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Abstract: In this study, we teased out the dynamical mechanisms underlying the generation
of arrhythmogenic early afterdepolarizations (EADs) in a three-variable model of a mammalian
ventricular cell. Based on recently published studies, we consider a 1-fast, 2-slow variable decomposition
of the system describing the cellular action potential. We use sweeping techniques, such as the
spike-counting method, and bifurcation and continuation methods to identify parametric regions
with EADs. We show the existence of isolas of periodic orbits organizing the different EAD patterns
and we provide a preliminary classification of our fast–slow decomposition according to the involved
dynamical phenomena. This investigation represents a basis for further studies into the organization
of EAD patterns in the parameter space and the involved bifurcations.

Keywords: cardiac dynamics; early afterdepolarizations (EADs); bifurcations; isolas;
fast–slow decomposition
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1. Introduction

In a healthy heart, the sinoatrial node sends out an electrical impulse, which spreads cell to
cell throughout the heart, activating all cardiomyocytes to produce an electrical response called the
action potential (AP). Upon being stimulated, cardiomyocytes in the lower chambers of the heart,
the ventricles, suddenly increase their transmembrane voltage (depolarization). This increase is
followed by a small partial voltage decrease (transient repolarization) and a prolonged plateau phase
where voltage remains approximately constant. In the final part of the AP, transmembrane voltage
decreases (repolarization) while returning to the resting potential level, which is maintained until
receiving the next stimulus.

Under some circumstances, the normal sequence of AP phases can be reversed due to inward
currents raising the transmembrane voltage during the plateau or repolarization phases of the
AP, producing so-called phase-2 or phase-3 early afterdepolarizations (EADs). Drug side effects,
ion channel dysfunction or oxidative stress, among others, can lead to the genesis of EADs [1–3].
In heart failure and genetic syndromes, EADs have been documented to be an important cause for
lethal ventricular arrhythmias [4–6], but further knowledge is required to understand the mechanisms
underlying EAD generation and the relationship between these cellular abnormalities and the
occurrence of arrhythmias at tissue and whole-organ level that could eventually lead to sudden
cardiac death.
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Computational models of cardiac electrical activity have greatly contributed to shed light
into varied cardiac phenomena, including EADs. Multiple models of mammalian ventricular
cardiomyocytes have been used in the literature. Some of these are highly detailed, complex models
with tens of state variables and hundreds of parameters, while there are other simpler models
with just a few variables and parameters. Whereas complex (high-dimensional) models allow for
greater realism in reproducing experimental observations and facilitating biophysical interpretation,
simple (low-dimensional) models aid in isolating the dynamical mechanisms underlying a particular
phenomenon and in performing a comprehensive theoretical study. In the present work, we use a
low-dimensional approach based on a reduced three-variable cardiomyocyte model.

In 1991, Luo and Rudy [7] introduced a mathematical model of the membrane AP of a mammalian
ventricular cell based on experimental data recently available at that time. This model, differently from
subsequent models developed by the same authors, is called “passive” because all ionic concentrations,
except for intracellular calcium, remain unchanged rather than varying dynamically over time. Due to
its simple formulation and its ability to represent phenomena involving both depolarization and
repolarization of ventricular cell, this model, either as such or with some simplifications, has been
extensively used. In [8], a reduction in the number of variables of the Luo–Rudy model was proposed
to investigate the mechanisms of EADs when decreasing the stimulation frequency. Initially, a model
able to produce EADs was considered that contained three ionic currents, namely a fast Na current,
an intermediate time-scale Ca current, and a slow K current. Later, the fast Na current was discarded
due to it having little effect on EAD generation, as it is activated mostly during the AP upstroke and is
practically null during the plateau and repolarization AP phases. In our analysis, we use this reduced
model to simplify the number of state variables at its maximum and, thus, facilitate a theoretical study.

From a mathematical point of view, this is a fast–slow dynamical system with multi-timescale
phenomena. A fast–slow analysis of a reduced version of the Luo–Rudy model is presented in [8],
considering a system with one slow and two or three fast variables. In that paper, the presence
of a subcritical Poincaré–Andronov–Hopf bifurcation is shown as a signature of pseudo-plateau
bursting. Similar analyses were published based on mathematical neuron models [9–11], where the
classification of bursting models and the generation of new oscillations (spikes) were related, among
others, with Poincaré–Andronov–Hopf and homoclinic bifurcations in the fast subsystem of two
variables (dimension 2). While this approach has been successfully used in a variety of cardiac
studies to investigate the causes for the presence or absence of EADs, it has recently been shown
to fail in explaining the lack of certain types of EADs [12]. Considering the reduced three-variable
version of the Luo–Rudy model presented in [8], a 1-fast, 2-slow decomposition is proposed [12,13] to
provide more insight into the facilitation or inhibition of EADs as a function of the pacing frequency or
pharmacological interventions. In this paper, we use this approach for the fast–slow decomposition and
we characterize dynamical behaviors by introducing a sweeping technique, namely the spike-counting
method. Besides, by using continuation techniques, we describe some bifurcations of the system and
we show, for the first time to the best of our knowledge, the presence of isolas of families of periodic
orbits in the reduced Luo–Rudy model.

The paper is organized as follows. In Section 2, the reduced model used to describe the electrical
behavior of a mammalian ventricular cardiomyocyte is presented. In Section 3, the dynamical analysis
performed to identify parametric regions with EADs and generate associated bifurcation diagrams
is described. In Section 4, the discussion and conclusions of the study as well as recapitulating
classification figures regarding EAD generation are presented.

2. The Reduced Luo–Rudy Mammalian Ventricular Cell Model

Following a Hodgkin and Huxley formalism [14], Luo and Rudy proposed a mathematical model
of a mammalian ventricular cell (LR91) [7]. The rate of change of the transmembrane potential (V) is
given by

dV/dt = −(1/Cm)(Ii + Isti)
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where Cm is the membrane capacitance, in this study set at 0.5 µF/cm2, as in [13], and subsequently
varied to investigate its role in facilitating the generation of EADs. In the above equation, Isti is
an external stimulus current and Ii is the sum of the ionic currents in the cell. All ionic currents
were computed for a membrane area of 1cm2. Six ionic currents were defined in the LR91 model:
INa, a fast sodium current; ICa, a slow inward current; IK, a time-dependent potassium current; IK1,
a time-independent potassium current; IKp, a plateau potassium current; and Ib, a time-independent
background current.

Since here we focus on EAD generation, we follow the approach proposed in [8] and we discard
the fast INa current for the reduced version of the LR91 model. Although some studies have described
a role for the sodium current in the generation of EADs [2,3], it should be noted that this current
has two components, namely the fast sodium current and the late sodium current. While the late
sodium current flows throughout the AP plateau and its involvement in EAD generation has been
well documented, the fast sodium current contributes to the AP depolarization and has a more limited
contribution to EADs. In the reduced model used in this work, only the fast sodium current is included
and, thus, we discard it based on its reduced contribution to the investigated phenomenon. The other
two ionic currents in the reduced model are: ICa = GCa · d · f · (V − ECa), which is a calcium current
with an activation gating variable d and an inactivation gating variable f ; and IK = GK · x · xi · (V− EK),
which is a time-dependent potassium current with a time-dependent activation gating variable x and
a time-independent inactivation gating variable xi set to one for simplification. The reversal potential
of calcium was set at ECa = 100mV, rather than being time-dependent as in the LR91 model.

The values of the gating variables used to define the ionic currents are obtained as the solution of
a coupled system of nonlinear ordinary differential equations (ODEs) of the form dy/dt = (y∞(V)−
y)/τy(V), where y represents any gating variable, τy is its time constant, and y∞ is the steady-state
value of y [7].

An additional simplification to the four-variable system (V, d, f , and x) proposed in [8] was later
described by Kügler [15]. The gating variable d was replaced with its steady-state function d∞(V) and
the time-constant functions τf (V) and τx(V) were assumed to be constant, thus being represented by
τf and τx.

With all these simplifications, the three-variable model used here [12] was described by the
following ODE system: 

Cm
d V
d t

= −(ICa + IK) + Isti ≡ h(V, f , x),

d f
d t

=
f∞(V)− f

τf
≡ g1(V, f ),

d x
d t

=
x∞(V)− x

τx
≡ g2(V, x),

(1)

with the inward ionic calcium current ICa (with the calcium channel conductance GCa and the dynamic
inactivation variable f ) and the outward ionic potassium current IK (with the potassium channel
conductance GK and the dynamic activation variable x) defined by:

ICa = GCa · d∞(V) · f · (V − ECa); IK = GK · x · (V − EK). (2)

The steady-state functions were given by:

f∞(V) =
1

1 + e
V−E f

θ f

, x∞(V) =
1

1 + e
Ex−V

θx

, d∞(V) =
1

1 + e
Ed−V

θd

.
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The fixed parameter values used in this study, unless otherwise stated, were:

Cm = 0.5µF/cm2, τf = 80 ms, τx = 300 ms, GCa = 0.025 mS/cm2, ECa = 100 mV,
GK = 0.04 mS/cm2, EK = −80 mV, E f = −20 mV, θ f = 8.6 mV, Ex = −40 mV,
θx = 5 mV, Ed = −35 mV, θd = 6.24 mV.

It should to be noted that, whereas the LR91 model well represents the behavior of a ventricular
cardiomyocyte with constant resting membrane potential during Phase 4, the reduced model described
above presents a Phase 4 with slowly increasing transmembrane potential. Thus, an external stimulus
is required to depolarize the AP in the LR91 model, but the AP depolarizes spontaneously when
transmembrane potential reaches a threshold in the case of the reduced model. Consequently, Isti = 0
in the above equations for the three-variable model.

3. Dynamical Study

We showed that the reduced version of the LR91 model described above presents a behavior
comparable to that of typical spiking-bursting activity [9–11]. To achieve a better understanding
of the model dynamics, we performed a detailed numerical analysis using both a spike-counting
technique and numerical continuation to detect the main bifurcations. Numerical simulations were
performed using a variable-stepsize variable-order Taylor series method (software TIDES (https:
//sourceforge.net/projects/tidesodes/) [16,17]), which provides a highly accurate numerical ODE
solver, using TOL = 10−12 as error tolerance.

3.1. Spike-Counting Sweeping

When EADs are generated, extra spikes can be seen in the plateau of the AP. Figure 1 shows a
normal beat with no EADs, a beat with one EAD and a beat with several EADs (more than 2 spikes).

The spike-counting technique consists of detecting the number of spikes of the limit cycles of
the system, when these exist [18]. Regions of parameter values with the same number of spikes per
beat are represented with the same color. This allows appreciating different bands in the parameter
space, which characterize the structure of the model. The detection of the number of spikes per orbit is
performed by computing all relative maxima and minima and by counting the spikes where the relative
difference between the maxima and minima in the voltage variable is higher than a threshold. Here,
the threshold is set at 10−2 so as not to include very small oscillations that occur in action potentials
such as the one represented on the right panel of Figure 1. The number of counted spikes is clearly
sensitive to the selection of the threshold value, but the global behavior in terms of the occurrence of
EADs is generally well captured, as all main voltage changes during the AP plateau are detected.
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Figure 1. Normal beat and beats with one or more EADs.

In our analysis, we used the conductances of the calcium and potassium currents, GK and
GCa, as the main set of parameters to investigate their involvement in EAD occurrence. We also
investigated variations in the cell capacitance, Cm. This represents a further step from previous studies
that considered variations only in GCa [8] or both GCa and GK [12] to determine the presence of

https://sourceforge.net/projects/tidesodes/
https://sourceforge.net/projects/tidesodes/
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EADs. While using a reduced model facilitates theoretical understanding on the mechanisms for EAD
generation, future works should be conducted with more complex and more realistic cardiomyocyte
models that allow meaningful interpretations regarding the parameters involved in the occurrence
of EADs.

Figure 2 shows the results of the spike-counting technique for the biparametric plane (GK, GCa),
with the upper left inset presenting a magnification of a specific area. Colors indicate different cellular
behaviors. Darkest blue denotes cases where no beats are generated. Slightly lighter blue corresponds
to normal beats without EADs, an example of which is illustrated in Figure 3b for the parameter values
of Point I. In the region of Point II, the periodic orbit shows one EAD, as exemplified in Figure 3d.
When the parameters move to the lightest blue and red regions, more EADs are present, as shown
in Figure 3f for Point III and in Figure 4c,f for Points IV and V, respectively. In particular, Point III
corresponds to the default values GCa = 0.025 and GK = 0.04, for which EADs are present. Based on
the different cellular behaviors indicated by the color band structure in Figure 2, further analyses
were performed for the default value of GCa = 0.025 while varying GK along the horizontal red line,
as described in the following sections.
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Figure 2. Regions of the spike-counting analysis for the biparametric plane (GK , GCa). In the upper
left inset, a magnification of a specific region is shown. Different colors mark different numbers of
spikes in the attracting orbit. A triangular shape region delimits the regions of beats with and without
EADs. Point I corresponds to a normal beat without EADs (illustrated in Figure 3b). In the region of
Point II, the periodic orbit shows one EAD (illustrated in Figure 3d). More EADs are present when
the parameters move to the lightest blue and red regions (illustrated in Figure 3f for Point III and in
Figure 4c,f for Points IV and V, respectively). The horizontal red dashed line corresponds to the default
value GCa = 0.025.
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Figure 3. Analysis of cases I, II, and III on the line GCa = 0.025. Plots (a,c,e): the critical manifold
Mcritical (orange) is shown with the attracting and repelling sheets separated by the fold lines, F+ and
F− (red). The periodic orbit is shown in blue. As the bifurcation parameter Gk is varied, the periodic
orbit and the number of EADs change depending on the position of the equilibrium point (black),
the folded-node point (magenta), and the stable manifold of the equilibrium (green). Plots (b,d,f):
the temporal evolution in milliseconds of the variable V of the periodic orbit is shown.
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Figure 4. Analysis of cases IV and V on the line GCa = 0.025. Plots (a,b,d,e): the critical manifold
Mcritical (orange) is shown with the attracting and repelling sheets separated by the fold lines, F+ and
F− (red). The periodic orbit is shown in blue. As the bifurcation parameter Gk is varied, the periodic
orbit and the number of EADs change depending on the position of the equilibrium point (black),
the folded-node point (magenta) and the stable manifold of the equilibrium (green). The local
two-dimensional unstable manifold Wu

loc(eq) and the unstable subspace Eu(eq) of the equilibrium
point are plotted. Plots (c,f): the temporal evolution in milliseconds of the variable V of the periodic
orbit is shown. In this case the periodic orbit shows a longer activation time because of AP plateau
prolongation and there is a remarkable increment in the number of EADs per beat.
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Figure 5 shows additional spike-counting results for the biparametric (GK, Cm) plane, with the
horizontal red line corresponding to the default value Cm = 0.5 (and GCa = 0.025). In this case as well,
color bands can be observed, rendering similar structures to those shown for the (GK, GCa) plane in
Figure 2. Based on the results shown in the two figures, bounded regions in the global parameter space
can be expected in the characterization of EAD dynamics.
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Figure 5. Regions of the spike-counting analysis for the biparametric plane (GK , Cm). Different colors
mark different numbers of spikes in the attracting orbit. A similar structure to that shown in Figure 2
can be observed. The red dashed line represents the value of Cm = 0.5, studied below in detail.

3.2. Fast–Slow Analysis

The reduced version of the LR91 model used in this study is a fast–slow system, since its state
variables change at different time scales. When analyzing a fast–slow system, it is of major relevance
to investigate the bifurcation diagrams of the limit cases (when the parameters responsible for the
difference in time scales are considered to be zero) [10]. This approach uses geometric singular
perturbation methods and allows (partially) explaining the dynamics when such parameters are small
enough (see [19] for a review and [9] for the basic theory and for classification of bursting mechanisms).

The default values of the time constant parameters characterizing the state variables f and x in
the reduced LR91 model are τf = 80ms and τx = 300 ms. An estimate of the time constant for the
state variable V can be obtained by τV = Cm

GCa+Gk
= 7.7 ms [12]. This means that V is the fastest state

variable and x is the slowest one, while the state variable f can be considered as a fast or a slow one.
In [8], the four-variable (V, d, f , and x) system was decomposed into a fast three-variable (V, d, and f )
subsystem and a slow one-variable (x) subsystem, thus including f as a fast variable. In [15], a simpler
three-variable (V, f , x) model was considered, as d was replaced with its steady-state function d∞(V).
The fast subsystem was defined to contain two variables (V and f ), thus again taking f as a fast state
variable. On this basis, a fast two-variable and a slow one-variable subsystems were analyzed and their
information was combined to characterize the dynamics of the full three-variable system. By fixing x,
the model analysis provides two invariant objects: a curve of equilibrium points and a manifold of
limit cycles. The main issue with this approach is that it does not explain some changes in the system,
as illustrated in [12]. To solve this issue, some studies have decomposed the same three-variable
system into a fast one-variable (V) and a slow two-variable ( f and x) subsystems [12,13]. A systematic
analysis of the geometric singular perturbation methods for 1-fast, 2-slow variables is given in [20,21].
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In this study, we considered, on the one hand, the reduced LR91 model (Equation (1)) using the
fast time scale τ = t/Cm:

dV
dτ

= h(V, f , x),
d f
dτ

= ε · g1(V, f ),
dx
dτ

= ε · g2(V, x). (3)

where ε is a parameter that takes small values (Cm/τf , Cm/τx) and h(V, f , x) = −(ICa + IK), as no
external stimulus was considered (Isti = 0), as in [12,13]. When ε decreases to zero (ε −→ 0), the system
described in Equation (3) defines orbits that converge during fast dynamics to solutions of the fast
subsystem or layer equations given by:

dV
dτ

= h(V, f , x),
d f
dτ

= 0,
dx
dτ

= 0. (4)

On the other hand, when the orbits have slow dynamics, the fast variable moves so rapidly that
it can be considered to have already reached steady-state. Thus, changing to the time scale t̃ = τ/ε

and taking the limit case, the orbits converge to solutions of the differential algebraic equation (DAE)
system, called the slow-flow system, given by:

0 = h(V, f , x),
d f
dt̃

= g1(V, f ),
dx
dt̃

= g2(V, x). (5)

The solutions of Equation (5) evolve on the manifold given by h(V, f , x) = 0, which is called the
critical manifold and is denoted byMcritical. Besides, this gives the manifold where the equilibria of
the fast subsystem are. It follows from Fenichel theory [22] that this manifold perturbs to invariant
manifolds that exist for small enough ε in the full system.

In the following, a detailed investigation of the geometry of the bursting orbit dynamics for the
reduced LR91 model, and in particular the orbits for the set of parameters corresponding to Points I–V
in Figure 2, is performed. Taking the model equations defined by Equation (1), the critical manifold is
given by the cubic-shaped surface:

Mcritical :=
{
(V, f , x)

∣∣ h(V, f , x) = 0
}
→ Mcritical =

{
(V, f , x)

∣∣∣∣ f = − GK x (V − EK)

GCa d∞(V) (V − ECa)

}
. (6)

Figure 3 shows the outer sheets of the surface, which are attracting ones, and the middle sheet,
which is a repelling one. The different sheets are separated by curves F± corresponding to fold
bifurcations of the fast subsystem:

F± =

{
(V, f , x) ∈ Mcritical

∣∣∣∣ ∂h(V, f , x)
∂V

= 0,
∂2h(V, f , x)

∂2V
6= 0

}
. (7)

From the analysis of limit cases and Fenichel theory, the solutions of the global system were
found to evolve in the slow epochs close to one of the attracting sheets of the critical manifold.
The evolution on the attracting sheets was found to give the stable hyperpolarized and stable
depolarized steady-states. Close to the fold bifurcations, the orbits quickly fell down to the other
attracting sheet. The rapid transitions between the attracting sheets were approximated by solutions
of the fast one-variable subsystem in Equation (4).

As described above, the equations of the slow motion on the critical manifold are given by
Equation (5), where differential equations describe the motions of the variables f and x, whereas the
fast variable V is implicitly described by the first algebraic equation in Equation (5). Through several
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manipulations (see [12,13,19] for details), the slow subsystem can be transformed into the so-called
desingularized system:

dV
dtd

=
∂ h
∂ f

g1 +
∂ h
∂ x

g2,

dx
dtd

= − ∂h
∂V

g2.
(8)

Folded singularities are equilibria of the desingularized system only, but not of the slow subsystem
in Equation (5) or the initial model in Equation (1). Thus, they lie on a fold curve and satisfy:

FN =

{
(V, f , x) ∈ F±

∣∣∣∣ ∂ h
∂ f

g1 +
∂ h
∂ x

g2 = 0
}

. (9)

A study of their linear stability suggested they are folded-node equilibria in this system.
These special points give a route to the solutions of the slow subsystem to cross the folds from
an attracting sheet and to move some time on the repelling sheet. Therefore, these points may generate
the so-called singular canards (see [19,23] for details).

The existence of canard orbits have relevant consequences in many different systems, as they
allow uncovering mechanisms of sudden changes. For instance, they were linked to the spike-adding
phenomena in the Hindmarsh-Rose neuron model [24,25]. In a reduced LR91 model, canard orbits
were shown to organize the first EADs generated on the orbits in phase space [12]. This is well
explained in references [12,13] and therefore here we focus on the different geometric characterizations
of the periodic orbits of the system showing where EADs are produced by the canard orbits and where
different phenomena are also present.

In Figure 3, the fast–slow geometry is described for the orbits with labels I, II, and III in Figure 2
on the parametric line GCa = 0.025. The critical manifold is shown in orange, with the attracting
and repelling sheets separated by the fold lines, F+ and F−, in red and with the periodic orbits in
blue. The temporal evolution of the variable V of the periodic orbit is shown on the right panels.
It can be observed that in Case I for GK = 0.05 the orbit presents a normal beat without any EADs
(Figure 3a,b). In this case, the orbit presents the “nominal behavior”, remaining most of the time on
the critical manifold of the slow motion and fast transitioning between the attracting sheets close
to the fold lines. Note that the orbit is far from the folded-node singular point in magenta and,
therefore, there is no canard orbit. By moving forward on the line GCa = 0.025 towards Point II
corresponding to GK = 0.045, it can be observed that the orbit has one EAD (Figure 3c,d). In this
case, the orbit passes near the folded-node singular point and this allows the orbit to make a loop
on the repelling sheet before progressing to the other attracting sheet (see [13]). By further moving
on the parametric line towards Point III corresponding to GK = 0.04, more EADs are generated by
the maximal canards (Figure 3e,f). Maximal canards are given by the intersections of the depolarized
attracting and the repelling sheets of the slow manifold of the system and extended by the flow
(for more details, see [12,13,26]). The equilibrium point, which is a saddle-node of type (1,2) with
eigenvalues λ1 = −3.91295, λ2 = 0.0928806, and λ3 = 4.27207, is attracting the orbit along the stable
manifold Ws(eq) of the equilibrium (in green) at the same time that the canard orbits generate new
EADs until the orbit progresses to the other attracting sheet (see inset in Figure 3e). This phenomenon
has been previously observed in other 1-fast, 2-slow variables systems [27–29].

Figure 4 shows how further variations in the bifurcation parameter Gk lead to higher numbers
of EADs as the orbit approaches the equilibrium point shown in black. The two orbits presented in
Figure 4 contain a large number of EADs, particularly the second one. The mathematical mechanism
explaining such a large number of EADs is twofold: the described canard phenomenon that gives
rise to EADs when the orbit passes near the folded-node and the stable manifold Ws(eq) of the
equilibrium that increasingly pulls the orbit closer to that point. On the orbit of Point IV corresponding
to GK = 0.035, there is a saddle-focus equilibria of type (1, 2) with eigenvalues λ1 = −0.00436926,
λ2 = 0.00861114 + 0.035771 i, and λ3 = 0.00861114 − 0.035771 i. It can be observed in Figure 4
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how such an orbit oscillates due to the canard orbits around the stable manifold of the equilibria
Ws(eq) until reaching a point close to the equilibrium point (Figure 4a,b). Consequently, the orbit
remains more time active as the orbit approaches the equilibrium and it subsequently spirals outward
(last spikes of the orbit). This can be appreciated in the two-dimensional local unstable manifold
Wu

loc(eq) of the equilibrium shown in Figure 4. In a previous study, this phenomenon was observed as
a first approximation using the unstable linear subspace Eu(eq) of the equilibrium [15]. In addition,
similar observations hold for the last investigated point, i.e., Point V corresponding to GK = 0.03345
(Figure 4d,e). As before, the first oscillations are due to the canard phenomena and the fact of
passing near the folded-node singularity, while subsequent oscillations can be explained by the
orbit approaching the saddle-focus equilibria of type (1,2) with eigenvalues λ1 = −0.0040745,
λ2 = 0.00137656 + 0.0399119 i and λ3 = 0.00137656− 0.0399119 i. It can be noted that in this case the
ratio |λ1|/Reλ2,3 = 2.95991, which makes the attracting dynamics strong and prolongs the approach
towards the equilibrium point. When the orbit is already close enough to the equilibrium point,
the unstable manifold takes control of its escape dynamics and the orbit follows this manifold. This is
illustrated in the inset of Figure 4d, which shows how the orbit spirals the two-dimensional local
unstable manifold Wu

loc(eq). The small variations in the plateau phase of the AP closely resemble
the oscillations present in pseudo-plateau bursting, whose dynamics has also been studied for 1-fast,
2-slow variables systems [21].

As the parameter GK takes decreasing values, the orbit approaches more and more the
saddle-focus equilibria. As shown above, more and more small spikes are then generated. The fact of
setting a threshold on voltage when counting the number of spikes may render the algorithm unable
to detect a small spike, as shown in Figure 6, which can be additionally influenced by the enlargement
of the orbit approaching the saddle-focus equilibria. This may generate transitions between areas of
different colors, which would seem to indicate a change in the number of spikes by one or more spikes
even if this is not actually the case.
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Figure 6. (a) Magnification of the spike-adding plot of Figure 2 using a different color scale;
and (b) some selected beats illustrating how the number of counted spikes can decrease due to the
threshold on voltage set in the spike-counting algorithm, even if the number of oscillations is not
decreased.

3.3. Isolas of Periodic Orbits

To investigate bifurcations on the parametric line GCa = 0.025, numerical analysis with
continuation techniques was performed using the software AUTO [30,31]. The main focus of this
study was to explore the presence of isolas of periodic orbits, that is, simple closed curves of families
of periodic orbits. These isolas have been described for other models, such as the Koper model of
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chemical reactions with mixed-mode oscillations (see Figure 19 in [19]). For the reduced LR91 model
used in this study, some bifurcations are identified in [12] but no isolas are shown.

Figure 7 shows the bifurcation diagram obtained with the software AUTO using Gk as the
continuation parameter on the line GCa = 0.025. The bifurcation diagram shows the maximum
(the highest peak of the orbit) and minimum (resting membrane potential) values of the transmembrane
voltage variable V for different periodic orbits corresponding to a range of given values of the
continuation parameter. The continuation of the equilibria (black thick line) and limit cycles (color lines)
are shown too. Continuous lines are stable invariants while discontinuous lines are unstable ones.
In the figure, presenting a large parametric interval Gk ∈ [0.02, 0.46], two Poincaré–Andronov–Hopf
bifurcations can be observed, a subcritical one on the left part and a supercritical one on the right part.
As Gk decreases, the stable periodic orbits generated at the supercritical Hopf bifurcation move to the
left towards the subinterval for Gk with associated EADs.

stable equilibrium
unstable equilibrium

stable limit cycle
unstable limit cycle

V max

V min

ISOLAS OF 
LIMIT CYCLES

supercritical 
Hopf bifurcation
subcritical 
Hopf bifurcation

G   (mS/cm  )K
2

V(
m

V)

Figure 7. Bifurcation diagram using Gk as the continuation parameter for a large interval of Gk values
to show the Hopf bifurcations. Black thick lines correspond to equilibria, while color lines correspond
to limit cycles. Continuous lines represent stable invariants, while discontinuous lines represent
unstable invariants.

In the subinterval with several EADs, shown in Figure 8b, families of periodic orbits can be
observed, which are plotted in different colors. These families are organized in isolas, that is,
closed family curves of periodic orbits with different numbers of oscillations in the form of EADs.
The different isolas have a section formed by stable limit cycles placed mainly on the top (and bottom,
as it is the maxima and minima) of the isola. These stable periodic orbits lose their stability at fold
bifurcations (or saddle-node bifurcations of limit cycles), as indicated in [12]. However, the stable
line is in fact a discontinuous one, as it is formed by the top subintervals of stable periodic orbits of
the different isolas, and not a continuous line with several bifurcations. The unstable parts of the
isolas shown in the figure evolve with similar maximum and minimum values, which explains why
they are so closely represented in Figure 8b, while they are formed by different limit cycles, as can be
appreciated in Figure 8a. Besides, there are fold and period-doubling bifurcations on the bifurcated
periodic orbits from the subcritical Hopf bifurcation.
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Figure 8. (b) Magnification of the bifurcation diagram of Figure 7 using Gk as the continuation
parameter on the subinterval with isolas. (a) Two orbits on two consecutive isolas (orange and
yellow ones) for the same value of the parameter Gk = 0.038. (c) A zoom of the Vmax component
of two isolas. Black thick lines correspond to equilibria, while color lines correspond to limit cycles.
Continuous lines represent stable invariants, while discontinuous lines represent unstable invariants.
Several bifurcations are pointed (fold and period-doubling bifurcations of limit cycles).

Two of the isolas in Figure 8b are represented separately in Figure 8c only for the maximum
value of voltage. Now, the fold bifurcations are clearly seen as the limit of the stable periodic orbits.
The temporal evolution of voltage along the hearbeat is represented for the two parametric values
marked with a black dot in each of the two isolas, each showing a different number of EADs. The stable
part of the isolas is located on the flat top segment, which corresponds to the observed limit cycles.
These results confirm that the reduced LR91 model exhibits isolas of periodic orbits, as reported
for other fast–slow models in the literature [19]. This can be the basis for further studies into the
organization of EAD patterns in the parameter space and the involved bifurcations.
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4. Discussion, Conclusions, and Future Work

In this study, we investigated the dynamical mechanisms for EAD generation in the reduced
LR91 mammalian ventricular cell model. As in recent studies [12,13], we considered a fast–slow
decomposition of the system with 1-fast and 2-slow variables rather than 2-fast and 1-slow variables [8],
and we analyzed the influence of maximal canard orbits. We used sweeping techniques (the
spike-counting method) as well as continuation techniques. The former allowed us to identify different
parametric regions with EADs (see a summary in Figure 9), whereas the latter was used to generate
bifurcation diagrams for the mentioned parametric regions. We showed the existence of isolas of
periodic orbits and we performed a preliminary classification of the fast–slow decomposition in various
cases according to the involved dynamical phenomena.
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Figure 9. Classification of the different dynamical behaviors of the orbits on the parametric planes
(GK , GCa) and (GK , Cm).
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As a summary, based on the dynamics on the critical manifold and near the unstable equilibrium
point, several regions in the (GK, GCa) and (GK, Cm) parametric planes associated with different
dynamical behaviors can be identified. Specifically, regarding EADs, the first region corresponds
to cases where the orbit has an EAD due to a maximal canard orbit. As more canards take part
in the process, more EADs are generated. When the orbit approaches the equilibrium, this gives
rise to additional oscillations. When the equilibrium point is of saddle-focus type, the orbit gets
closer and closer to the equilibrium and spirals following its unstable manifold. These mechanisms
create EADs corresponding to small oscillations of voltage during the course of the AP, commonly in
association with AP prolongation. Figure 9 recapitulates our classification of the dynamical behaviors
of the orbits in the (GK, GCa) and (GK, Cm) parametric planes: white is associated with no activity,
that is, the equilibria is an attractor; blue corresponds to normal beats; yellow denotes EADs created
by the maximal canards; red corresponds to the attracting behavior of the equilibria on the stable
manifold direction with AP prolongation; and maroon is for very elongated APs remaining close to
the saddle-focus equilibria. Color regions, associated with active cell status, are delimited by two Hopf
bifurcations that make the equilibrium point unstable in the middle parametric interval. As can be
noted from the two panels in Figure 9, results for both (GK, GCa) and (GK, Cm) parametric planes
render bands that allow making a parametric description of the areas in the parameter space that lead to
EAD generation. This sets the basis to investigate actions able to move the system, i.e., the mammalian
ventricular cell, to parameter regions far from areas prone to arrhythmogenic EADs. Part of our future
research in this line focuses on studying the effects of including an external stimulus in this model
and the dynamics of other, more complex and realistic cardiomyocyte models. This would allow more
meaningful interpretations regarding the parameters involved in the occurrence of EAD.
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