2(x) + c2)) = A1(x)(c2 − C̄(x)) = (ŝ1 + 1)C̄(x)′

Solving this last linear equation we get

C̄(x) = exp
(
−
∫ A1(x)

ŝ1(x) + 1
dx
)

κ + c2,
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where κ ∈ R is the constant of integration. Since C̄(x) must be a polynomial if we write S1(x) =

(A1(x), ŝ1(x) + 1) so that A1(x) = S1(x)S2(x) and ŝ1(x) + 1 = S1(x)S3(x) then proceeding as above
we get that deg(S2(x)) < deg(S3(x)) and S3(x) must be square-free and then

−c1

∫ A1(x)
ŝ1(x) + 1

dx = −c1

∫ S2(x)
S3(x)

dx = log r(x), r ∈ R[x]

yielding S3(x) = r(x) and S2(x) = −r′(x). Hence,

C̄(x) = κS3(x) + c2, κ ∈ R \ {0}.

Note that if κ = 0 then C̄(x) = c2 which yields A1(x)((ŝ1(x) + 1)c2 − (s2(x) + c2)) = 0. Since
A1(x) 6= 0 we must have

c2(ŝ1 + 1) = s2 + c2 = C̄(x)(ŝ1 + 1)2 = c2(ŝ1 + 1)2

and so
1 = ŝ1 + 1 that is ŝ1 = 0,

which is not possible.
In short, κ ∈ R \ {0} and

s2(x) + c2 = (κS3(x) + c2)S1(x)2S3(x)2,

ŝ1(x) + 1 = S1(x)S3(x),

A1(x) = −S1(x)S′3(x).

(27)

Hence

A2(x) =
(R2c1

R

)2
(κS3(x) + c2)S1(x)2S3(x)2(S1(x)S3(x)− 1)

·
(
(κS3(x) + c2)S1(x)2S2(x)2 − c2

)
·
(

S′1(x)S3(x) + 2S1(x)S′3(x)− S1(x)2S3(x)S′3(x)
)

Doing the rescaling Y = βy, we can assume that the constant (R2c1/R)2 = 1.
In short

p1(x) = ŝ1(x)s2(x) = (S1(x)S3(x)− 1)
(
(κS3(x) + c2)S1(x)2S3(x)2 − c2

)
,

p2(x) = s2(x)(ŝ1(x) + 1) = S1(x)S3(x)
(
(κS3(x) + c2)S1(x)2S3(x)2 − c2

)
,

p3(x) = ŝ1(x)(s2(x) + c2) = (S1(x)S3(x)− 1)(κS3(x) + c2)S1(x)2S3(x)2.

(28)

with
A1(x) = −S1(x)S′3(x).

Note that ŝ1 and s2 are coprime. Indeed it follows from (27) that if x∗ is such that s2(x∗) = ŝ1(x∗) = 0
then (since S1(x∗)S3(x∗) = −1) we get

c2 = (κS3(x∗) + c2)S1(x∗)2S3(x∗)2 = κS3(x∗) + c2

and so S3(x∗) = 0 but then again from (27) we would have s2(x∗) = −c2 and s1(x∗) = −1 which is not
possible. So, ŝ1(x) and s2(x) are coprime. Then, it follows from
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Note that ŝ1 and s2 are coprime. Indeed it follows from (27) that if x∗ is such that s2(x∗) = ŝ1(x∗) = 0
then (since S1(x∗)S3(x∗) = −1) we get

c2 = (κS3(x∗) + c2)S1(x∗)2S3(x∗)2 = κS3(x∗) + c2

and so S3(x∗) = 0 but then again from (27) we would have s2(x∗) = −c2 and s1(x∗) = −1 which is not
possible. So, ŝ1(x) and s2(x) are coprime. Then, it follows from the first and third relation in (28) (using
(26)) implies

A3(x) = ŝ1(x)s2(x)(s2(x) + c2)(ŝ′1(x) + A1 ŝ1(x))

= ŝ1(x)s2(x)C(x)(ŝ1(x) + 1)2(ŝ′1(x) + A1(x)ŝ1(x))
(29)

and from the second and third relation in (28) that

A3(x) = ŝ1(x)s2(x)C(x)(ŝ1(x) + 1)2((ŝ1(x) + 1)′ + A1(x)(ŝ1(x) + 1)). (30)

However, then it follows from (29) and (30) that

(ŝ′1(x) + A1(x)ŝ1(x)) = (ŝ1(x) + 1)′ + A1(x)(ŝ1(x) + 1)

that is A1(x) = 0, which is not possible. In short this case is not possible.

2.1.2: R2(x) ∈ R[x] \ R. Since R3(x) = R we have s2(x) = R1(x)R and q1(x) = R2(x)s2(x)/R.
From (19) we get

R2(x)s1(x)c2

R
= R2(x)s2(x)c1 + q3(x)c3(x),

and so

q3(x) =
R2(x)

c3

(
s1(x)c2 −

c1s2(x)
R

)
.

Since q1(x)s1(x) = q2(x)s2(x) we get q2(x) = R2(x)s1(x)/R. In short

p1(x) =
R2(x)

R
s1(x)s2(x),

p2(x) =
R2(x)

R
s2(x)(s1(x) + c1),

p3(x) =
R2(x)

R
s1(x)(s2(x) + c2).

We consider two cases:

2.1.2.1: s1(x) and s2(x) are coprime. In this case the maximum common divisor between p2(x) and
p3(x) is R2(x) and so from (17) we get

A3(x) =
R2(x)

R2 s2(x)
(
(R2(x)s2(x))′ + A1(x)R2(x)s2(x)

)
s1(x)(s1(x) + c1)

=
R2(x)

R2 s2(x)s1(x)(R′2(x) + A1(x)R2(x))(s1(x) + c1)(s2(x) + c2),

and so
(R2(x)s2(x))′ + A1(x)R2(x)s2(x) = (R′2(x) + A1(x)R2(x))(s2(x) + c2),

that is
R′2(x)c2 = R2(x)(s′2(x)− A1(x)c2),

which is not possible because the left-hand side of the above expression has less degree than the right-hand side
and R′2(x) 6= 0 and c2 6= 0.
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2.1.2.2: s1(x) and s2(x) are not coprime. In this case we write

s1(x) = κ(x)ŝ1(x), s2(x) = κ(x)ŝ2(x),

with κ(x), ŝ1(x), ŝ2(x) ∈ R[x] with κ(x) 6∈ R. Then

p1(x) =
R2(x)

R
κ2(x)ŝ1(x)ŝ2(x),

p2(x) =
R2(x)

R
κ(x)ŝ2(x)(κ(x)ŝ1(x) + c1),

p3(x) =
R2(x)

R
κ(x)ŝ1(x)(κ(x)ŝ2(x) + c2).

Then

A3(x) =
R2(x)

R2 κ(x)
(
(R2(x)κ(x))′ + A1(x)R2(x)κ(x)

)
ŝ2(x)(κ(x)ŝ1(x) + c1)

· ŝ1(x)(κ(x)ŝ2(x) + c2)

=
R2(x)

R2 κ(x)ŝ2(x)
(
(R2(x)κ(x)ŝ2(x))′ + A1(x)R2(x)κ(x)ŝ2(x)

)
ŝ1(x)

· (κ(x)ŝ1(x) + c1)κ(x),

and so (
(R2(x)κ(x))′ + A1(x)R2(x)κ(x)

)
(κ(x)ŝ2(x) + c2)

= κ(x)
(
(R2(x)κ(x)ŝ2(x))′ + A1(x)R2(x)κ(x)ŝ2(x)

)
,

which yields
(R2(x)κ(x))′c2 = (R2(x)κ(x))κ(x)(ŝ2(x)− A1(x)c2).

This is not possible because the left hand side has less degree than the right hand side and c2(R2(x)κ(x))′ 6=
0. In summary, Subcase 2.1.2 is not possible.

Subcase 2.2: R2(x) ∈ R[x] \R. We have q1(x) = R1(x)R2(x) and s2(x) = R1(x)R3(x). Then

R2(x)s1(x)c2

R3(x)
= R1(x)R2(x)c1 + q3(x)c3.

In particular there exists T(x) ∈ R[x] so that

q3(x) = R2(x)T(x),

and so
s1(x)c2

R3(x)
= R1(x)c1 + T(x)c3,

which yields s1(x) = R4(x)R3(x). Therefore, from p1(x) in (7) we get

q2(x)s2(x) = q1(x)s1(x) = R1(x)R2(x)R3(x)R4(x) = q2(x)R1(x)R3(x)

and so
q2(x) = R2(x)R4(x).



Mathematics 2020, 8, 885 13 of 15

Hence we have

p1(x) = q1(x)s1(x) = R1(x)R2(x)R3(x)R4(x),

p2(x) = q1(x)(s1(x) + c1) = R1(x)R2(x)(R3(x)R4(x) + c1),

p3(x) = q2(x)(s2(x) + c2) = R2(x)R4(x)(R1(x)R3(x) + c2).

We consider two cases.

2.2.1: R1(x) and R4(x) are coprime. We have

A3(x) = R1(x)R2(x)
(
(R1(x)R2(x))′ + A1(x)R1(x)R2(x)

)
R3(x)R4(x)

· (R3(x)R4(x) + c1)

= R2(x)(R′2(x) + A1(x)R2(x))R1(x)R4(x)(R3(x)R4(x) + c1)

· (R1(x)R3(x) + c2),

and so (
(R1(x)R2(x))′ + A1(x)R1(x)R2(x)

)
R3(x)

= (R′2(x) + A1(x)R2(x))(R1(x)R3(x) + c2),

which yields
R2(x)(R′1(x)R3(x)− A1(x)c2) = c2R′2(x).

This is not possible because the right hand side has less degree than the left hand side and c2R′2(x) 6= 0.

2.2.2: R1(x) and R4(x) are not coprime. We write

R1(x) = R(x)R̂1(x), R4(x) = R(x)R̂4(x)

where R(x), R̂1(x), R̂4(x) ∈ R[x] with R(x) 6∈ R. Note that

p1(x) = q1(x)s1(x) = R2(x)R̂1(x)R2(x)R3(x)R̂4(x),

p2(x) = q1(x)(s1(x) + c1) = R(x)R̂1(x)R2(x)(R3(x)R(x)R̂4(x) + c1),

p3(x) = q2(x)(s2(x) + c2) = R2(x)R(x)R̂4(x)(R(x)R̂1(x)R3(x) + c2).

Then

A3(x) =
(
(R(x)R̂1(x)R2(x))′ + A1(x)R(x)R̂1(x)R2(x)

)
R(x)R̂1(x)R2(x)R(x)

· R3(x)R̂4(x)(R3(x)R(x)R̂4(x) + c1)

= R(x)R2(x)
(
(R(x)R2(x))′ + A1(x)R(x)R2(x)

)
R̂1(x)R̂4(x)

(R3(x)R4(x) + c1)(R(x)R̂1(x)R3(x) + c2),

and so (
(R(x)R̂1(x)R2(x))′ + A1(x)R̂1(x)R2(x)

)
R(x)R3(x)

=
(
(R(x)R2(x))′ + A1(x)R(x)R2(x)

)
(R(x)R̂1(x)R3(x) + c2),

which yields
R(x)R2(x)

(
(R̂1(x))′R(x)R3(x)− A1(x)

)
= c2(R(x)R2(x))′.

This is not possible because the right hand side has less degree than the left hand side and c2(R(x)R2(x))′ 6=
0. So subcase 2.2 is not possible.
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In short we have proved that there are at most two rational limit cycles when A1 6= 0. This
completes the proof of the theorem.

Now we provide an Abel Equation (1) with two rational limit cycles. Take

A1(x) = 1,

A2(x) = −2− 7x− x2 − 2x3 − 2x4,

A3(x) = (1− x + x2)(2− x + x2)(3− x + x2)(1 + x + x2).

Then system (1) has the two rational solutions yi(x) = 1/pi(x) for i = 1, 2 with

p1(x) = (x2 − x + 1)(x2 − x + 2),

p2(x) = (x2 − x + 2)(x2 − x + 3).

Note that pi(0) = pi(1) for i = 1, 2 and pi(x) 6= 0 for x ∈ [0, 1]. In short, the Abel system that we have
constructed has two rational limit cycles.
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