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Abstract: This paper relates two interesting paradigms in fuzzy logic programming from
a semantical approach: core fuzzy answer set programming and multi-adjoint normal logic
programming. Specifically, it is shown how core fuzzy answer set programs can be translated
into multi-adjoint normal logic programs and vice versa, preserving the semantics of the starting
program. This translation allows us to combine the expressiveness of multi-adjoint normal logic
programming with the compactness and simplicity of the core fuzzy answer set programming
language. As a consequence, theoretical properties and results which relate the answer sets to the
stable models of the respective logic programming frameworks are obtained. Among others, this
study enables the application of the existence theorem of stable models developed for multi-adjoint
normal logic programs to ensure the existence of answer sets in core fuzzy answer set programs.

Keywords: multi-adjoint logic programming; core fuzzy answer set programming; non-monotonic
logic programming; negation operator

1. Introduction

Multi-adjoint logic programming (MALP) was introduced in [1] in order to generalize different
non-classical logic programming approaches [2,3]. A multi-adjoint logic program is characterized
by the use of different implications in its rules and general operators in the body of its rules. These
features make multi-adjoint logic programming a flexible framework with potential applications. Since
its introduction, multi-adjoint logic programming has broadly been studied in order to, for example,
improve the computation of the least model with either an efficient unfolding process [4,5] or with
the computation of reductants [6,7]; consider propositional symbols of different sorts and termination
theorems [8,9]; analyze incoherence and contradiction measures [10,11]; and extend it to a first order
logic [12,13]. Later, multi-adjoint normal logic programming (MANLP) was presented as an extension
of multi-adjoint logic programming, where the use of a negation operator is allowed in the body of
the rules [14]. A complete study on the syntax and semantics of multi-adjoint normal logic programs,
containing important results about the existence and the unicity of stable models, was carried out
in [14]. Recently, extended multi-adjoint logic programming (EMALP) has been proposed with the
purpose of increasing the versatility and the expressive power of the multi-adjoint approach, by means
of the inclusion of different negation operators in the body of the rules and the consideration of
constraint rules [15]. Besides presenting the syntax and the semantics of extended multi-adjoint logic
programs, which is also based on stable models, a procedure to translate extended multi-adjoint logic
programs into semantically equivalent multi-adjoint normal logic programs was provided in [15].

Core fuzzy answer set programming (CFASP) was introduced in [16] as a logic programming
framework, endowed with a compact simple language, which is capable of accommodating different
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fuzzy logic programming formalisms proposed in the literature, such as fuzzy logic programming [3],
normal residuated logic programming [17], and fuzzy answer set programming [18]. Specifically, this
framework provides a bridge between rich and expressive answer set logic languages, and a small
core language that is easy to implement and reason about.

This paper is focused on relating multi-adjoint normal logic programs to core fuzzy answer set
programs from a semantical perspective. This relation is carried out in both directions, from MANLP
to CFASP and from CFASP to MANLP, and it pursues two main objectives. On the one hand, we aim
to combine the great expressivity of EMALPs with the simplicity and compactness of CFASPs. In other
words, we aspire to handle a flexible powerful language with a significant potential for modelling
problems, such as EMALP, and at the same time work in a framework with high computational
efficiency, easier to implement and reason about, as CFASP. That ambition is achieved presenting
a method which transforms a MANLP into a CFASP such that the stable models of the former coincide
with the answer sets of the later, that is, both programs are semantically equivalent. As a result, the task
initiated in [15] will be completed, giving rise to a procedure to translate an EMALP into a semantically
equivalent CFASP.

On the other hand, this paper also illustrates how results related to the semantics of a logic
programming framework can be applied in other logic programming settings concerning its canonical
models. In particular, we focus on MANLP and CFASP. For this purpose, a method for translating an
arbitrary CFASP into a semantically equivalent MANLP has been shown. Among others, this method
entails the possibility of using current theorems in MALP and MANLP in CFASP, such as the existence
theorem for stable models given in the multi-adjoint framework [14], to provide a sufficient condition
for the existence of answer sets.

The paper is organized as follows. Section 2 includes preliminary notions associated with the
logic programming frameworks considered in this study, multi-adjoint normal logic programming
and core fuzzy answer set programming. Section 3 presents a procedure to translate multi-adjoint
normal logic programs into semantically equivalent core fuzzy answer set programs. Section 4 carries
out a reciprocal study to the one given in the previous section, that is, a method to translate core
fuzzy answer set programs into semantically equivalent multi-adjoint normal logic programs is
shown. Technical properties and results relating stable models to answer sets of the corresponding
logic programming frameworks are proven. Section 5 provides some conclusions and prospects for
future work.

2. Preliminaries

In this section, we recall the syntax and the semantics of the two logic programming settings
involved in this manuscript: multi-adjoint normal logic programming and core fuzzy answer set
programming. We assume that the reader is familiar with the basic notions of lattice theory.

2.1. Multi-Adjoint Normal Logic Programming

Multi-adjoint normal logic programming was presented in [14] as a general non-monotonic logic
programming framework, which is characterized by the use of different adjoint pairs and a negation
operator. Its syntax is defined from a multi-adjoint lattice with negation.

Definition 1. The tuple (L,�,←1, &1, . . . ,←n, &n,¬) is a multi-adjoint lattice with negation if the
following properties are verified:

1. (L,�) is a complete lattice, with a bottom ⊥ and a top >.
2. (&i,←i) is an adjoint pair in (L,�), for each i ∈ {1, . . . , n}. That is, &i is order-preserving in both

arguments,←i is order-preserving in the first argument and order-reserving in the second argument, and

x � z←i y if and only if x &i y � z
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for all x, y, z ∈ L.
3. The boundary conditions with respect to the top element. Specifically, >&i ϑ = ϑ &i > = ϑ, for all ϑ ∈ L

and i ∈ {1, . . . , n}.
4. ¬ : L → L is a negation operator, that is, an order-reversing mapping satisfying ¬(⊥) = > and

¬(>) = ⊥.

Example 1. The most usual adjoint pairs are those formed by the Gödel, product and Łukasiewicz t-norms
together with their residuated implications, defined as follows, for all x, y, z ∈ [0, 1]:

x &G y = min{x, y} z←G y =

{
1 if y ≤ z

z otherwise

x &P y = x · y z←P y =


1 if y ≤ z
z
y

otherwise

x &Ł y = max{0, x + y− 1} z←Ł y = min{1, 1− y + z}

Remark 1. A notable consequence of the adjoint property and the boundary condition with the top element in
the first argument (>&i ϑ = ϑ, for all ϑ ∈ L) is the equivalence between y � z and z←i y = >.

A multi-adjoint normal logic program is composed of a set of weighted rules where different
implications may appear.

Definition 2. Let (L,�,←1, &1, . . . ,←n, &n,¬) be a multi-adjoint lattice with negation. A multi-adjoint
normal logic program (MANLP) P is a finite set of weighted rules of the form:

〈p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn]; ϑ〉

where i ∈ {1, . . . , n}, @ is an aggregator operator (note that the notion of aggregator operator considered in [14]
is just an order-preserving mapping), ϑ is an element of L and p, p1, . . . , pn are propositional symbols such
that pj 6= pk, for all j, k ∈ {1, . . . , n} with j 6= k. The propositional symbol p is called head of the rule,
@[p1, . . . , pm,¬pm+1, . . . ,¬pn] is called body of the rule and the value ϑ is its weight. The set of propositional
symbols appearing in P is denoted as ΠP.

The following example presents a particular multi-adjoint normal logic program, which will be
used for introducing the different notions recalled in this section.

Example 2. Let ([0, 1],≤,←G, &G,←P, &P,¬) be the multi-adjoint lattice with the standard negation, defined
as ¬(x) = 1− x, for each x ∈ [0, 1]. The following rules form a MANLP:

r1 : 〈p←G ¬t ; 0.6〉 r4 : 〈t←P s ; 1〉
r2 : 〈q←P ¬s ; 0.8〉 r5 : 〈s←P 1 ; 0.5〉
r3 : 〈p←P q &P s ; 0.9〉 r6 : 〈t←G ¬q &G ¬p ; 0.7〉

Similarly to normal residuated logic programs [17,19], the semantics of multi-adjoint normal
logic programs follows the philosophy of the stable models semantics [20]. Next, the notion of
L-interpretation is recalled.

Definition 3. Given a complete lattice (L,�), a mapping I : ΠP → L, which assigns a truth-value of L to each
propositional symbol, is called L-interpretation. The set of all L-interpretations is denoted as IL.



Mathematics 2020, 8, 881 4 of 18

We will use the word interpretation instead of the term L-interpretation if there is no room
for confusion. The evaluation of a formula F under an interpretation I, denoted as Î(F ), proceeds
inductively, until all propositional symbols in F are evaluated under I. From now on, we will
distinguish between an operator symbol ω and its associated operator. Specifically, the interpretation
of the symbol ω will be denoted as

.
ω.

Definition 4. Given a MANLP P and an interpretation I ∈ IL, we say that:

(1) A weighted rule 〈p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn]; ϑ〉 is satisfied by I if and only if

ϑ � Î (p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn])

(2) I is a model of P if and only if all weighted rules in P are satisfied by I.

Next, a specific model is given to the multi-adjoint normal logic program in Example 2.

Example 3. Let P be the program defined in Example 2 and consider the interpretation M given by the pairs
M ≡ {(p, 0.4), (q, 0.4), (s, 0.5), (t, 0.6)}. It is easy to see that M is a model of P, that is, M satisfies all weighted
rules in P. For instance, the next inequality corresponds to the satisfiability of the rule r1:

0.6 � M̂(p←G ¬t) = M(p)←G
.¬M(t) = 0.4←G 0.4 = 1

Similarly, the next inequalities, related to the rules r2, . . . , r6, hold as well:

0.8 � M̂(q←P ¬s) = M(q)←P
.¬M(s) = 0.4←P 0.5 = 0.8

0.9 � M̂(p←P q &P s) = M(p)←P M(q)&P M(s) = 0.4←P 0.2 = 1

1 � M̂(t←P s) = M(t)←P M(s) = 0.6←P 0.5 = 1

0.5 � M̂(s←P 1) = M(s)←P 1 = 0.5←P 1 = 0.5

0.7 � M̂(t←G ¬q &G ¬p) = M(t)←G
.¬M(q)

.
&G

.¬M(p) = 0.6←G 0.6 = 1

In order to present the notion of the stable model, we need to recall the concept of reduct of
a MANLP with respect to an interpretation. Namely, given a MANLP P and an interpretation I, the
reduct of P with respect to I, denoted as PI , is built by substituting each rule in P of the form

〈p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn]; ϑ〉

by the rule
〈p←i @I [p1, . . . , pm]; ϑ〉

where the operator
.
@I : Lm → L is defined as

.
@I [ϑ1, . . . , ϑm]=

.
@[ϑ1, . . . , ϑm,

.¬ I(pm+1), . . . ,
.¬ I(pn)]

for all ϑ1, . . . , ϑm ∈ L.

Example 4. Coming back to the MANLP P defined in Example 2 and taking into account the interpretation
M ≡ {(p, 0.4), (q, 0.4), (s, 0.5), (t, 0.6)} employed in Example 3, the reduct of P with respect to M, denoted
PM, is defined as:

rM
1 : 〈p←G 0.4 ; 0.6〉 rM

4 : 〈t←P s ; 1〉
rM

2 : 〈q←P 0.5 ; 0.8〉 rM
5 : 〈s←P 1 ; 0.5〉

rM
3 : 〈p←P q &P s ; 0.9〉 rM

6 : 〈t←G 0.6 ; 0.7〉
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Definition 5. Given a MANLP P and an interpretation I, we say that I is a stable model of P if I is the least
model of PI .

Notice that, since PI is a multi-adjoint logic program without negations, there exists the least
model of PI [1]. Hence, stable models are well-defined, that is, the reduct PI has a least model.

As shown in [14], the continuity of the operators in the rules of a MANLP provides a sufficient
condition for the existence of stable models.

Theorem 1. Let (K,�,←1, &1, . . . ,←n, &n,¬) be a multi-adjoint lattice with negation, where K is
a non-empty convex compact subset of an euclidean space, and P be a finite MANLP defined on this lattice. If
&1, . . . , &n, ¬ and the aggregator operators in the body of the rules of P are continuous operators, then P has at
least a stable model.

This theorem ensures the existence of stable models of the program in Example 2.

Example 5. Clearly, the interval [0, 1] is a convex compact set and &G, &P, ¬ are continuous operators. Hence,
applying Theorem 1, we can assert that the multi-adjoint normal logic program P in Example 2 has at least
a stable model. For instance, the interpretation M ≡ {(p, 0.4), (q, 0.4), (s, 0.5), (t, 0.6)} given in Example 3 is
the least model of the reduct PM. Hence, by definition, M is a stable model of P.

2.2. Core Fuzzy Answer Set Programming

A core language for fuzzy answer set logic programming was introduced in [16], as a simple basic
framework in which one can express many of the existing fuzzy answer set programming extensions
in the literature, as shown in the aforementioned paper.

In what follows, we recall the syntax and the semantics of core fuzzy answer set programs.
Namely, the semantics of core fuzzy answer set programs is stated in terms of the notion of the answer
set. In this framework, the elements with the role of propositional symbols are called atoms.

Definition 6 ([16]). LetA be a set of atoms, (L,�) a complete lattice and ¬ a negation operator. A core literal
is either an atom a ∈ A, a value from L, or a formula ¬l, where l is a core literal.

Although atoms in core fuzzy answer set programs play the role of propositional symbols in
multi-adjoint normal logic programs, in contrast to multi-adjoint normal logic programs, core literals
may have the form ¬¬¬a, being a an atom.

From now on, if there is no room for confusion, we will just use literal instead of core literal.

Definition 7. Let A be a set of atoms, (L,�) a complete lattice and ¬ a negation operator. A core fuzzy
answer set program (CFASP) Pc is a finite set of rules of the form:

a← f (l1, . . . , ln)

being a an atom, f : Ln → L an order-preserving mapping in all arguments, l1, . . . , ln literals and ←
a residuated implication. A CFASP is called simple if it only contains non-negated literals.

The element a is usually referred to as the head of the rule r, while f (l1, . . . , ln) is called its body. In
addition, the set of atoms occurring in a CFASP Pc is denoted as APc , while the set of literals is denoted as LitPc .

An example of the core fuzzy answer set program is given next.

Example 6. Let ∗ be the usual product operator in R, max the maximum operator, ¬ the negation operator
given by
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¬x =

{
1− 2x2 if x ≤ 0.5
1− x if x > 0.5

for each x ∈ [0, 1], and← any residuated implication. Consider the complete lattice ([0, 1],≤), being ≤ the
usual order in R, and the set APc = {p, q, s, t, u}. The following five rules form a CFASP, which will be denoted
as Pc:

rc
1 : p← 1+s

2
rc

2 : p← q ∗ ¬¬s
rc

3 : q← 0.8
rc

4 : s← max{¬q, t/2}
rc

5 : t← ¬u

In fact, given the mappings f1, f5 : [0, 1]→ [0, 1] and the mappings f2, f4 : [0, 1]2 → [0, 1] defined, for each
x, y ∈ [0, 1], as f1(x) = 1+x

2 , f2(x, y) = x ∗ y, f4(x, y) = max{x, y/2} and f5(x) = x, we straightforwardly
obtain that they all are order-preserving mappings. Therefore, Pc is well-defined, that is, it is actually a CFASP.

The notion of interpretation is crucial for introducing the semantics of CFASP, as usual.

Definition 8. Given a CFASP Pc on a complete lattice (L,�), an interpretation is any mapping I : APc → L.

An interpretation I is extended as usual to the set of formulas in [16]. Although this extension
was also denoted by I, considering a clear abuse of notation, in order to be consistent with the notation
we use in this paper, we will denote the extension of an interpretation I in CFASP as Î.

A literal ¬l is evaluated under an interpretation I as Î(¬l) = ¬ Î(l), whilst Î(α) = α for each
α ∈ L. Furthermore, the evaluation of a rule under an interpretation I is carried out extending in
a natural way the interpretation of each literal appearing in the rule. That is, given a rule r of the form

a← f (l1, . . . , ln)

we obtain that
Î(r) = I(a)← f ( Î(l1), . . . , Î(ln))

The semantics of CFASPs is based on the notion of the answer set. The first notions appearing
in [16] are the definitions of satisfiability and model, which are given as usual.

Definition 9. Let Pc be a CFASP. An interpretation I of Pc satisfies a rule r ∈ Pc if Î(r) = >. A model I of
Pc is any interpretation that satisfies all rules appearing in Pc.

In the following example, an interpretation is presented, which satisfies different rules but it is
not a model of the program in Example 6.

Example 7. Let Pc be the CFASP described in Example 6 and consider the interpretation defined from the
following set of pairs

I ≡ {(p, 0.4), (q, 0.9), (s, 0.3), (t, 0.1), (u, 0.7)}

Clearly, rule rc
3 ∈ Pc is trivially satisfied, since

Î(rc
3) = I(q)← 0.8 = 0.9← 0.8 = 1

where the last equality follows from Remark 1. Moreover, making the corresponding computations, rule rc
2 ∈ Pc

is satisfied as well. The computations will be displayed with 2-digit precision. This criterion applies throughout
the document.
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Î(rc
2) = I(p)← I(q) ∗ Î(¬¬s) = I(p)← I(q) ∗ ¬¬I(s)

= 0.4← 0.9 ∗ ¬¬0.3 = 0.4← 0.9 ∗ ¬0.82 = 0.4← 0.9 ∗ 0.18 = 1

Nevertheless, rule rc
1 ∈ Pc is not satisfied by the interpretation I, as shown below.

Î(rc
1) = I(p)← 1 + I(s)

2
= 0.4← 1 + 0.3

2
= 0.4← 0.65 6= 1

Since Î(rc
1) 6= 1, rule rc

1 is not satisfied, and therefore I is not a model of the CFASP Pc.

It needs to be stressed that the residuated implications appearing in the rules of a CFASP could
be different. Nevertheless, as we will see next, this is meaningless from a semantical point of view.
In other words, the satisfiability of a rule in a CFASP does not depend on the residuated implication.
More specifically, given a rule

r : a← f (l1, . . . , ln)

and an interpretation I, by definition, I satisfies r if and only if

I(a)← f ( Î(l1), . . . , Î(ln)) = >

As← is a residuated implication, the previous expression is equivalent to

f ( Î(l1), . . . , Î(ln)) � I(a) (1)

Clearly, the operator ← is not involved in Equation (1), and thus it does not affect to the
satisfiability of the rule r. As a consequence, we can actually make use of any residuated implication
to define the corresponding CFASP of a MANLP. In particular, we can employ the same residuated
implication for all rules. In what follows, the definition of the answer set for a simple CFASP is recalled.

Definition 10. Let Pc be a simple CFASP. An interpretation I of Pc is called an answer set of Pc if I is the
least model of Pc.

Next, the notion of the Gelfond–Lifschitz reduct [20] is adapted into this framework.

Definition 11. Let Pc be a CFASP and I an interpretation of Pc. The reduct of a literal l with respect to I is
defined as l I = l if l ∈ APc ∪ L and l I = Î(l) if l is a negated literal. The reduct of Pc with respect to I is
defined as the simple program Pc

I built from the set of rules

aI ← f (l I
1, . . . , l I

n)

where a← f (l1, . . . , ln) ∈ Pc.

Finally, the definition of answer set in a general CFASP is given.

Definition 12. Let Pc be a CFASP. An interpretation I of Pc is called an answer set of Pc if I is the answer set
of the reduct Pc

I .

Example 8. Coming back to Example 7, the interpretation I does not satisfy the rule rc
1 ∈ Pc, and therefore I is

not a model of Pc. Now, notice that there is no negated literal in rule rc
1. As a consequence, its corresponding

rule in the reduct Pc
I is rule rc

1 itself. Hence, we can assert that I is not a model of Pc
I , and thus we can conclude

that I is not an answer set of Pc.
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3. From MANLP to CFASP

The translation procedures and results presented in this section will show that it is possible
to translate a multi-adjoint normal logic program into a semantically equivalent core fuzzy answer
set program.

Notice that, apart from composition of negations in CFASPs, the syntax of MANLPs and CFASPs
differ in the presence or absence of weights in the rules and the effective consideration of different
residuated implications in the rules. Indeed, to convert a MANLP into a CFASP, an alternative consists
of including the weight of each rule in its body by means of the conductor residuated to the implication
which defines the rule. This procedure is formalized as follows.

Definition 13. Let P be a MANLP on (L,�,←1, &1, . . . ,←n, &n,¬). The corresponding CFASP Pc of P
is defined as the following set of rules:

Pc = {p← ϑ &i @[p1, . . . , pm,¬pm+1, . . . ,¬pn] | 〈p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn]; ϑ〉 ∈ P}

where← is any fixed implication of the set {←1, . . . ,←n}.

Notice that, for each rule p ← ϑ &i @[p1, . . . , pm,¬pm+1, . . . ,¬pn] ∈ Pc, taking into account the
syntax of multi-adjoint normal logic programs, the operators &i and @ are order-preserving. As
a consequence, the mapping f : Ln+1 → L defined as

f (ϑ, p1, . . . , pn) = ϑ &i @[p1, . . . , pm,¬pm+1, . . . ,¬pn]

is order-preserving, being ϑ, p1, . . . , pn core literals. Thus, the CFASP Pc is well-defined.
According to Definition 13, Algorithm 1 details stepwise the translation of a MANLP into its

corresponding CFASP, where a residuated implication← in {←1, . . . ,←n} is fixed.

Algorithm 1: Corresponding CFASP of a MANLP

1 H
input :P,←
output :Corresponding CFASP of P

2 Define Pc = ∅;
3 for each 〈p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn]; ϑ〉 ∈ P do
4 add p← ϑ &i @[p1, . . . , pm,¬pm+1, . . . ,¬pn] to Pc

5 return Pc

As shown next, the corresponding CFASP of a MANLP, given by Definition 13, is semantically
equivalent to the original program. In other words, the answer sets of the former coincide with the
stable models of the latter.

Theorem 2. Let P be a MANLP. An interpretation I is a stable model of P if and only if I is an answer set of
the corresponding CFASP Pc of P.

Proof. Let I be an interpretation. According to the definitions of stable model and answer set, we
need to prove that I is the least model of the reduct PI if and only if I is an answer set of the reduct Pc

I .
Notice that, to prove the previous statement, it is sufficient to demonstrate that any interpretation J is
a model of PI if and only if J is a model of Pc

I , since this fact implies that the models of PI coincide
with the models of Pc

I .
By definition, for each rule in P of the form

〈p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn]; ϑ〉
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there exists a rule in the reduct PI given by

〈p←i @I [p1, . . . , pm]; ϑ〉

with @I [ϑ1, . . . , ϑm] =
.
@[ϑ1, . . . , ϑm,

.¬ I(pm+1), . . . ,
.¬ I(pn)], and a rule in the reduct Pc

I of the form

pI ← ϑI &i @[pI
1, . . . , pI

m, (¬pm+1)
I , . . . , (¬pn)

I ] (2)

that is
p← ϑ &i @[p1, . . . , pm,¬I(pm+1), . . . ,¬I(pn)] (3)

Furthermore, all rules in PI and Pc
I are of that form. Notice that, an interpretation J satisfies a rule

in PI of the form
〈p←i @I [p1, . . . , pm]; ϑ〉

if and only if
ϑ � J(p←i @I [p1, . . . , pm])

Equivalently, according to the definition of @I ,

ϑ � J(p) .←i
.
@[J(p1), . . . , J(pm),

.¬ I(pm+1), . . . ,
.¬ I(pn)])

Since (&i,←i) forms an adjoint pair, the previous inequality can be rewritten as

ϑ
.

&i
.
@[J(p1), . . . , J(pm),

.¬ I(pm+1), . . . ,
.¬ I(pn)]) � J(p)

which is equivalent by Remark 1 to

> = J(p) .← ϑ
.

&i
.
@[J(p1), . . . , J(pm),

.¬ I(pm+1), . . . ,
.¬ I(pn)]) (4)

In other words, J satisfies the rule

〈p←i @I [p1, . . . , pm]; ϑ〉

if and only if it satisfies the rule

pI ← ϑI &i @[pI
1, . . . , pI

m, (¬pm+1)
I , . . . , (¬pn)

I ] (5)

As a consequence, an interpretation I is the least model of the reduct PI if and only if I is an
answer set of the reduct Pc

I .

Recently, extended multi-adjoint logic programs (EMALPs) were presented in [15] as an extension
of multi-adjoint normal logic programs. In this setting, a special type of aggregator operator, called
extended aggregator, is considered in the body of the rules and a new kind of rules, called constraints,
have been included in the programs.

As shown in [15], extended aggregators can be used to simulate multiple negation operators
or, in general, any kind of order-reversing behaviour for a propositional symbol. Additionally, the
consideration of constraints enables a user to impose upper bounds to certain formulae. This shed
lights on the flexibility and the expressive power of the extended multi-adjoint logic programming
framework. Besides presenting the syntax and the semantics of extended multi-adjoint logic programs,
a procedure to translate an EMALP into a semantically equivalent MANLP was provided in [15].

As a result, we can assert that Definition 13 together with Theorem 2 completes the labour
initiated in [15]. Namely, we can make use of extended multi-adjoint logic programs in order to
model real-world problems, and then translate them into CFASPs to handle compact simple programs
with the same meaning. This finished translation provides certain advantageous properties. For
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instance, from a computational point of view, CFASPs are easier to implement and to reason about, as
highlighted in [16].

The next example illustrates how Definition 13 is employed to translate a MANLP into a CFASP,
taking into account Algorithm 1. Specifically, we conclude the transformation started in Examples 16,
21 and 26 in [15].

Example 9. Let ([0, 1],≤,←G, &G,←P, &P,←Ł, &Ł) be the multi-adjoint lattice where (&G,←G), (&P,←P)

and (&Ł,←Ł) are Gödel, product and Łukasiewicz adjoint pairs, respectively, and ¬1,¬2 : [0, 1]→ [0, 1] the
negation operators defined as ¬1(x) = 1− x and ¬2(x) = (1− x2)1/2, for all x ∈ [0, 1]. Consider the MANLP
P given by

r1 : 〈p ←P min
{ q
¬1(nots)+¬1(nott)+0.1 , 1

}
; 0.5〉

r2 : 〈q ←P max
{
¬1(¬1(nots))),¬2(¬1(nott))

}
; 0.6〉

r3 : 〈p0 ←Ł f0(¬1(¬1(notp0)))&G f0.7(¬1(¬1(notq))) ; 1〉
r4 : 〈s ←G 1 ; 0.8〉
r5 : 〈t ←G max{s, 0.7} ; 0.8〉
r6 : 〈notq ←G ¬1q ; 1〉
r7 : 〈nots ←G ¬1s ; 1〉
r8 : 〈nott ←G ¬1t ; 1〉
r9 : 〈notp0 ←G ¬1 p0 ; 1〉

where fc : [0, 1]→ [0, 1] is defined, for each c ∈ [0, 1], as

fc(x) =

{
0 if x � c
1 otherwise

Applying Algorithm 1, consider fixed the implication←G and let Pc = ∅. For the rule r1 ∈ P, that is,
the rule 〈

p←P min
{ q
¬1(nots) + ¬1(nott) + 0.1

, 1
}

; 0.5
〉

we include in Pc the rule

p←G 0.5 &P min
{ q
¬1(nots) + ¬1(nott) + 0.1

, 1
}

Similarly, the rule r2 ∈ P is transformed into the rule

q←G 0.6 &P max
{
¬1(¬1(nots))),¬2(¬1(nott))

}
Following this process for the rest of rules of P, we conclude that its corresponding CFASP Pc is defined as

the set of rules:

rc
1 : p ←G 0.5 &P min

{ q
¬1(nots)+¬1(nott)+0.1 , 1

}
rc

2 : q ←G 0.6 &P max
{
¬1(¬1(nots))),¬2(¬1(nott))

}
rc

3 : p0 ←G f0(¬1(¬1(notp0)))&G f0.7(¬1(¬1(notq)))

rc
4 : s ←G 0.8

rc
5 : t ←G 0.8 &G max{s, 0.7}

rc
6 : notq ←G ¬1q

rc
7 : nots ←G ¬1s

rc
8 : nott ←G ¬1t

rc
9 : notp0 ←G ¬1 p0

Notice that, the CFASP Pc is clearly simpler than the MANLP P, from a syntactical point of view.
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Applying Theorem 2, we can assert that Pc is semantically equivalent to P. For
instance, as shown in Example 26 in [15], N ≡ {(p, 9/85), (q, 0.36), (s, 0.8), (t, 0.8), (p0, 0),
(notq, 0.64), (nots, 0.2), (nott, 0.2), (notp0 , 1)} is a stable model of the MANLP P, from which we conclude that
N is also an answer set of Pc.

4. From Core Fuzzy Answer Set Programs to Multi-Adjoint Normal Logic Programs

The semantics of core fuzzy answer set programs is defined in terms of answer sets. Sufficient
conditions to ensure the existence of answer sets are then instrumental in order to define the semantics
of a CFASP. In this section, we provide a method to transform a CFASP into a semantically equivalent
MANLP. One of the consequences of that procedure is the possibility of applying different results given
in MALP and MANLP, such as the termination results introduced in [8,9] or Theorem 1 to guarantee
the existence of answer sets.

Notice that, there are two requirements to translate a CFASP into a MANLP:

(i) The mappings in the body of the rules must be aggregator and/or negation operators. However,
this is straightforwardly verified, according to the syntax of CFASPs.

(ii) Composition of negations, that is, literals of the form ¬¬¬b, are not allowed in MANLPs.
In order to deal with this, in what follows, we devise a procedure to transform composited
negations into a single negation.

Consider a rule r of the form a ← f (l1, . . . , lj, . . . , ln) with lj = ¬¬¬b. The idea of the proposed
method is introducing three new atoms (or propositional symbols) not1

b, not2
b and not3

b in order to
represent the information given by lj:

• not1
b is equivalent to ¬b

• not2
b is equivalent to ¬¬b, and thus to ¬not1

b
• not3

b is equivalent to ¬¬¬b, and thus to ¬not2
b

Notice that, the three previous statements can be modelled by the rules

r1 : not1
b ← ¬b

r2 : not2
b ← ¬not1

b
r3 : not3

b ← ¬not2
b

respectively. Hence, the rule r could be replaced by the rule

a← f (l1, . . . , not3
b, . . . , ln)

together with rules r1, r2 and r3.
In order to formalize the preceding approach, we will fix some notation. First and foremost, notice

that we can assume without loss of generality that, for each rule a← f (l1, . . . , ln) in a CFASP Pc and
j ∈ {1, . . . , n}, lj is either an atom or a negated literal. Otherwise, if lj ∈ L, then we consider the rule
a← flj

(l1, . . . , lj−1, lj+1, . . . , ln) where flj
(l1, . . . , lj−1, lj+1, . . . , ln) = f (l1, . . . , ln).

Now, given a CFASP Pc and b ∈ APc , we say that the degree of b is the highest non-negative integer
k such that ¬kb appears in the body of some rule of Pc, being ¬k the k-th composition of the operator ¬.
From now on, the set of atoms of Pc with degree k ∈ Z∗ will be denoted as N k

Pc .
Once the required notation has been introduced, the corresponding MANLP of a CFASP can

formally be defined.
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Definition 14. Let Pc be a CFASP defined with a residuated implication←. The corresponding MANLP P
of Pc is defined on the multi-adjoint lattice with negation (L,�,←, &,¬), being (&,←) an adjoint pair, as the
following set of rules:

P = {〈a← @[p1, . . . , pn]; >〉 | a← f (l1, . . . , ln) ∈ Pc}
∪ {〈not1

b ← ¬b; >〉 | b ∈ N k
Pc , k ≥ 1}

∪
{
〈noth

b ← ¬noth−1
b ; >〉 | b ∈ N k

Pc , k ≥ 2, h ∈ {2, . . . , k}
}

where the operator
.
@ coincides with f and

pj =

{
lj if lj ∈ APc

noth
b if lj = ¬hb, b ∈ APc , h ≥ 1

for each j ∈ {1, . . . , n}.

It is important to highlight that, given a rule a ← f (l1, . . . , ln) ∈ Pc, since f is an aggregator
operator, the corresponding operator

.
@ is also an aggregator. Furthermore, according to the syntax

of CFASPs,← is a residuated implication, and thus there exists an operator & such that (&,←) is an
adjoint pair. Hence, the program P is well-defined, that is, P is a MANLP. Notice that, when a CFASP
is simple (Definition 7), then the obtained multi-adjoint program is a MALP.

Algorithm 2 shows how Definition 14 is applied in order to compute the corresponding MANLP
of a CFASP.

Algorithm 2: Corresponding MANLP of a CFASP
input :Pc

output :Corresponding MANLP of Pc

1 Compute the sets N k
Pc , k ≥ 1;

2 Define P = ∅;
3 for each a← f (l1, . . . , ln) ∈ Pc do
4 add 〈a← @[p1, . . . , pn]; >〉 to P, where @, p1, . . . , pn are defined according to Definition 14

5 for each b ∈ N k
Pc , k ≥ 1 do

6 add 〈not1
b ← ¬b; >〉 to P

7 for each b ∈ N k
Pc , k ≥ 2, h ∈ {2, . . . , k} do

8 add 〈noth
b ← ¬noth−1

b ; >〉 to P
9 return P

Example 10. Consider the CFASP Pc given in Example 6, consisting of the rules

rc
1 : p← 1+s

2
rc

2 : p← q ∗ ¬¬s
rc

3 : q← 0.8
rc

4 : s← max{¬q, t/2}
rc

5 : t← ¬u

In what follows, we compute the corresponding MANLP of Pc by means of Algorithm 2. Notice that, the
degree of p and t is 0, the degree of q and u is 1 and the degree of s is 2. Hence, by definition, N 1

Pc = {q, u} and
N 2

Pc = {s}.
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Let P = ∅. According to lines 3 and 4, the rule rc
1 ∈ Pc is included in P as

〈p← 1 + s
2

; 1〉

In what regards the rule rc
2 ∈ Pc, it is included in P as

〈p← q ∗ not2
s ; 1〉

Similarly, the rules rc
3, rc

4, rc
5 ∈ Pc are adapted to be added to P.

Concerning lines 5 and 6, as N 1
Pc = {q, u} and N 2

Pc = {s}, the next rules are added to P:

〈not1
s ← ¬s; 1〉

〈not1
q ← ¬q; 1〉

〈not1
u ← ¬u; 1〉

Finally, applying lines 7 and 8, we conclude adding into P the rule

〈not2
s ← ¬not1

s ; 1〉

Therefore, the corresponding MANLP of Pc is defined on the multi-adjoint lattice with negation ([0, 1],≤,
←, &,¬), and consists of the following rules:

r1 : 〈p← 1+s
2 ; 1〉 r1

s : 〈not1
s ← ¬s; 1〉

r2 : 〈p← q ∗ not2
s ; 1〉 r2

s : 〈not2
s ← ¬not1

s ; 1〉
r3 : 〈q← 0.8 ; 1〉 rq : 〈not1

q ← ¬q; 1〉
r4 : 〈s← max{not1

q, t/2} ; 1〉 ru : 〈not1
u ← ¬u; 1〉

r5 : 〈t← not1
u ; 1〉

Now, we will present a technical result which will be useful in order to show the relationship
between the answer sets of a CFASP Pc and the stable models of its corresponding MANLP P.

Lemma 1. Let Pc be a CFASP, P the corresponding MANLP of Pc, Nc, Mc : APc → L two interpretations and
we define NM : ΠP → L as NM(b) = Nc(b) if b ∈ APc and NM(noth

b) = ¬
h Mc(b) for each b ∈ N k

Pc , k ≥
1, h ∈ {1, . . . , k}. Then, Nc is a model of the reduct Pc

Mc if and only if NM is a model of the reduct PM, where
M denotes the interpretation MM.

Proof. Taking into account that (&,←) forms an adjoint pair, the following statements hold:

(i) NM satisfies the rule 〈not1
b ← ¬M(b);>〉 in the reduct PM if and only if ¬M(b) � NM(not1

b).
(ii) NM satisfies a rule of the form 〈noth

b ← ¬M(noth−1
b );>〉 in the reduct PM if and only if

¬M(noth−1
b ) � NM(noth

b).

Notice that, the equalities M(not1
b) = ¬M(b) and M(noth

b) = ¬h M(b) = ¬
(
¬h−1M(b)

)
=

¬M(noth−1
b ) are satisfied. As a consequence, by definition of NM and M, we obtain that NM

straightforwardly satisfies all rules in PM with head noth
b , with b ∈ N k

Pc , k ≥ 1, h ∈ {1, . . . , k}.
Now, note that a rule a← f (l1, . . . , ln) belongs to Pc if and only if the rule 〈a← @[p1, . . . , pn]; >〉

belongs to P. Since every pj is a “positive” propositional symbol, with j ∈ {1, . . . , n}, we can assert
that the rule rc given by

rc : a← f (lMc

1 , . . . , lMc

n )

is in the reduct Pc
Mc if and only if the rule r defined as

r : 〈a← @[p1, . . . , pn]; >〉
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belongs to PM. In what follows, we show that Nc satisfies the rule rc if and only if NM satisfies the rule
r. Clearly, Nc satisfies rc if and only if Nc( f (lMc

1 , . . . , lMc
n )) � Nc(a), or equivalently

f
(

Nc(lMc

1 ), . . . , Nc(lMc

n )
)
� Nc(a) (6)

On the other hand, NM satisfies r if and only if NM(@[p1, . . . , pn]) � NM(a), i.e.,

.
@[NM(p1), . . . , NM(pn)] � NM(a) (7)

We will see that Equations (6) and (7) are identical. Indeed, as NM(b) = Nc(b) for each b ∈ APc ,
the right-hand side of both inequalities coincide.

Now, given j ∈ {1, . . . , n}, suppose that lj ∈ APc . Then lMc

j = lj and pj = lj, from which

NM(pj) = NM(lj) = Nc(lj) = Nc(lMc

j ). On the contrary, assume that lj = ¬hb with b ∈ APc and 1 ≤ h.

In that case, lMc

j = Mc(lj) and pj = noth
b . Hence, the following chain of equalities hold:

NM(pj) = NM(noth
b) = ¬

h M(b) = ¬h Mc(b)
(†)
= ¬hNc (Mc(b))

= Nc
(
¬h Mc(b)

)
= Nc

(
Mc(¬hb)

)
= Nc (Mc(lj)

)
= Nc

(
lMc

j

)
(†) Note that Mc(b) ∈ L, and thus Nc(Mc(b)) = Mc(b).

As a result, we conclude that NM(pj) = Nc(lMc

j ), for each j ∈ {1, . . . , n}. Since
.
@ = f ,

Equations (6) and (7) coincide, as we want to demonstrate. Hence, we obtain then that Nc is a model
of Pc

Mc if and only if NM is a model of PM.

The following result shows that the answer sets of a CFASP Pc are associated with a family of
stable models of its corresponding MANLP P.

Theorem 3. Let Pc be a CFASP, P the corresponding MANLP of Pc, Mc : APc → L an interpretation and
M : ΠP → L given by M(b) = Mc(b) if b ∈ APc and M(noth

b) = ¬
h M(b) for each b ∈ N k

Pc , k ≥ 1, h ∈
{1, . . . , k}. Then, Mc is an answer set of Pc if and only if M is a stable model of P.

Proof. By Lemma 1, we straightforwardly obtain that Mc is a model of Pc
Mc if and only if M is a model

of PM. It remains to demonstrate that Mc is the least model of Pc
Mc if and only if M is the least model

of PM. We will proceed by reductio ad absurdum. Suppose that M is the least model of PM but there
exists a model Nc : APc → L of Pc

Mc such that Nc ≺ Mc, that is, Nc(b) � Mc(b) for each b ∈ APc and
there exists a ∈ APc such that Nc(a) ≺ Mc(a). According to Statement (1), the interpretation NM is
then a model of PM. By definition of NM and M, we obtain NM(b) = Nc(b) � Mc(b) = M(b), for each
b ∈ APc , and NM(noth

b) = ¬
h M(b) = M(noth

b), for each b ∈ N k
Pc , k ≥ 1, h ∈ {1, . . . , k}. Furthermore,

NM(a) = Nc(a) ≺ Mc(a) = M(a). Therefore NM ≺ M, in contradiction with the hypothesis, since M
is the least model of PM.

Suppose now that Mc is the least model of Pc
Mc but there exists a model N : ΠP → L of PM such

that N ≺ M. Hence, we can consider the interpretation Nc : APc → L defined as Nc(b) = N(b), for
each b ∈ APc . Clearly, if N(noth

b) ≺ M(noth
b), for some b ∈ N k

Pc , k ≥ 1, h ∈ {1, . . . , k}, then N does not
satisfy the rule 〈noth

b ← ¬M(noth−1
b );>〉 in the reduct PM. Therefore, we can assert that there exists

a ∈ APc such that N(a) ≺ M(a) and so, Nc ≺ Mc. Now, we consider the interpretation Nc
M : ΠP → L

defined as NM(b) = N(b), for each b ∈ APc and NM(noth
b) = ¬h M(b), for all b ∈ N k

Pc , k ≥ 1, h ∈
{1, . . . , k}. Since N is a model of PM, then NM satisfies all rules in PM and so, NM is also a model of
PM. Thus, by Lemma 1, we obtain that Nc is a model of Pc

Mc , contradicting the fact that Mc is the least
model of Pc

Mc .

The subsequent theorem completes the foundations of the equivalence between the semantics of
a CFASP Pc and its corresponding MANLP P. Specifically, it states that the evaluation of noth

b under
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any stable model M of P is equal to ¬h M(b). As a result, we conclude that Theorem 3 covers all stable
models of P, and thus Pc and P are equivalent, from a semantical point of view.

Theorem 4. Let Pc be a CFASP and P the corresponding MANLP of Pc. Any stable model M of P satisfies
M(noth

b) = ¬
h M(b), for each b ∈ N k

Pc , k ≥ 1, h ∈ {1, . . . , k}.

Proof. Let M be a stable model of P, i.e., the least model of the reduct PM. We will proceed by
induction on h.

Base case: We show that M(not1
b) = ¬M(b), for each b ∈ N k

Pc , k ≥ 1.
Since M is a model of the reduct PM, M satisfies the rule 〈not1

b ← ¬M(b);>〉 in PM, and therefore
¬M(b) � M(not1

b). Furthermore, since M is actually the least model of PM and 〈not1
b ← ¬M(b);>〉 is

the unique rule with head not1
b in PM, we conclude that M(not1

b) = ¬M(b), for each b ∈ N k
Pc , k ≥ 1.

Inductive step: We assume M(noth−1
b ) = ¬h−1M(b) is satisfied, for some b ∈ N k

Pc , k ≥ 2, h ∈
{2, . . . , k}, and we show that M(noth

b) = ¬
h M(b) holds.

By an analogous reasoning to the base case, M satisfies the rule 〈noth
b ← ¬M(noth−1

b );>〉 in
PM, from which ¬M(noth−1

b ) � M(noth
b). Again, as M is the least model of PM and 〈noth

b ←
¬M(noth−1

b );>〉 is the unique rule with head noth
b in PM, we obtain that ¬M(noth−1

b ) must be equal
to M(noth

b). Now, taking into account the induction hypothesis, we deduce the required equality:

M(noth
b) = ¬M(noth−1

b ) = ¬
(
¬h−1M(b)

)
= ¬h M(b)

which finishes the proof.

As a consequence of Theorems 3 and 4, given a CFASP Pc and its corresponding MANLP P, the
number of answer sets of Pc coincides with the number of stable models of P.

Corollary 1. Let Pc be a CFASP and P its corresponding MANLP. Then, there exists an answer set of Pc if and
only if there exists a stable model of P.

Proof. It straightforwardly follows from Theorems 3 and 4.

Corollary 1 leads us to assert that, if one guarantees the existence of a stable model of P, then the
existence of an answer set of Pc is ensured. As a result, Theorem 1 can be used to provide a sufficient
condition for the existence of answer sets of a CFASP. In particular, the following result is obtained.

Corollary 2. Let Pc be a CFASP. If the order-preserving mappings and the negation operator involved in the
rules of Pc are continuous operators, then there exists at least an answer set of Pc.

Proof. Assume that the operators in the rules of Pc are continuous. Taking into account the definition
of the corresponding MANLP P of Pc and Theorem 1, we deduce that P has at least a stable model. By
Corollary 1, we conclude that Pc has at least an answer set.

This section concludes with an example in order to illustrate Corollary 2 and Theorems 3 and 4.
More precisely, we retrieve the CFASP Pc introduced in Example 6 and we ensure the existence of at
least an answer set of Pc. Then, we construct a stable model of its corresponding MANLP P and we
translate it into an answer set of Pc.

Example 11. In Examples 6 and 10, the negation operator ¬ in the CFASP Pc is clearly continuous.
Furthermore, f1, f2, f3 and f4 are continuous mappings as well. Hence, Corollary 2 leads us to conclude
that there exists at least an answer set of Pc. For instance, consider the interpretation

I ≡ {(p, 0.4), (q, 0.8), (s, 0.5), (t, 1), (u, 0), (not1
q, 0.2), (not1

u, 1), (not1
s , 0.5), (not2

s , 0.5)}
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Since the corresponding MANLP P of Pc was already shown in Example 10, the reduct of P with respect to
I, denoted as PI , is given by the following rules:

rI
1 : 〈p← 1+s

2 ; 1〉 rI
q : 〈not1

q ← 0.2; 1〉
rI

2 : 〈p← q ∗ not2
s ; 1〉 rI

u : 〈not1
u ← 1; 1〉

rI
3 : 〈q← 0.8 ; 1〉 r1

s
I : 〈not1

s ← 0.5; 1〉
rI

4 : 〈s← max{not1
q, t/2} ; 1〉 r2

s
I : 〈not2

s ← 0.5; 1〉
rI

5 : 〈t← not1
u ; 1〉

As there are no rules in PI with head u, we can assert that the least model M of PI satisfies M(u) = 0.
Moreover, as q, s, t, not1

q, not1
u, not1

s and not2
s appear in the head of only one rule, specifically in the head of rI

3,

rI
4, rI

5, rI
q, rI

u, r1
s

I and r2
s

I , respectively, then:

M(q) = 0.8
M(s) = max{M(not1

q), M(t)/2} = max{0.2, 0.5} = 0.5
M(t) = M(not1

u) = 1
M(not1

q) = 0.2
M(not1

u) = 1
M(not1

s ) = 0.5
M(not2

s ) = ¬M(not1
s ) = ¬0.5 = 0.5

Finally, the value assigned to p by M is computed as follows:

M(p) = min
{

1 + M(s)
2

, M(q) ∗M(not2
s )

}
= min

{
1 + 0.5

2
, 0.8 ∗ 0.5

}
= min{0.75, 0.4} = 0.4

As I coincides with M, we conclude that I is the least model of PI . In other words, I is a stable model of P.
Hence, applying Theorem 3, I is an answer set of Pc.

5. Conclusions and Future Work

We have presented a methodology to simulate an arbitrary MANLP by means of a semantically
equivalent CFASP. We proposed the inclusion of the weight of each rule appearing in a given MANLP
in its body, by using the residuated pair, which defines the rule. This procedure allows us to complete
the labour initiated in [15], that is, extended multi-adjoint logic programs can be translated into CFASPs
with the goal of handling compact simple programs, which are semantically equivalent. This fact
considerably increases the potential of EMALPs to model real-life problems, since modelling the
information contained in a text or in a database by decision rules and the interpretation of those rules
will be easier through a EMALP and its translation into a CFASP will facilitate the simulation and
computation of the consequences/deductions from the program.

We have also studied the opposite translation procedure, that is, a mechanism to translate an
arbitrary CFASP into a semantically equivalent MANLP has been given. The proposed translation
method increases the number of rules of the original program, since it transforms the composited
negations appearing in a given CFASP into a single negation, by including new rules with new
propositional symbols. From this mechanism, we have established a one-to-one correspondence
between the answer sets of a CFASP and the stable models of its corresponding MANLP. Indeed,
we have proven that Theorem 1, introduced in [14], provides sufficient conditions under which the
existence of answer sets of a CFASP can be ensured.
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As future work, other results given in MALP and MANLP will also be considered, such as the
termination results given in MALP [8,9] and the studies on coherent and incoherent information
in MANLP [21,22]. In addition, we will study the extension of EMALP with the consideration of
disjunctions in the head of the rules. Furthermore, we would like to apply the translation mechanisms
and the theoretical advances achieved in this work to solve real-life problems. Specifically, we are
interested in investigating the potential of their application to the digital forensics field, where the
developed theory can be useful to extract knowledge with the goal of modelling behaviour patterns.
For instance, in order to detect and prevent fraud related to transactional credit card databases as well
as to manage databases containing information about crimes in a certain city. Due to the large amount
of data in digital forensics, the simplicity of CFASPs is very useful to achieve a feasible computational
efficiency. On the other hand, these data have a broad variability, for example, it can be given in natural
language, and an easy mechanism for translating the data to logic programs is fundamental. In this
sense, the high expressiveness potential of EMALPs can support this translation. Thus, both logic
frameworks CFASP and EMALP are of great interest for obtaining information from (big) data.
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