
mathematics

Article

On the Growth of Some Functions Related to z(n)

Pavel Trojovský

Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové,
Czech Republic; pavel.trojovsky@uhk.cz; Tel.: +42-049-333-2860

Received: 3 May 2020; Accepted: 26 May 2020; Published: 1 June 2020
����������
�������

Abstract: The order of appearance z : Z>0 → Z>0 is an arithmetic function related to the Fibonacci
sequence (Fn)n. This function is defined as the smallest positive integer solution of the congruence
Fk ≡ 0 (mod n). In this paper, we shall provide lower and upper bounds for the functions
∑n≤x z(n)/n, ∑p≤x z(p) and ∑pr≤x z(pr).
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1. Introduction

Perhaps the most important of the binary recurrences is the Fibonacci sequence (Fn)n. This
sequence starts with F0 = 0 and F1 = 1 and it satisfies the 2nd order recurrence relation Fn+2 =

Fn+1 + Fn (for n ≥ 0). A well-known, explicit, formula for the nth Fibonacci number is called the
Binet-formula

Fn =
αn − βn
√

5
,

where α := (1 +
√

5)/2 and β := (1 −
√

5)/2. It follows from this formula that the estimates
αn−2 ≤ Fn ≤ αn−1, hold for all n ≥ 1.

The study of the divisibility properties of Fibonacci numbers has always been a popular area of
research. For example, it is still an open problem to decide if there are infinitely many primes in that
sequence. In order to study such kind of Diophantine problems, the arithmetic function z : Z>0 → Z>0

was defined by setting z(n) = min{k ≥ 1 : n | Fk}. This function is called the order of appearance in
the Fibonacci sequence. For more results on z(n), see [1] and references therein.

In 1878, Lucas ([2], p. 300) established that z(n) is well defined and, in 1975, J. Sallé [3] proved
that z(n) ≤ 2n, for all positive integers n. This is the sharpest upper bound for z(n), since for example

z(n) = 2n if and only if n = 6 · 5k, for k ≥ 0. (1)

However, apart from these cases this upper bound is very weak. For instance, z(2255) = 20 <

10−2 · 2255. In fact, Marques [4] gave sharper upper bounds for z(n) for all positive integers n 6= 6 · 5k.
These upper bounds depend on the number of distinct prime factors of n, denoted by ω(n).

In the main stream of the Analytic Number Theory, we have the three following functions

H(x) := ∑
n≤x

1
n

, ϑ(x) := ∑
p≤x

log p and ψ(x) := ∑
n≤x

Λ(n),

where Λ(n) is the well-known von Mangoldt function defined as log p if n = pr, for some prime
number p and r ≥ 1, and 0 otherwise (see, e.g., [5,6]). The functions ϑ(x) and ψ(x) are called the first
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and the second Chebyshev functions, respectively. Note that ψ(x) can be rewritten as ∑pr≤x log p.
Here (and in all what follows) ∑n≤x , ∑p≤x and ∑pr≤x mean that the sum is taken over all positive
integers, all prime numbers and all prime powers belonging to the interval [1, x], respectively.

Probably, the main importance of the functions ψ and ϑ relies in the proof of the celebrated Prime
Number Theorem which states that

π(x) ∼ x
log x

,

where π(x) = ∑p≤x 1 is the prime counting function. Indeed, the prime number theorem and the
statements ϑ(x) ∼ x and ψ(x) ∼ x are all equivalent. Here f (x) ∼ g(x) (asymptotic equivalence)
means that f (x)/g(x) tends to 1 as x → ∞ (in another way, f (x) = g(x) + o(g(x)) where o(g(x))
means a function h(x) with limx→∞ h(x)/g(x) = 0). Actually, one has the following stronger fact

π(x) =
x

log x
+ O

(
x

(log x)2

)
. (2)

Here we shall use the Landau symbols in their usual meaning, i.e., we say that f (x) = O(g(x))
(or f � g), if there exists a positive constant M such that | f (x)| ≤ M|g(x)|, for all sufficiently large x.
Also, f � g means that f � g and g� f .

Another function of great interest is the harmonic function H(x) whose image for x ∈ Z>0 is
called the xth harmonic number and denoted by Hx. These numbers gained much attention with their
relation to the Riemann hypothesis. In fact, the Riemann hypothesis is equivalent to prove that

d(n) ≤ Hn + eHn log Hn,

for all n ≥ 1, where d(n) is the sum of the positive divisors of n (see [7]). We observe that the harmonic
series, i.e., limx→∞ H(x) is a well-studied example of divergent series. In fact, it holds that

H(x) = log x + O(1),

which agrees with its very slow divergence.
In this paper, we are interested in studying the growth of the following Fibonacci versions of

H(x), ϑ(x) and ψ(x), thus, the functions ZH(x), Zϑ(x) and Zψ(x) (see Figure 1), for a positive real x,
which are defined as

ZH(x) := ∑
n≤x

z(n)
n

, Zϑ(x) := ∑
p≤x

z(p) and Zψ(x) := ∑
pr≤x

z(pr) .

First, observe that since 1 ≤ z(n) ≤ 2n, then the following trivial estimates hold

log x � H(x) ≤ ZH(x) ≤ ∑
n≤x

2 ≤ 2x .

However, we found the previous bounds by neglecting the contribution of z(n) (which is much
bigger than 1 and much smaller than 2n, in almost all cases). In fact, by taking z(n) into account, we obtain

Theorem 1. We have that
(log x)2 � ZH(x)� x

(log x)1/3 .

For the function Zϑ(x), if we use that z(p) ≥ 1, we get

Zϑ(x) ≥ ∑
p≤x

1 = π(x)� x
log x

.
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Again, with an extra effort, we can improve this by proving that

Theorem 2. We have that

x � Zϑ(x)� x2

log x
.

Since the number of prime powers in [1, x] is bigger than π(x), a similar direct inequality (that
one for Zϑ(x)) could be derived for Zψ(x). However, by using the behavior of z(pr), we can obtain
better estimates such as

Theorem 3. We have that

x � Zψ(x)� x2

log x
.

Note that even with a larger number of possibilities in the sum of Zψ(x), its bounds are the same
(in order) than the ones for Zϑ(x) (Theorem 2). The explanation for this, follows from the fact that the
contribution, i.e., the number of powers of p (for example) belonging to [1, x] is O(log x) which is o(x).
In other words, this amount is almost negligible (compared with x, in terms of order).

In a few words, the proof of the results combine some new (sharper upper bounds for z(n) due to
Marques) and classical results (such as results due Abel, Sathé, Selberg) in Number Theory.

y
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Figure 1. The graphs of the functions ZH(x), Zϑ(x) and Zψ(x) for x ∈ (0, 500].

2. Auxiliary Results

In this section, we shall present some tools which will be very useful in the proofs. We start with
some results due to Marques [4], which will be very helpful in our proof. Thus, we shall state his
results as lemmas (in what follows, the 2-adic valuation of n is ν2(n) = max{k ≥ 0 : 2k | n}).

Lemma 1. We have

(i) z(2k) = 3 · 2k−2 (for k ≥ 3), z(3k) = 4 · 3k−1 (for k ≥ 1) and z(5k) = 5k (for k ≥ 0).
(ii) If p > 5 is a prime, then

z(pk) ≤
(

p−
(

5
p

))
pk−1, for k ≥ 1,

where, as usual, ( a
q ) denotes the Legendre symbol of a with respect to a prime q > 2.

Lemma 2. Let n be an odd integer number with ω(n) ≥ 2, then

z(n) ≤ 2 ·
(

2
3

)ω(n)−δn

n,
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where

δn =

{
0, if 5 - n;

1, if 5 | n.
(3)

Lemma 3. Let n be an even integer number with ω(n) ≥ 2, it holds that

(i) If ν2(n) ≥ 4, then

z(n) ≤ 3
4
·
(

2
3

)ω(n)−δn−1
n.

(ii) If ν2(n) = 1, then

z(n) ≤


3n/2, if ω(n) = 2 and 5 | n;

2n, if ω(n) = 2 and 5 - n;

3 · (2/3)ω(n)−δn−1n, if ω(n) > 2.

(4)

(iii) If ν2(n) ∈ {2, 3}, then

z(n) ≤


3n/2, if ω(n) = 2 and 5 | n;

n, if ω(n) = 2 and 5 - n;

(2/3)ω(n)−δn−2n, if ω(n) > 2.

(5)

The next lemma is a powerful result in analytic number theory which is related to positive integers
with fixed number of distinct prime factors.

Lemma 4 (Sathé–Selberg Formula). For any positive constant A, we have

#Pk(x) := #{n ≤ x : ω(n) = k} ∼ G
(

k− 1
log log x

)
x

log x
(log log x)k−1

(k− 1)!
,

for x ≥ 3 and 1 ≤ k ≤ A log log x, where

G(z) :=
1

Γ(1 + z) ∏
p prime

(
1 +

z
p

)(
1− 1

p

)z
.

In the previous statement Γ(z) =
∫ ∞

0 xz−1e−xdx (for x > 0) is the well-known Gamma function.
The proof of Lemma 4 can be found in [8,9].
Our last tool is a very useful formula due to Abel which makes an interplay between a discrete

sum and an integral (continuous sum). More precisely,

Lemma 5 (Abel’s Summation Formula). Let (an)n be a sequence of real numbers and define its partial sum
A(x) := ∑n≤x an. For a real number x > 1, let f be a continuously differentiable function on [1, x]. Then

∑
n≤x

an f (n) = A(x) f (x)−
∫ x

1
A(t) f ′(t)dt.

Remark 1. We remark that, throughout what follows, the implied constants in� and� can be made explicit.
Here, we decided to use asymptotic bounds in order to leave the text more readable. However, we shall provide
the explicit inequalities for convenience of the reader (they can be found in [10], for example).

(i) ∑
n≤x

1
n
> log(x + 1);
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(ii) ϑ(x) < 1.000028x, for x > 0 and ϑ(x) > 0.998684x, for x > 1319007;
(iii) pn < n log n + n log log n, for n ≥ 6;
(iv)

x
log x

< π(x) < 1.25506
x

log x
, for x ≥ 17.

As usual, from now on we use the well-known notation [a, b] = {a, a + 1, . . . , b− 1, b}, for integers
a < b.

Now we are ready to deal with the proof of our results.

3. The Proofs

3.1. The Proof of Theorem 1

Since, by definition, n | Fz(n), then n ≤ Fz(n) ≤ αz(n)−1 and so z(n) > log n/ log α. Thus

ZH(x) = ∑
n≤x

z(n)
n
� ∑

n≤x

log n
n

.

Now, we shall use Lemma 5 for an = 1/n and f (x) = log x. Then

∑
n≤x

log n
n

= H(x) log x−
∫ x

1

H(t)
t

dt.

Since H(x) = log x + O(1) and
∫ x

1
log t

t dt = (log x)2/2, then

∑
n≤x

log n
n

= (log x + O(1)) log x−
∫ x

1

log t + O(1)
t

dt

=
1
2
(log x)2 + O(log x)� (log x)2

and so ZH(x)� (log x)2.
For the second part, we use Lemmas 1, 2 and 3 to derive that

z(n) ≤ 7
(

2
3

)ω(n)
n,

for all n > 1. First, let us write ZH(x) as

ZH(x) =
h(x)

∑
k=1

∑
n∈Pk(x)

z(n)
n

,

where h(x) = max{ω(t) : t ≤ x}. By using that z(n) ≤ 7 · (2/3)ω(n)n, we have

ZH(x)�
h(x)

∑
k=1

∑
n∈Pk(x)

(
2
3

)ω(n)
�

h(x)

∑
k=1

(
2
3

)k
#Pk(x)

which can be written as

ZH(x)�
blog log xc

∑
k=1

(
2
3

)k
#Pk(x) + ∑

k≥blog log xc+1

(
2
3

)k
#Pk(x). (6)



Mathematics 2020, 8, 876 6 of 8

Now, we shall use Lemma 4 to deal with the first sum in the right hand side above. Since G(z)
converges uniformly and absolutely in any bounded set, we have maxz∈[0,1]{|G(z)|} ≤ C, for some
positive constant C. Now, by Lemma 4 for A = 1, we get |G(zk)| ≤ C (for zk := (k− 1)/ log log x < 1) and

blog log xc

∑
k=1

(
2
3

)k
#Pk(x) �

blog log xc

∑
k=1

(
2
3

)k
G (zk) ·

x
log x

(log log x)k−1

(k− 1)!

� x
log x ∑

k≥1

(log(log x)2/3)k−1

(k− 1)!

� x
log x

exp(log(log x)2/3) =
x

(log x)1/3 .

Therefore,
blog log xc

∑
k=1

(
2
3

)k
#Pk(x)� x

(log x)1/3 . (7)

For the second sum in the right hand side of (6), we use that #Pk(x) ≤ x to obtain

∑
k≥blog log xc+1

(
2
3

)k
#Pk(x)�

(
2
3

)log log x
x,

where we used that blog log xc+ 1 > log log x. Since 3/2 > 3
√

e, then(
3
2

)log log x
> e(log log x)/3 = (log x)1/3.

Thus

∑
k≥blog log xc+1

(
2
3

)k
#Pk(x)� x

(log x)1/3 . (8)

By combining (6), (7) and (8), we obtain the desired result.

3.2. The Proof of Theorem 2

By the Prime Number Theorem, we have that ϑ(x) ∼ x. In particular, it holds that ϑ(x) � x.
Since ϑ(x) = ∑p≤x log p, then

Zϑ(x) = ∑
p≤x

z(p)� ∑
p≤x

log p = ϑ(x)� x,

where we used that z(p) > log p/ log α.
For the second part, since z(p) ≤ p + 1 ≤ 3p/2, then

Zϑ(x) = ∑
p≤x

z(p)� ∑
p≤x

p� x ∑
p≤x

1 = xπ(x)� x2

log x

as desired.

3.3. The Proof of Theorem 3

Note that, by Theorem 2, we have

Zψ(x) ≥ Zϑ(x)� x.
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For the second part, since there exist exactly blog x/ log pc powers of p in the interval [1, x], we
can write Zψ(x) as

Zψ(x) = ∑
p≤x

∑
r≤ log x

log p

z(pr).

By using Lemma 1 (ii), we get

Zψ(x) = ∑
p≤x

∑
r≤ log x

log p

z(pr) ≤ ∑
p≤x

∑
r≤ log x

log p

(p + 1)pr−1 � ∑
p≤x

∑
r≤ log x

log p

pr.

Note that ∑r≤ log x
log p

pr ≤ (p
log x
log p +1 − 1)/(p− 1)� x. Then,

Zψ(x)� ∑
p≤x

x = xπ(x)� x2

log x
,

which completes the proof.

4. Conclusions

In this paper, we study some problems related to the order (of appearance) in the Fibonacci
sequence, denoted by z(n). This arithmetic function plays an important role in the comprehension
of some Diophantine problems involving Fibonacci numbers (the most important one is the open
problem about the existence of infinitely many Fibonacci prime numbers). The problems are related
to the growth of Fibonacci versions of well-known number-theoretic functions (related to the Prime
Number Theorem) like the first and second Chebyshev functions, ϑ(x) = ∑p≤x log p and ψ(x) =

∑pr≤x log p and the harmonic function H(x) = ∑n≤x 1/n. These Fibonacci-like functions are defined
as Zϑ(x) = ∑p≤x z(p), Zψ(x) = ∑pr≤x z(pr) and ZH(x) = ∑n≤x z(n)/n. In particular, we shall find
effective bounds for these three functions. The proofs combine elementary facts related to z(n) (such
as Marques’ upper bounds) together with some deep tools from Analytic Number Theory (such as
Abel’s summation formula and Sathé–Selberg formula).
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