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1. Introduction

A complex space form M̃n(c) is an n-dimensional manifold with Kählerian structure (J, g̃) and
constant holomorphic sectional curvature c. A complete and simply connected complex space form
must be a complex projective space PnC (if c > 0), a complex Euclidean space EnC (if c = 0), or a
complex hyperbolic space HnC (if c < 0).

If M is an oriented real hypersurface in a complex space form M̃n(c), then M accepts an almost
contact metric structure (η, φ, ξ, g) (see Section 2.2). Many authors have studied how to classify
real hypersurfaces in complex space forms. For instance, Takagi classified the homogeneous real
hypersurfaces in PnC [1,2] and Cecil and Ryan [3] investigated real hypersurfaces whose structure
vector field ξ is principal, that is, an eigenvector of the shape operator A of M.

A special class of real hypersurfaces are the Hopf hypersurfaces, whose structure vector field is a
principal curvature vector field. Hopf hypersurfaces in complex hyperbolic spaces HnC with constant
principal curvatures were classified by Berndt [4]. In the case of Hopf hypersurfaces in complex
projective spaces PnC with constant principal curvatures, M. Kimura provided a classification [5].

On the other hand, Alegre, Blair and Carriazo introduced [6] the generalized Sasakian space
forms, which are almost contact metric manifolds whose curvature tensor generalizes the expression of
the curvature tensor of Sasakian space forms. A generalized Sasakian space form has many remarkable
geometric properties: (1) the φ-sectional curvature is pointwise constant; (2) the Ricci operator S
commutes with the structure operator φ; and (3) the structure Jacobi operator Rξ commutes with the
structure operator φ.

In these circumstances, it is very interesting to give a classification of the generalized Sasakian
space forms which are realized as real hypersurfaces in complex space forms. Namely, we prove:

Theorem 1. Let M be a connected generalized Sasakian space form which is realized as a real hypersurface in a
complex space form M̃n(c), n ≥ 2.
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(I) If M̃n(c) = PnC, then M is locally congruent to one of the following:

(i) a geodesic hypersphere G(r) of radius 0 < r < π
2 ; or

(ii) a non-homogeneous real hypersurface in P2C, with Aξ = 0.

(II) If M̃n(c) = HnC, then M is locally congruent to one of the following:

(i) a horosphere;
(ii) a geodesic hypersphere G(r) of radius r > 0;

(iii) a tube of radius r > 0 around a totally geodesic Hn−1C; or
(iv) a non-homogeneous real hypersurface in H2C, with Aξ = 0.

(III) If M̃n(c) = EnC, then M is locally congruent to one of the following:

(i) a hyperplane R2n−1;
(ii) a sphere S2n−1(r) of radius r > 0; or

(iii) a cylinder over a plane curve γ×R2n−2.

2. Preliminaries

In this paper, all manifolds are supposed to be connected and of class C∞, and all real
hypersurfaces oriented.

2.1. Generalized Sasakian Space Forms

In this subsection, we include some definitions and results on almost contact metric geometry (for
more details, see [7]). In particular, we present the definition of generalized Sasakian space forms and
some of their properties (see [6]).

An almost contact manifold is an odd-dimensional differentiable manifold M that admits a
(1, 1)-tensor field φ, a vector field ξ (usually called the structure vector field or Reeb vector field), and
a 1-form η satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1. (1)

On an almost contact manifold, there exists a compatible Riemannian metric, i.e., a metric
that satisfies

g(φX, φY) = g(X, Y)− η(X)η(Y), (2)

for all vector fields X, Y on M. Then, (η, φ, ξ, g) is said to be an almost contact metric structure and
the manifold M = (M; η, φ, ξ, g) is called an almost contact metric manifold. On such a manifold,
it follows from Equations (1) and (2) that

φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ), (3)

for every vector field X on M.
If an almost contact metric manifold M also satisfies dη = Φ, where Φ(X, Y) = g(φX, Y) is the

fundamental 2-form, then M is called a contact metric manifold. An almost contact metric manifold
is called normal if [φ, φ](X, Y) = −dη(X, Y)ξ, for any vector fields X, Y on M, where [φ, φ] is the
Nijenhuis torsion of φ. If the contact metric manifold is normal, then it is called a Sasakian manifold
(see [7] for other different characterizations of those manifolds). Sasakian manifolds with constant
φ-sectional curvature F are called Sasakian space forms and they are the analog on contact metric
geometry to complex space forms in complex geometry. Every Sasakian space form has constant
curvature and its curvature tensor R can be written in terms of its curvature. Moreover, any complete,
simply connected Sasakian space form must be one of three known models, which have F > −3,
F = −3, or F < −3 ([7]).
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Generalized Sasakian space forms were introduced by Alegre, Blair and Carriazo [6] as almost
contact metric manifolds M whose curvature tensor R can be written as

R(X, Y)Z = f1{g(Y, Z)X− g(X, Z)Y}
+ f2{g(φY, Z)φX− g(φX, Z)φY− 2g(φX, Y)φZ}
+ f3{η(X)η(Z)Y− η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(X, Z)η(Y)ξ},

(4)

for any vector fields X, Y, Z on M, where f1, f2 and f3 are functions on M. These manifolds, denoted
by M( f1, f2, f3), include the Sasakian space forms for f1 = F+3

4 and f2 = f3 = F−1
4 , where F is the

constant φ-sectional curvature. There are also many other examples of generalized Sasakian space
forms (see [6]).

On a generalized Sasakian space form M2n−1( f1, f2, f3), given a unit vector field X, orthogonal to
ξ, the φ-sectional curvature K(X, φX) = g(R(X, φX)φX, X) is independent of the direction X, since
K(X, φX) = f1 + 3 f2. Moreover, the self-adjoint Jacobi operator Rξ = R(·, ξ)ξ can be written as

Rξ = ( f1 − f3)(I − η ⊗ ξ), (5)

and the Ricci operator S as

S =
(
(2n− 2) f1 + 3 f2 − f3

)
I +

(
− 3 f2 − (2n− 3) f3

)
η ⊗ ξ, (6)

where I denotes the identity.

2.2. Real Hypersurfaces in Complex Space Forms

In this subsection, we present some known results about real hypersurfaces in n-dimensional
complex space forms M̃n(c) with constant holomorphic sectional curvature c.

On a complex space form M̃n(c), we denote by J the Hermitian structure tensor and by g̃ its
metric, which satisfy

J2 = −I, g̃(JX, JY) = g̃(X, Y), ∇̃J = 0.

If M is an oriented real hypersurface in a complex space form M̃n(c) and N is a unit normal vector
on M, then we can write

JX = φX + η(X)N, JN = −ξ, (7)

for any any vector field X tangent to M, where φ is a (1, 1)-tensor, η is a 1-form and ξ is a unit
vector field on M. Let us call g the Riemannian metric on M. Then, it follows from Equation (7) that
Equations (1) and (2) are satisfied, and thus (φ, ξ, η, g) is an almost contact metric structure on M.

Given an oriented real hypersurface (M, g) in a complex space form (M̃n(c), g̃), we denote by
∇̃ and ∇ their respective Levi–Civita connections and write Gauss and Weingarten formulas the
following way:

∇̃XY = ∇XY + g(AX, Y)N,

∇̃X N = −AX,
(8)

for any X,Y tangent vector fields on M, where A is the shape operator. It follows from Equations (7)
and (8) and ∇̃J = 0 that

(∇Xφ)Y = η(Y)AX− g(AX, Y)ξ,

∇Xξ = φAX.
(9)
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Therefore, Gauss and Codazzi equations are:

R(X, Y)Z =
c
4
{g(Y, Z)X− g(X, Z)Y + g(φY, Z)φX− g(φX, Z)φY− 2g(φX, Y)φZ}

+ g(AY, Z)AX− g(AX, Z)AY,
(10)

(∇X A)Y− (∇Y A)X =
c
4
{η(X)φY− η(Y)φX− 2g(φX, Y)ξ}. (11)

It follows from Equation (10) that the the Ricci operator S can be written as

SX =
c
4
{(2n + 1)X− 3η(X)ξ} − A2X + HAX, (12)

where H is the trace of the shape operator A. Moreover, Equation (10) also implies that the self-adjoint
Jacobi operator Rξ = R(·, ξ)ξ can be written as

Rξ(X) =
c
4
(X− η(X)ξ) + g(Aξ, ξ)AX− η(AX)Aξ. (13)

The homogeneous real hypersurfaces in PnC were classified by Takagi [1,2]. On the other
hand, Cecil and Ryan [3] studied real hypersurfaces in PnC on which the structure vector field ξ

is principal. Later, Kimura [5] completed the classification of Hopf hypersurfaces in PnC with constant
principal curvatures.

Theorem 2 ([5]). Let M be a Hopf hypersurface in PnC, n ≥ 2, with constant principal curvatures. Then, M
must be locally congruent to one of the following:

(A1) a geodesic hypersphere of radius 0 < r < π√
c ;

(A2) a tube of radius 0 < r < π√
c around a totally geodesic PkC, with 1 ≤ k ≤ n− 2;

(B) a tube of radius 0 < r < π
2
√

c around a complex quadric Qn−1 and PnR;
(C) a tube of radius 0 < r < π

2
√

c around P1C× Pn−1
2
C, where n ≥ 5 and odd;

(D) a tube of radius 0 < r < π
2
√

c around the complex Grassmannanian G2,5C, with n = 9; or
(E) a tube of radius 0 < r < π

2
√

c around a Hermitian symmetric space SO(10)/U(5), with n = 15.

On the other hand, Hopf hypersurfaces in complex hyperbolic spaces HnC whose principal
curvatures are all constant were classified by J. Berndt [4].

Theorem 3 ([4]). Let M be a Hopf hypersurface in HnC, n ≥ 2, with constant principal curvatures. Then, M
must be locally congruent to one of the following:

(A0) a horosphere;
(A1,0) a geodesic hypersphere of radius r > 0;
(A1,1) a tube of radius r > 0 around a complex hyperbolic hyperplane Hn−1C;
(A2) a tube of radius r > 0 around a totally geodesic HkC, with 1 ≤ k ≤ n− 2; or
(B) a tube of radius r > 0 around a totally real hyperbolic space HnR.

In the following, real hypersurfaces of type (A) denote either real hypersurfaces of type (A1)

or (A2) in PnC or real hypersurfaces of type (A0), (A1), or (A2) in HnC. These real hypersurfaces of
type (A) have many interesting geometric properties and have been studied by many authors (see,
e.g., [8–12]).
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3. Real Hypersurfaces in PnC or HnC

It was shown in [13] that real hypersurfaces in non-flat complex space forms cannot be totally
umbilical. This led some authors to investigate real hypersurfaces in PnC or HnC that are totally
η-umbilical, i.e., whose shape operator A has the form

A = λI + µη ⊗ ξ,

for some smooth functions λ, µ on M.
Totally η-umbilical real hypersurfaces in PnC and HnC have been classified, as the next

theorem shows.

Theorem 4 ([2,3,14,15]). Let M be a real hypersurface in a non-flat complex space form M̃n(c), c 6= 0. Then,
M is totally η-umbilical if and only if M is locally congruent to

(A1) a geodesic hypersphere of radius 0 < r < π√
c in PnC;

(A0) a horosphere in HnC;
(A1,0) a geodesic hypersphere of radius r > 0 in HnC; or
(A1,1) a tube of radius r > 0 around a complex hyperbolic hyperplane Hn−1C in HnC.

Thus, we have:

Proposition 1. A totally η-umbilical real hypersurface in a non-flat complex space form M̃n(c), c 6= 0, is a
generalized Sasakian space form with f1 = c

4 + λ2, f2 = c
4 , f3 = −λµ, and φ-sectional curvature F = c + λ2.

Proof. Suppose that a real hypersurface M in a non-flat complex space form M̃n(c), c 6= 0, is totally
η-umbilical, that is, A = λI + µη ⊗ ξ for smooth functions λ, µ in M. Then, from Gauss Equation (10),
we have

R(X, Y)Z =(
c
4
+ λ2)

(
g(Y, Z)X− g(X, Z)Y

)
+

c
4

(
g(φY, Z)φX− g(φX, Z)φY− 2g(φX, Y)φZ

)
− λµ

(
η(X)η(Z)Y− η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ

)
,

(14)

for any vector fields X, Y, Z tangent to M. Then, from Equation (14), we easily get f1 = c
4 + λ2, f2 = c

4 ,
f3 = −λµ, and we compute the φ-sectional curvature F = c + λ2.

Among totally η-umbilical real hypersurfaces, only the following ones are Sasakian space forms
of constant φ-sectional curvature F:

• a horosphere in HnC, with F = −3;
• a geodesic hypersphere with r = 2√

c tan−1(
√

c
2 ) in PnC, with F > 1;

• a geodesic hypersphere with r = 2√
−c tanh−1(

√
−c
2 ) in HnC, with −3 < F < 1; and

• a tube of radius r = 2√
−c coth−1(

√
−c
2 ) around a complex hyperbolic hyperplane Hn−1C, which is

a real hypersurface in HnC with F < −3.

The shape operator of all those hypersurfaces is A = I − c
4 η ⊗ ξ.

Lemma 1 ([16]). Let M be a real hypersurface in PnC and HnC. If M satisfies φS = Sφ and φRξ = Rξ φ at
the same time, then Aξ = 0 or M is locally congruent to one of the real hypersurfaces of type (A).

Very recently, J. T. Cho and M. Kimura [17] gave a nice geometric description of real hypersurfaces
in a complex projective space when the hypersurfaces are of constant φ-sectional curvature. Besides
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geodesic hyperspheres, such real hypersurfaces are obtained as the image of either a curve or a surface
in a complex projective space under the polar map.

4. Real Hypersurfaces in EnC

Kon [18] introduced a pseudo-Einstein (or η-Einstein) real hypersurface M in a Kählerian manifold
by the condition S = aI + bη ⊗ ξ, where a, b are some constants. Then, he proved:

Theorem 5 ([18]). Let M be a connected complete pseudo-Einstein real hypersurface in EnC, n ≥ 3. Then, M
is congruent to a hyperplane R2n−1, a sphere S2n−1(r), a cylinder over (2n− 2)-sphere S2n−2(r)×R, or a
cylinder over a complete plane curve γ×R2n−2.

We prove in the next result that one of those cases is not possible.

Proposition 2. A cylinder over (2n− 2)-sphere S2n−2(r)×R does not admit a pseudo-Einstein structure.

Proof. For S2n−2(r) × R ⊂ R2n−1 × R = Cn−1 × R × R = Cn, we have a position vector x ∈
((cos θp, r sin θ), t) for p ∈ S2n−3(r) ⊂ Cn−1 and t ∈ R. Then, we have a unit normal vector field
N = (−(cos θp, r sin θ), 0), and we have ξ = −JN = ((cos θip, 0), r sin θ). Then, we have:

• when θ = 0, ξ = ((ip, 0), 0) ∈ T(p,0)S2n−2(r)⊕ {0};
• when θ = π

2 , ξ = ((0, 0), r) ∈ {0} ⊕ TtR; and
• when 0 < θ < π

2 , ξ = ((cos θip, 0), r sin θ) /∈ (T(p,0)S2n−2(r)⊕ {0}) ∪ ({0} ⊕ TtR).

On the other hand, it is known that, for S2n−2(r)×R ⊂ Cn,

A(X, 0) =
1
r
(X, 0), A(0, Y) = (0, 0), (15)

where (X, 0) ∈ T( p̃,t)M = Tp̃S2n−2 ⊕ TtR. Hence, we have

Aξ = (
1
r
(cos θip, 0), 0). (16)

We have:

• when θ = 0, Aξ = ξ
r ;

• when θ = π
2 , Aξ = 0ξ; and

• when 0 < θ < π
2 , Aξ = ( 1

r (cos θip, 0), 0) (which is not parallel to ξ).

Thus, we find that S2n−2(r)×R ⊂ Cn is not a Hopf hypersurface. From Equations (12) and (15),
we compute the Ricci operator:

S(X, 0) =
2n− 3

r2 (X, 0), S(0, Y) = (0, 0). (17)

Then, we have:

• when θ = 0, Sξ = ξ
r2 ;

• when θ = π
2 , Sξ = 0ξ; and

• when 0 < θ < π
2 , Sξ = ( 2n−3

r2 (cos θip, 0), 0) (which is not parallel to ξ).

Therefore, M is not a pseudo-Einstein hypersurface.

The other spaces that appeared in Theorem 5 become generalized Sasakian space forms:

• hyperplanes M = R2n−1: A = 0; f1 = f2 = f3 = 0;
• spheres S2n−1(r): A = 1

r I; f1 = 1
r2 , f2 = f3 = 0; and
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• cylinders over complete plane curves γ×R2n−2: A = λI1 ⊕ 0 for some function on λ; f1 = f2 =

f3 = 0.

Hence, we have:

Proposition 3. Pseudo-Einstein real hypersurfaces of a complex Euclidean space EnC are generalized Sasakian
space forms.

We can now prove our main theorem.

Proof of the Theorem 1. We divide our arguments into two parts: (I) M̃n(c) = PnC or HnC; and (II)
M̃n(c) = EnC.

(I) Suppose that a real hypersurface M in PnC and HnC is a generalized Sasakian space form
M( f1, f2, f3). Then, from Equations (5) and (6), we easily find that the Ricci operator S and the structure
Jacobi operator Rξ simultaneously commute with φ. Then, due to Lemma 1, we have that either Aξ = 0
or that M is locally congruent to one of the real hypersurfaces of type (A).

In Theorem 4 and Proposition 1, we already find that a real hypersurface of type (A1) in PnC and
a real hypersurface of type (A0), (A1,0), and (A1,1) are generalized Sasakian space forms. Taking a
look at the case of type (A2) in PnC or HnC, we see that a real hypersurface M of type (A2) is not of
constant φ-sectional curvature (cf. [17,19]).

Now, we look at the case of Hopf hypersurfaces with α = 0. From Equation (6), we find that
S = aI + bη ⊗ ξ, where a, b are smooth functions on M. Due to results in [3,18,20] (for the case PnC)
and [14,21] (for the case HnC), we can see that M is locally congruent to a non-homogeneous real
hypersurface with Aξ = 0 in P2C or H2C. Indeed, the Ricci operator S of such spaces is represented by
S = 3

2 cI − cη ⊗ ξ, and then they are generalized Sasakian space forms with f1 = 5
4 c, f2 = 0, f3 = c.

(II) Let M( f1, f2, f3) be a real hypersurface generalized Sasakian space form in EnC. Then, since
S = aI + bη⊗ ξ, where a, b are smooth functions on M, using the arguments in the proof of Theorem 5,
we find that M is either an Einstein manifold or a Hopf hypersurface (Aξ = αξ) with a constant α.

If M is an Einstein real hypersurface in EnC, then M is locally congruent to a sphere, a hyperplane,
or a cylinder over a plane curve (cf. [22]).

Next, we consider the case M is a Hopf hypersurface with constant α. Then, from Equation (13),
we have Rξ X = αAX− α2η(X)ξ. However, since Rξ X = ( f1 − f3)(X− η(X)ξ), we have

αAX = ( f1 − f3)X + (α2 − f1 + f3)η(X)ξ.

Therefore, either M is totally η-umbilical, that is, A = λI + (α− λ)η ⊗ ξ, where λ = f1− f3
α or

Aξ = 0 (and f1 = f3). We first look at the case A = λI + (α− λ)η⊗ ξ, where λ = f1− f3
α . Since Aξ = αξ

and α is constant, we have that∇ξ A = −AφA+ αφA, where we use the second equation of Equation (9)
and Equation (11). From the fact that ∇ξ A is self-adjoint, it follows that 2AφA = α(φA + Aφ). Thus,
we have λ(λ− α) = 0. Then, we have that M is totally umbilical and then Einstein or A = 0⊕ αI1.
Due to the theorem of Hartman–Nirenberg [23] (see also [24]), the latter case yields that M is locally
a cylinder γ×R2n−2 over a plane curve γ. Finally, we should treat the case Aξ = 0. Then, we have
f1 = f3 and, by Equation (6), the Ricci operator S = ((2n− 3) f1 + f2)(I − η ⊗ ξ). From Equation (12),
we get S = HA − A2. Hence, we have A2X − HAX + ((2n − 3) f1 + f2)(X − η(X)ξ) = 0 for any
vector field X tangent to M. However, since α = 0, we also find that AφA = 0. Thus, we obtain
that ((2n− 3) f1 + f2)A = 0, so every point is totally geodesic or Ricci flat. Then, we have that M is
a hyperplane R2n−1 or a cylinder γ×R2n−2 over a plane curve γ. Therefore, the proof of our main
theorem is completed.
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