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Abstract: We extend the study of orientable hypersurfaces in a Sasakian manifold initiated
by Watanabe. The Reeb vector field ξ of the Sasakian manifold induces a vector field ξT on
the hypersurface, namely the tangential component of ξ to hypersurface, and it also gives a smooth
function ρ on the hypersurface, which is the projection of the Reeb vector field on the unit normal.
First, we find volume estimates for a compact orientable hypersurface and then we use them to find
an upper bound of the first nonzero eigenvalue of the Laplace operator on the hypersurface, showing
that if the equality holds then the hypersurface is isometric to a certain sphere. Also, we use a bound
on the energy of the vector field ∇ρ on a compact orientable hypersurface in a Sasakian manifold
in order to find another geometric condition (in terms of mean curvature and integral curves of ξT)
under which the hypersurface is isometric to a sphere. Finally, we study compact orientable
hypersurfaces with constant mean curvature in a Sasakian manifold and find a sharp upper bound
on the first nonzero eigenvalue of the Laplace operator on the hypersurface. In particular, we show
that this upper bound is attained if and only if the hypersurface is isometric to a sphere, provided
that the Ricci curvature of the hypersurface along ∇ρ has a certain lower bound.
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1. Introduction

It is well known that Sasakian manifolds are considered the odd dimensional analogue of
Kählerian manifolds and therefore Sasakian space forms can be regarded as the counterpart of
complex space forms [1]. One of the important branches of differential geometry is the submanifold
theory and here some very challenging topics come from the geometry of submanifolds in real,
complex and Sasakian space forms. In this setting, in many studies, a key role is played by the Gauss,
Codazzi and Ricci Equations for submanifolds, as these take a manageable form. The differential
geometry of hypersurfaces in a complex space form has been widely studied over the years
(see, e.g., [2–11]), but though Sasakian manifolds are very important due to their elegant geometry
(see the excellent monograph [12]) as well as their important applications in theoretical physics
(see [13] and the references therein), not as many studies have been realized for hypersurfaces in
a Sasakian ambient space. In this context, a well known result is that of Watanabe (cf. [14]), who used
the Obata’s differential Equation (cf. [15,16]) in order to prove that a complete and connected totally
umbilical hypersurface of a (2n + 1)-dimensional Sasakian manifold of constant mean curvature H is
isometric with a sphere of radius 1√

1+H2 in the Euclidean space. This study of Watanabe is further
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carried out in [17], where the author found two much stronger theorems that give sufficient conditions
for a hypersurface in a Sasakian manifold to be isometric to a sphere.

Given an orientable hypersurface M of a (2n + 1)-dimensional Sasakian manifold M (ϕ, ξ, η, g)
with unit normal vector field N and shape operator A, then there are two vector fields ξT and t
naturally defined on the hypersurface M. More exactly, ξT is the tangential component of the Reeb
vector field ξ to M, while t is defined by ϕ (N) = −t. Recall that the study of real hypersurfaces
of complex and Sasakian space forms become more convenient, owing to a simpler form of Gauss
Equation for expression of curvature tensor field of hypersurface and also due to a handy form of
Codazzi Equation, which is lacking in the study of hypersurfaces of a general Sasakian manifold.

In this paper, we show that focussing on the investigation of hypersurfaces in general Sasakian
manifolds, this deficiency can be compensated by the power of the Reeb field. In Section 2, we derive
basic formulae for an orientable hypersurface M of a (2n + 1)-dimensional Sasakian manifold
M (ϕ, ξ, η, g). In Section 3, we find an estimate of volume for a compact orientable hypersurface
M and use it together with an additional condition, namely the vector field ξT is a principal
direction, to find an upper bound for the first nonzero eigenvalue λ1 of the Laplace operator on
M. Also, we show that if the eigenvalue λ1 attains this upper bound, then M is isometric to a sphere
(cf. Theorems 1 and 2). Moreover, in the same section, we find other special conditions on a compact
orientable hypersurface M that assure both constancy of the mean curvature H and the isometry of M
with a certain sphere (cf. Theorem 3).

In Section 4, we use an upper bound for the energy of the gradient vector field ∇ρ

and the condition that the mean curvature H of the compact orientable hypersurface M
in a (2n + 1)-dimensional Sasakian manifold is constant along the integral curves of ξT in order
to show that in this case, H is also a constant and M is isometric with a sphere S2n(r) with radius
r = 1√

1+H2 (cf. Theorem 4). Finally, in the last section of the paper, we study hypersurfaces of constant
mean curvature H, also known as CMC-hypersurfaces, in a (2n + 1)-dimensional Sasakian manifold
M (ϕ, ξ, η, g). We prove that on a compact orientable CMC-hypersurface M, if ξT is a principal direction
with constant principal curvature µ, then necessarily H = µ. We show that for a compact orientable
CMC-hypersurface M with AξT = µξT , the first nonzero eigenvalue λ1 of the Laplace operator satisfies
λ1 ≤ 2n

(
1 + H2) and the equality case holds for a certain hypersurface if and only if M is isometric to

the sphere S2n( 1√
1+H2

)
(cf. Theorem 5).

2. Preliminaries

Let M (ϕ, ξ, η, g) be a (2n + 1)-dimensional Sasakian manifold and ∇ be the Riemannian
connection on M. Then we have (cf. [1,12]):

ϕ2 (X) = −X + η(X)ξ, ϕ (ξ) = 0, η ◦ ϕ = 0, g (X, ξ) = η (X) , (1)

g (ϕ (X) , ϕ (Y)) = g (X, Y)− η (X) η (Y) , (2)(
∇ϕ
)
(X, Y) = g (X, Y) ξ − η (Y) X, ∇Xξ = −ϕX, (3)

for all X, Y ∈ X (M), where X (M) is the Lie algebra of smooth vector fields on M, while the covariant
derivative ∇ϕ of ϕ is defined by(

∇ϕ
)
(X, Y) = ∇X ϕ (Y)− ϕ

(
∇XY

)
.

We denote by R, Ric, Q the curvature tensor field, the Ricci tensor field and the Ricci operator of
the Sasakian manifold M (ϕ, ξ, η, g). Then, for all X, Y ∈ X (M), we have (cf. [1]):

R(X, Y)ξ = η(Y)X− η(X)Y, Q (ξ) = 2nξ, (4)
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where Ricci operator Q is a symmetric operator related to Ricci tensor Ric by [18]

Ric (X, Y) = g
(
Q (X) , Y

)
.

Recall that for all vector fields X, Y orthogonal to ξ, we have

Ric (ϕ (X) , ϕ (Y)) = Ric (X, Y) . (5)

Let M be an orientable hypersurface of a (2n + 1)-dimensional Sasakian manifold M (ϕ, ξ, η, g)
with unit normal vector field N and shape operator A. Then we have the Gauss and Weingarten
formulae (cf. [19])

∇UV = ∇UV + g (AU, V) N, ∇U N = −AU, U, V ∈ X (M), (6)

where we denote by the same letter g the induced metric on M and by ∇ the Riemannian connection
on M. Clearly, X (M) is the Lie algebra of smooth vector fields on M.

Please note that owing to skew-symmetry of the operator ϕ, ϕ (N) is orthogonal to N and we get
a smooth vector field t ∈ X (M), defined by ϕ (N) = −t. Let α be smooth 1-form on hypersurface M
dual to t, that is, α(U) = g (t, U), U ∈ X (M). Also, we define an operator F : X (M) → X (M) by
F(U) = [ϕ(U)]T - the tangential component of ϕ(U) to the hypersurface M. Then we have

ϕ(U) = F(U) + α(U)N, U ∈ X (M) (7)

and it is easy to see that F is a skew-symmetric operator.
Now, define a smooth function ρ on the hypersurface M by ρ = g (ξ, N). Then we have

ξ = ξT + ρN, (8)

where ξT ∈ X (M) is the tangential component of the Reeb vector field ξ. We denote by β the smooth
1-form on M dual to ξT , i.e, β(U) = g(ξT , U). Then using ϕ (N) = −t and Equations (1), (2), (7)
and (8), it follows that

‖t‖2 =
∥∥∥ξT

∥∥∥2
= 1− ρ2, (9)

F (t) = −ρξT , F
(

ξT
)
= ρt, (10)

F2(U) = −U + α(U)t + β(U)ξT , (11)

and
g (F (U) , F (V)) = g (U, V)− α(U)α(V)− β(U)β(V), U, V ∈ X (M). (12)

Also, using Equations (3), (6), (8) and ϕ (N) = −t, we conclude

∇Ut = ρU + F (AU) , ∇UξT = −F (U) + ρAU, ∇ρ = −AξT − t, (13)

(∇F) (U, V) = g (U, V) ξT − β (V)U + α (V) AU − g (AU, V) t, (14)

where ∇ρ is the gradient of the function ρ and the covariant derivative ∇F of F is given by

(∇F) (U, V) = ∇U F (V)− F (∇UV) ,

for U, V ∈ X (M).
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Please note that F is skew-symmetric and A symmetric, we have tr (F ◦ A) = 0 and using first
two equations in Equation (13), we conclude that

divt = 2nρ, divξT = 2nρH, (15)

where H is the mean curvature of the hypersurface M given by 2nH = trA. Thus, if M is a compact
hypersurface of a (2n + 1)-dimensional Sasakian manifold M (ϕ, ξ, η, g), Equation (15) leads to∫

M

ρ = 0,
∫
M

ρH = 0. (16)

If λ1 is the first nonzero eigenvalue of the Laplace operator ∆ acting on smooth functions on M,
then using first Equation in (16) we get ∫

M

‖∇ρ‖2 ≥ λ1

∫
M

ρ2. (17)

Using Equation (6), we have

R(U, V)N = − (∇A) (U, V) + (∇A) (V, U), U, V ∈ X (M). (18)

Moreover, the curvature tensor R of the hypersurface M is given by

R(U, V)W =
[
R(U, V)W

]T
+ g (AV, W) AU − g (AU, W) AV. (19)

Choosing a local orthonormal frame {e1, ..., e2n} on the hypersurface and using Equation (19),
we get the following expression for the Ricci tensor Ric of the hypersurface M

Ric(U, V) = 2nHg (AU, V)− g (AU, AV) +
2n

∑
i=1

R(ei, U; V, ei).

Observe that
2n

∑
i=1

R(ei, U; V, ei) = Ric(U, V)− R(N, U; V, N)

and consequently, we conclude

Ric(U, V) = 2nHg (AU, V)− g (AU, AV) + Ric(U, V)− R(N, U; V, N). (20)

Also, note that on an orientable hypersurface M of a (2n + 1)-dimensional Sasakian manifold
M (ϕ, ξ, η, g) there are two globally defined orthogonal vector fields ξT , t and they span a plane section
of the tangent bundle of M. Thus, we have the sectional curvature K

(
ξT , t

)
given by

K
(

ξT , t
)
=

R
(
ξT , t; t, ξT)
‖ξT‖2 ‖t‖2 . (21)

Lemma 1. Let M be a compact orientable hypersurface of a (2n + 1)-dimensional Sasakian manifold
M (ϕ, ξ, η, g). Then ∫

M

g
(

AξT , ξT
)
= 2n

∫
M

Hρ2.
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Proof. Observe that Equation ϕ(N) = −t and (1) imply that g
(
t, ξT) = 0. Thus, using Equation (13),

we have
ξT (ρ) = −g

(
AξT , ξT

)
. (22)

Also, using Equation (15), we have

div
(

ρξT
)

= ξT (ρ) + ρdivξT

= ξT (ρ) + 2nHρ2.

Integrating this Equation and using Equation (22), we get the desired result.

Lemma 2. Let M be a compact orientable hypersurface of a (2n + 1)-dimensional Sasakian manifold
M (ϕ, ξ, η, g). Then ∫

M

g
(

AξT , t
)
=
∫
M

[
(2n + 1)ρ2 − 1

]
.

Proof. Observe that Equation (13) gives

t (ρ) = −g
(

AξT , t
)
− ‖t‖2

= −g
(

AξT , t
)
−
(

1− ρ2
)

.

Using this in div (ρt) = t (ρ) + ρdivt and equation (15), we get

div (ρt) = −g
(

AξT , t
)
−
(

1− ρ2
)
+ 2nρ2.

Integrating above Equation, we obtain the result.

3. Volume and First Eigenvalue Estimates

In this section, first we find the volume estimate for a compact hypersurface M of
a (2n + 1)-dimensional Sasakian manifold M (ϕ, ξ, η, g) and use it to find an upper bound for the first
nonzero eigenvalue λ1 of the Laplace operator ∆ acting on smooth functions of hypersurface M under
the assumption that ξT is a principal direction.

Theorem 1. The volume V(M) of a compact orientable hypersurface M of a (2n + 1)-dimensional Sasakian
manifold M (ϕ, ξ, η, g) satisfies

V(M) ≤
∫
M

[
(4n + 1− λ1) ρ2 +

∥∥∥AξT
∥∥∥2
]

,

where λ1 is the first nonzero eigenvalue of the Laplace operator on M.

Proof. Using Equation (9) and (13), we have

‖∇ρ‖2 =
∥∥∥AξT

∥∥∥2
+ ‖t‖2 + 2g

(
AξT , t

)
=

∥∥∥AξT
∥∥∥2

+ (1− ρ2) + 2g
(

AξT , t
)

.

Integrating above Equation and using Lemma 2, we get

∫
M

‖∇ρ‖2 =
∫
M

[
−1 + (4n + 1)ρ2 +

∥∥∥AξT
∥∥∥2
]

.
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Using inequality (17), we derive

λ1

∫
M

ρ2 ≤
∫
M

[
−1 + (4n + 1)ρ2 +

∥∥∥AξT
∥∥∥2
]

and this gives the required estimate.

Now, suppose that the vector field ξT is a principal direction of the hypersurface M with constant
principal curvature µ, that is, AξT = µξT . Then it turns out that t is also a principal direction as seen
in the following.

Lemma 3. If M is a connected orientable hypersurface of a (2n + 1)-dimensional Sasakian manifold
M (ϕ, ξ, η, g) and AξT = µξT for a constant µ, then At = µt.

Proof. Suppose AξT = µξT holds for a constant µ. Then the last Equation in (13), gives∇ρ = −µξT− t,
and using first two Equations in (13), we derive the following expression for the Hessian operator Aρ

of the function ρ

Aρ (U) = −µ [−F(U) + ρAU]− [ρU + F (AU)] ,

that is,
Aρ (U) = −ρ (µAU + U) + µF(U)− F (AU) , V ∈ X (M). (23)

Note the Hessian operator Aρ is symmetric and thus, using above equation, we conclude that

2µg (F(U), V) = g (F(AU) + AF(U), V) , U, V ∈ X (M),

that is,
2µF(U) = F(AU) + AF(U) U, V ∈ X (M). (24)

Taking U = ξT in above equation and using Equation (10), we get

2µρt = µρt + ρAt,

that is
ρ (At− µt) = 0. (25)

If ρ = 0, then Equation (9) implies that both ξT , t are unit vector fields and as ϕ (N) = −t,
we get g

(
ξT , t

)
= −g (ξ, ϕ (N)) = 0. Also, as ρ = 0, Equation (13) implies µξT = −t and taking

the inner product with t gives ‖t‖2 = 0 a contradiction to the fact that t is a unit vector field (under
the assumption ρ = 0). Hence ρ 6= 0 on M. Whereas M is connected and ρ 6= 0, Equation (25) implies
At = µt.

Now, we shall prove the main results of this section.

Theorem 2. Let M be a compact and connected orientable hypersurface of a (2n + 1)-dimensional Sasakian
manifold M (ϕ, ξ, η, g). If AξT = µξT for a constant µ and the squared length of shape operator is bounded
above by 2nc for a constant c, 0 < c ≤ 1, then the first nonzero eigenvalue λ1 of Laplace operator on M satisfies

λ1 ≤ 4n + 1− c.

Moreover, if equality holds, then M is isometric to the sphere S2n( 1√
1+µ2

)
.
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Proof. Suppose M is a compact and connected orientable hypersurface satisfying AξT = µξT for
a constant µ and ‖A‖2 ≤ 2nc, for a constant c, 0 < c ≤ 1. Then by Lemma 3, we have At = µt.
Now, define operators Γ and Ψ by

Γ = F ◦ A + A ◦ F, Ψ = F ◦ A− A ◦ F.

Then it follows that Γ is skew-symmetric and Ψ is symmetric with trΨ = 0 and we have

F (AU) =
1
2
[Γ(U) + Ψ(U)] , U ∈ X (M),

and
‖F ◦ A‖2 =

1
4
‖Γ‖2 +

1
4
‖Ψ‖2 , (26)

where we have used tr (Γ ◦Ψ) = 0. Using Equation (24) (which holds for AξT = µξT), we conclude

2µF = Γ. (27)

Please note that for a local orthonormal frame {e1, ..., e2n} on M, using Equation (12) we have

‖F‖2 =
2n

∑
i=1

g (F (ei) , F (ei))

= 2n−
∥∥∥ξT

∥∥∥2
− ‖t‖2

= 2n− 2(1− ρ2),

where we have used Equation (9). Thus, the above Equation and (27) give

1
4
‖Γ‖2 = 2µ2(n− 1 + ρ2). (28)

Also, using Equation (12) we have

‖F ◦ A‖2 =
2n

∑
i=1

g (F (Aei) , F (Aei)) = ‖A‖2 −
∥∥∥AξT

∥∥∥2
− ‖At‖2

= ‖A‖2 − 2µ2(1− ρ2). (29)

Combining Equations (26), (28) and (29), we conclude

‖A‖2 = 2nµ2 +
1
4
‖Ψ‖2 ,

that is,

µ2 =
1

2n

(
‖A‖2 − 1

4
‖Ψ‖2

)
. (30)

On the other hand, Theorem 1 in our setting implies

V(M) ≤
∫
M

[
(4n + 1− λ1) ρ2 + µ2

(
1− ρ2

)]
.

Thus, using Equation (30) in above inequality, we conclude

V(M) ≤
∫
M

[
(4n + 1− λ1) ρ2 +

(
1− ρ2)

2n

(
‖A‖2 − 1

4
‖Ψ‖2

)]
.
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Using next ‖A‖2 ≤ 2nc, we get

V(M) ≤
∫
M

[
(4n + 1− λ1 − c) ρ2 + c−

(
1− ρ2)

8n
‖Ψ‖2

]
,

that is,

(1− c)V(M) ≤
∫
M

(4n + 1− λ1 − c) ρ2 −
∫
M

(
1− ρ2)

8n
‖Ψ‖2 . (31)

However, the above inequality implies

(1− c)V(M) ≤ (4n + 1− λ1 − c)
∫
M

ρ2

and as 1− c ≥ 0, we conclude (4n + 1− λ1 − c) ≥ 0, that proves λ1 ≤ 4n + 1− c.
If the equality λ1 = 4n + 1− c holds, then inequality (31) implies c = 1 and

(
1− ρ2) ‖Ψ‖2 = 0.

If
(
1− ρ2) = 0, then ρ = ±1 together with first equation in (16) gives a contradiction. Hence on

connected M, we get Ψ = 0, i.e., F ◦ A = A ◦ F, and consequently Γ = 2F ◦ A. Then Equation (27),
gives µF (U) = F (AU), i.e., F (AU − µU) = 0. Operating F in this last equation and using (11) ,
we conclude

AU − µU = α (AU − µU) t + β (AU − µU) ξT , U ∈ X (M). (32)

On the other hand, it is easy to see that At = µt implies

α (AU − µU) = g (AU − µU, t) = µg(U, t)− µg(U, t) = 0.

Similarly, we obtain β (AU − µU) = 0 and consequently Equation (32), gives AU = µU,
U ∈ X (M). Hence, M is totally umbilical hypersurface of the Sasakian manifold M (ϕ, ξ, η, g) with
constant mean curvature µ and therefore isometric to the sphere S2n( 1√

1+µ2

)
(cf. [14]).

In the next result, we use a bound on the squared length of the operator Ψ to find conditions on
a complete and connected hypersurface of a Sasakian manifold to be isometric to a certain sphere.

Theorem 3. Let M be a complete and connected orientable hypersurface of a (2n + 1)-dimensional Sasakian
manifold M (ϕ, ξ, η, g) with mean curvature H. If AξT = µξT for a constant µ and the squared length of
operator Ψ satisfies

‖Ψ‖2 ≤ 8
(

H2 − µ2
)

,

then H is a constant and M is isometric to the sphere S2n( 1√
1+H2

)
.

Proof. Since, AξT = µξT , by Lemma 3, we have At = µt. Now, using Equation (30), we have

‖A‖2 = 2nµ2 +
1
4
‖Ψ‖2 ,

that is,

‖A‖2 − 2nH2 =
1
4
‖Ψ‖2 − 2n

(
H2 − µ2

)
.

Now, using the bound on ‖Ψ‖2, we conclude ‖A‖2 − 2nH2 ≤ 0. However, Schwartz’s inequality
implies ‖A‖2 − 2nH2 ≥ 0 and thus we have the equality ‖A‖2 = 2nH2, which holds if and only if

A = HI, (33)
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where I stands for the identity operator. Please note that in view of Equation (33), we have AξT = HξT ,
and the hypothesis AξT = µξT , we conclude

(H − µ) ξT = 0. (34)

If ξT = 0, then by Equation (9), we get ρ2 = 1 and consequently, t = 0. In this case, Equation (11)
implies F2 = −I. Now, using the second Equations in (13) and (33), we have F(U) = ρHU.
Combining the above relation with F2 = −I we get H2 = −1, hence a contradiction. Therefore,
as M is connected, Equation (34) implies H = µ, that is, H is a constant. Thus, by Equation (33),
we see that M is a totally umbilical hypersurface of constant mean curvature H and consequently it is
isometric to the sphere S2n( 1√

1+H2

)
.

4. A Bound on Energy of a Vector Field

Recall that on a compact Riemannian manifold (M, g), the energy of a smooth vector field u on
M is defined by

E(u) =
1
2

∫
M

‖u‖2 .

In this section, we use a bound on the energy of the vector field ∇ρ on a compact orientable
hypersurface M to find another condition under which M is isometric to a sphere.

Theorem 4. Let M be a compact and connected orientable hypersurface of a (2n + 1)-dimensional Sasakian
manifold M (ϕ, ξ, η, g) with unit normal N, mean curvature H and sectional curvature K(ξT , t) > 0. If
the energy of ∇ρ satisfies

E (∇ρ) ≤
∫
M

[
nH2 +

1
2

Ric(N, N)

]
ρ2

and H is constant along the integral curves of ξT , then H is a constant and M is isometric to the sphere
S2n( 1√

1+H2

)
.

Proof. As the mean curvature H is constant along the integral curves of ξT , we have

2n

∑
i=1

g
(
(∇A)

(
ξT , ei

)
, ei

)
= 0, (35)

where {e1, ..., e2n} is a local orthonormal frame on M. Now, using both Equations (18) and (35), we get

2n

∑
i=1

g
(
(∇A)

(
ei, ξT

)
, ei

)
+

2n

∑
i=1

g
(

R(ei, ξT)N, ei

)
= 0.

As {e1, ..., e2n, N} is local orthonormal frame on M and A is a symmetric operator, above equation
takes the form

g
(
ξT ,

2n

∑
i=1

(∇A) (ei, ei)
)
+ Ric(ξT , N) = 0. (36)

However, taking into account (4), we derive

Ric(ξT , N) = Ric(ξ − ρN, N)

= Ric(ξ, N)− ρRic(N, N)

= 2nρ− ρRic(N, N).
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Thus, Equation (36) takes the form

g
(
ξT ,

2n

∑
i=1

(∇A) (ei, ei)
)
+ 2nρ− ρRic(N, N) = 0. (37)

We use now the second equation in (13), to compute

div
(

AξT
)
=

2n

∑
i=1

g (−F (ei) + ρAei, Aei) + g
(
ξT ,

2n

∑
i=1

(∇A) (ei, ei)
)
.

Using tr (F ◦ A) = 0 in above Equation, we conclude

div
(

AξT
)
= ρ ‖A‖2 + g

(
ξT ,

2n

∑
i=1

(∇A) (ei, ei)
)
,

which in view of Equation (37) implies

div
(

AξT
)
= ρ ‖A‖2 + ρRic(N, N)− 2nρ. (38)

Now, using Equation (13) in (38), we get

div
(

ρAξT
)
= −

∥∥∥AξT
∥∥∥2
− g

(
t, AξT

)
+ ρ2 ‖A‖2 + ρ2Ric(N, N)− 2nρ2.

Integrating above equation and using Lemma 2, we conclude

∫
M

[
−
∥∥∥AξT

∥∥∥2
+ 1− (4n + 1) ρ2 + ρ2 ‖A‖2 + ρ2Ric(N, N)

]
= 0. (39)

Now, using again (13), we obtain

‖∇ρ‖2 =
∥∥∥AξT

∥∥∥2
+ ‖t‖2 + 2g

(
t, AξT

)
.

Integrating above equation and using ‖t‖2 = 1− ρ2 and Lemma 2, we get∫
M

−
∥∥∥AξT

∥∥∥2
=
∫
M

[
(4n + 1) ρ2 − 1− ‖∇ρ‖2

]
.

Inserting next the above Equation in (39), we get∫
M

ρ2 ‖A‖2 =
∫
M

[
‖∇ρ‖2 − ρ2Ric(N, N)

]
= 2E (∇ρ)−

∫
M

ρ2Ric(N, N),

that is, ∫
M

ρ2
(
‖A‖2 − 2nH2

)
= 2E (∇ρ)−

∫
M

ρ2
[
2nH2 + Ric(N, N)

]
. (40)

If the energy E (∇ρ) satisfies the given condition in hypothesis, then Equation (40) reads∫
M

ρ2
(
‖A‖2 − 2nH2

)
≤ 0. (41)
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Using Schwartz’s inequality ‖A‖2 ≥ 2nH2 in inequality (41), we conclude

ρ2
(
‖A‖2 − 2nH2

)
= 0. (42)

If ρ = 0, then
{

ξT , t
}

is an orthonormal set globally defined on M and equations in (13) take
the form

∇UξT = −F (U) , ∇Ut = F (AU) , AξT = −t. (43)

Also, the two equations of (10) imply F (t) = 0 and F
(
ξT) = 0 and thus using Equation (43), we get

∇tξ
T = 0, ∇ξT t = 0, ∇tt = F (At) .

Thus, we compute
R(ξT , t)t = ∇ξT F (At) ,

and consequently,

K(ξT , t) = R(ξT , t; t, ξT)

= g
(
∇ξT F (At) , ξT

)
= ξT g

(
F (At) , ξT

)
− g

(
F (At) ,∇ξT ξT

)
= 0,

which is contrary to the hypothesis. Hence, ρ 6= 0 and due to the fact that M is connected, it follows
that Equation (42) implies ‖A‖2 = 2nH2 and this inequality holds if and only if

A = HI. (44)

Now, we proceed to show that H is a constant. In view of Equation (44), the equations in (13)
change to

∇Ut = ρU + HF (U) , ∇UξT = −F (U) + ρHU, ∇ρ = −HξT − t.

Using the above Equations, we compute the Hessian operator Aρ (U) = ∇U∇ρ and get
the following

Aρ (U) = −
(

1 + H2
)

ρU −U (H) ξT .

Please note that Aρ is symmetric, and as such the above equation gives

U (H) g
(

ξT , V
)
= V (H) g

(
ξT , U

)
, U, V ∈ X (M).

Choosing V = ξT in the above equation and using hypothesis that H is constant along the integral
curves of ξT , we get

U (H)
∥∥∥ξT

∥∥∥2
= 0. (45)

If
∥∥ξT

∥∥2
= 0, we derive ρ = ±1, which gives a contradiction to the integral formula (16).

Hence, as M is connected, Equation (45) implies U (H) = 0, U ∈ X (M). Therefore, H is a constant
and by Equation (44) we get that M is a totally umbilical hypersurface of constant mean curvature H.
Consequently, we deduce that M is isometric to S2n( 1√

1+H2

)
.

Recall that the odd dimensional unit sphere S2n+1 viewed as a hypersurface of the complex space
Cn+1 admits a standard Sasakian structure (ϕ, ξ, η, g) (see [1] for details). As a particular case of
the above theorem, we have the following result.
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Corollary 1. Let M be a compact and connected orientable hypersurface of the unit sphere S2n+1 with unit
normal N, mean curvature H and sectional curvature K(ξT , t) > 0. If the energy of ∇ρ satisfies

E (∇ρ) ≤ n
∫
M

(
1 + H2

)
ρ2

and H is constant along the integral curves of ξT , then H is a constant and M is isometric to the sphere
S2n( 1√

1+H2

)
. Moreover, the converse holds.

Proof. For the unit sphere S2n+1 with unit normal N, we have Ric (N, N) = 2n and the bound
on E (∇ρ) in the Theorem 4 becomes as in this statement. Therefore, M is isometric to the sphere
S2n( 1√

1+H2

)
. Conversely, if M is isometric to the small sphere S2n( 1√

1+H2

)
, then it is totally umbilical

hypersurface of constant mean curvature H, i.e., A = HI. In this situation, Equation (13) implies∇ρ =

−HξT − t. Thus, using Equation (15), we infer ∆ρ = −2n
(
1 + H2) ρ, i.e., ρ∆ρ = −2n

(
1 + H2) ρ2.

Integrating this equation by parts, we get

E (∇ρ) =
1
2

∫
M

‖∇ρ‖2 = n
∫
M

(
1 + H2

)
ρ2.

Hence, all the conditions in the statement are met.

5. CMC-Hypersurfaces

In this section, we study compact and connected oriented hypersurfaces of constant mean
curvature (briefly CMC-hypersurfaces) of a Sasakian manifold. It is interesting to note that on compact
orientable CMC hypersurfaces, if ξT is a principal direction, then AξT = Hξt holds, where H is
the constant mean curvature. We also find a sharp upper bound for the first nonzero eigenvalue of
the Laplace operator on compact and orientable CMC-hypersurfaces with ξT a principal direction.

Lemma 4. Let M be compact and connected orientable hypersurface of constant mean curvature H of a (2n +

1)-dimensional Sasakian manifold M (ϕ, ξ, η, g). If Aξt = µξT for a constant µ, then H = µ holds.

Proof. Using Lemma 1 and Lemma 2, we have

µ
∫
M

(
1− ρ2

)
= 2nH

∫
M

ρ2

and ∫
M

[
(2n + 1)ρ2 − 1

]
= 0.

These two equations imply ∫
M

(2n + 1)µρ2 = (2nH + µ)
∫
M

ρ2,

that is,
2n (H − µ)

∫
M

ρ2 = 0. (46)

If ρ = 0, then Equation (9) implies that the set
{

ξT , t
}

is an orthonormal set. However, the last
equation in (13) and Aξt = µξT , gives µξT = −t. Taking the inner product in this last equation, gives
‖t‖2 = 0 a contradiction. Hence, ρ 6= 0 and consequently, Equation (46) confirms that H = µ.
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Theorem 5. Let M be compact and connected orientable hypersurface of constant mean curvature H of
a (2n + 1)-dimensional Sasakian manifold M (ϕ, ξ, η, g) and Aξt = µξT for a constant µ. Then the first
nonzero eigenvalue λ1 of the Laplace operator on M satisfies

λ1 ≤ 2n(1 + H2).

Moreover, the equality holds if and only if M is isometric to the sphere S2n( 1√
1+H2

)
, provided that the Ricci

curvature of the hypersurface satisfies

Ric (∇ρ,∇ρ) ≥ (2n− 1)
(

1 + H2
)
‖∇ρ‖2 . (47)

Proof. By Lemma 4, we have H = µ and then Theorem 1 implies

V(M) ≤
∫
M

[
(4n + 1− λ1) ρ2 + H2(1− ρ2)

]
,

that is
(1− H2)V(M) ≤ (4n + 1− H2 − λ1)

∫
M

ρ2. (48)

Also, as Aξt = µξT , we have g
(

Aξt, t
)
= 0 and Lemma 2 implies

V(M) = (2n + 1)
∫
M

ρ2.

Inserting this equation in inequality (48), we conclude[
λ1 − 2n

(
1 + H2

)] ∫
M

ρ2 ≤ 0.

Now, using the argument given in the proof of Lemma 4, we see that ρ 6= 0. Hence, from above
inequality, we conclude λ1 ≤ 2n

(
1 + H2).

Suppose now the equality λ1 = 2n
(
1 + H2) is valid and that inequality (47) holds.

Using Aξt = µξT and µ = H in last Equation of (13), we have

∇ρ = −HξT − t. (49)

Using Equations (15) and (49) and ∆ρ = div (∇ρ), we get

∆ρ = −2n(1 + H2)ρ = −λ1ρ. (50)

Also, using (13) and (49), we can compute the Hessian operator Aρ as

Aρ (U) = −H (−F (U) + ρAU)− (ρU + F (AU))

or
Aρ (U) = −ρ (HA + I) (U) + F (HI − A) (U) , U ∈ X (M). (51)

Please note that for a local orthonormal frame {e1, ..., e2n} on M, owing to symmetry of operator
(HA + I) and skew-symmetry of operator F (HI − A), we have

2n

∑
i=1

g ((HA + I) (ei), F (HI − A) (ei)) = 0.
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Thus, Equation (51) gives∥∥Aρ

∥∥2
= ρ2 ‖HA + I‖2 + ‖F (HI − A)‖2 . (52)

On the other hand, it is clear that Equation (2) implies ‖F(U)‖2 = ‖U‖2 − α(U)2 − β(U)2.
Observe that

2n

∑
i=1

α (Hei − Aei)
2 =

2n

∑
i=1

g (Hei − Aei, t)2

= H2 ‖t‖2 − 2Hg (t, At) + ‖At‖2 .

We know that Aξt = µξT implies At = µt (cf. Lemma 3) and that H = µ. Consequently, the above
equation gives

2n

∑
i=1

α (Hei − Aei)
2 = 0.

Similarly, we get
2n

∑
i=1

β (Hei − Aei)
2 = 0,

and we conclude

‖F (HI − A)‖2 = ‖HI − A‖2

= 2nH2 + ‖A‖2 − 4nH2

= ‖A‖2 − 2nH2.

Thus, Equation (52) gives∥∥Aρ

∥∥2
= ρ2

(
H2 ‖A‖2 + 2n + 4nH2

)
+
(
‖A‖2 − 2nH2

)
. (53)

Now, using Equation (50) and above Equation, we conclude

∥∥Aρ

∥∥2 − 1
2n

(∆ρ)2 = ρ2
(

H2 ‖A‖2 + 2n + 4nH2
)
+
(
‖A‖2 − 2nH2

)
−2n

(
1 + 2H2 + H4

)
ρ2,

that is, ∥∥Aρ

∥∥2 − 1
2n

(∆ρ)2 = ρ2H2
(
‖A‖2 − 2nH2

)
+
(
‖A‖2 − 2nH2

)
.

Thus, we have ∥∥Aρ

∥∥2 − 1
2n

(∆ρ)2 = (1 + ρ2H2)
(
‖A‖2 − 2nH2

)
. (54)

On the other hand, from the Bochner’s formula∫
M

[
Ric (∇ρ,∇ρ) +

∥∥Aρ

∥∥2 − (∆ρ)2
]
= 0,

we derive immediately

∫
M

[∥∥Aρ

∥∥2 − 1
2n

(∆ρ)2
]
=
∫
M

[
2n− 1

2n
(∆ρ)2 − Ric (∇ρ,∇ρ)

]
.
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Using now (50) and (54) in above equation, we get∫
M

(1 + ρ2H2)
(
‖A‖2 − 2nH2

)
=

∫
M

2n(2n− 1)
(

1 + H2
)2

ρ2

−
∫
M

Ric (∇ρ,∇ρ) . (55)

On the other hand, it is obvious that Equation (50) implies ρ∆ρ = −2n(1 + H2)ρ2 and integrating
this equation by parts, we conclude∫

M

‖∇ρ‖2 = 2n(1 + H2)
∫
M

ρ2.

Using this equation in (55), we get∫
M

(1 + ρ2H2)
(
‖A‖2 − 2nH2

)
=
∫
M

[
(2n− 1)

(
1 + H2

)
‖∇ρ‖2 − Ric (∇ρ,∇ρ)

]
.

Using inequality (47) in above equation, we conclude∫
M

(1 + ρ2H2)
(
‖A‖2 − 2nH2

)
≤ 0

and in view of Schwartz’s inequality ‖A‖2 ≥ 2nH2, the integrand in above inequality is non-negative.
Hence, we derive

(1 + ρ2H2)
(
‖A‖2 − 2nH2

)
= 0,

that is, ‖A‖2 − 2nH2 = 0, which implies the equality in the Schwartz’s inequality. However, this holds
if and only if A = HI. Thus M is a totally umbilical hypersurface of constant mean curvature H and
this proves that M is isometric to the sphere S2n( 1√

1+H2

)
.

The converse statement follows trivially since if we suppose that M is isometric to S2n( 1√
1+H2

)
,

then it is well known that the first nonzero eigenvalue λ1 of the Laplace operator is given by
λ1 = 2n(1 + H2).

As an immediate consequence of Theorem 5, we have the following result for hypersurfaces of
the unit sphere S2n+1.

Corollary 2. Let M be a compact and connected orientable hypersurface of constant mean curvature H of
the unit sphere S2n+1 such that Aξt = µξT for a constant µ. Then the first nonzero eigenvalue λ1 of the Laplace
operator on M satisfies

λ1 ≤ 2n(1 + H2).

Moreover, the equality holds if and only if M is isometric to the sphere S2n( 1√
1+H2

)
.

Remark 1. Next, we would like to point out the existence of hypersurfaces which satisfy the condition that
the tangential component of the Reeb vector field to the hypersurface is a principal direction, providing two
non-trivial examples.

First, we consider the unit sphere S2n+1 ⊂ R2n+2 equipped with the standard Sasakian structure
(ϕ, ξ, η, g) [1]. We shall write

S2n+1 =
{
(u1, u2, . . . , u2n+1, u2n+2) ∈ R2n+2 : ‖u‖ = 1

}
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and let us denote by J the canonical complex structure on R2n+2 defined as

J (u1, u2, u3, u4, . . . , u2n+1, u2n+2) = (−u2, u1,−u4, u3, . . . ,−u2n+2, u2n+1)

and by N = (u1, . . . , u2n+2) the unit normal vector field to S2n+1. Then it is known that the Reeb vector
field on S2n+1 is given by ξ = −JN, that is,

ξ = (u2,−u1, . . . , u2n+2,−u2n+1) ,

η is the 1-form dual to ξ with respect to the induced metric g (by the Euclidean metric on R2n+2), while
ϕ (X) = JX− η(X)N, X ∈ X

(
S2n+1). Now, consider

M =

{
(u1, u2, . . . , u2n+1, u2n+2) ∈ R2n+2 :

2n+1

∑
i=1

u2
i = c2, u2n+2 =

√
1− c2, 0 < c < 1

}

Then M is a hypersurface of S2n+1 with unit normal

N =

(
−
√

1− c2

c
u1, . . . ,−

√
1− c2

c
u2n+1, c

)
. (56)

Therefore, we have

σ = g (ξ, N) = −1
c

u2n+1

and it gives

ξT = ξ − σN = ξ +
1
c

u2n+1N,

that is,

ξT =

(
u2 −

√
1− c2

c2 u1u2n+1,−u1 −
√

1− c2

c2 u2u2n+1, . . . , u2n+2 −
√

1− c2

c2 u2
2n+1, 0

)
. (57)

Let A be the shape operator and∇ be the Riemannian connection on S2n+1 and D be the Euclidean
connection on R2n+2. Then using (56), we have

−AξT = ∇ξT N = DξT N =

(
−
√

1− c2

c
ξT (u1) , ...,−

√
1− c2

c
ξT (u2n+1) , 0

)
.

which on using (57), gives

AξT =

√
1− c2

c
ξT .

Hence, ξT is principal direction with constant principal curvature
√

1−c2

c > 0 and we derive that
M provides us a first example of hypersurface satisfying the condition that the tangential component
of the Reeb vector field to the hypersurface is a principal direction.

Similarly, one can show that the hypersurface S2n of the Sasakian manifold R2n+1 (ϕ, ξ, η, g)
gives another example of hypersurface with such a property. Recall that if (xi, yi, z), i = 1, . . . , n,
are the coordinates on R2n+1, then the Sasakian structure (ϕ, ξ, η, g) on R2n+1 is given by [1]

ϕ =

 0 δij 0
−δij 0 0

0 yj 0

 , ξ = 2
∂

∂z
, η =

1
2

(
dz−

n

∑
i=1

yidxi

)
, g = η ⊗ η +

1
4

n

∑
i=1

[
(dxi)2 + (dyi)2

]2
.
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