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Abstract: In this paper, we introduce reflection-like maps in n-dimensional Euclidean spaces, which

are affinely conjugated to θ : (x1, x2, . . . , xn)→
( 1

x1
,

x2

x1
, . . . ,

xn

x1

)
. We shall prove that reflection-like

maps are line-to-line, cross ratios preserving on lines and quadrics preserving. The goal of this article
was to consider the rigidity of line-to-line maps on the local domain of Rn by using reflection-like
maps. We mainly prove that a line-to-line map η on any convex domain satisfying η◦2 = id and fixing
any points in a super-plane is a reflection or a reflection-like map. By considering the hyperbolic
isometry in the Klein Model, we also prove that any line-to-line bijection f : Dn 7→ Dn is either
an orthogonal transformation, or a composition of an orthogonal transformation and a reflection-like
map, from which we can find that reflection-like maps are important elements and instruments to
consider the rigidity of line-to-line maps.
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1. Introduction

The research of rigidity of line-to-line maps has a long history (see Reference [1–5], etc.)
from different perspectives. We say that a map f : Rn 7→ Rn is line-to-line, if f (l) is contained
in some line for any line l in Rn. Similarly, we say that a circle in Möbious space R̂n = Rn ∪ {∞}
(or a geodesic in hyperbolic space Hn = {(x1, · · · , xn−1, xn) ∈ Rn|xn > 0}) is a line. For example,
in Reference [4], J. Jeffers proves that a circle-to-circle bijection f : R̂n 7→ R̂n is a Möbious
transformation, a geodesic-to-geodesic bijection f : Hn 7→ Hn is a hyperbolic isometry and a line-to-line
bijection f : Rn 7→ Rn is an affine transformation. Various geometries are considered in mathematical
researches of different transformations, such as complex curves, were studied using Laguerre planes
and Grünwald planes in Reference [6].

It is well known that any Möbious transformation is a composition of finite inversions
in n−dimensional spherical space R̂n (see Reference [7] for details). We can say that inversions
are basic elements of Möbious transformations. Let

Hn+1 = {(x1, . . . , xn, xn+1) ∈ Rn+1|xn+1 > 0}
be (n + 1)−dimensional hyperbolic space with hyperbolic metric ρH =

1
xn+1

. A reflection

on Hn+1 is an isometry which fixes an n−hyperplane in Hn+1 and any hyperbolic isometry is
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a composition of finite reflections in Hn+1. We can say that reflections are basic elements of hyperbolic
isometries. Similarly,

Sn
+ = {(x1, . . . , xn, xn+1) ∈ Rn+1|x2

1 + · · ·+ x2
n + x2

n+1 = 1, xn+1 > 0} (1)

can be seen as an n−dimensional hyperbolic subspace of Hn+1. Let

Dn = {(x1, x2, . . . , xn) ∈ Rn|x2
1 + x2

2 + · · ·+ x2
n < 1} (2)

be the Klein Model of hyperbolic space defined by the natural projection

τ : Sn
+ 7→ Dn

(x1, . . . , xn, xn+1)→ (x1, . . . , xn).
(3)

Obviously, a map F : Sn
+ 7→ Sn

+ is a hyperbolic isometry, if and only if the transformation f = τ ◦
F ◦ τ−1 : Dn 7→ Dn is a hyperbolic isometry in Klein Model Dn in the following commutative diagram

Sn
+

τ

��

F // Sn
+

τ

��
Dn f // Dn

. (4)

A geodesic in Klein Model Dn is a segment which is the projection of a geodesic in Sn
+ under τ,

since any geodesic in Sn
+ is an arc perpendicular to ∂Sn

+ ⊂ ∂Hn+1.
For any subset Ω ⊂ Rn, we call L a line in Ω, if there exists a line l in Rn, such that L = l ∩Ω.

We say that two lines L1, L2 in Ω are parallel, if l1, l2 are parallel. We say that three lines L1, L2, L3 in Ω
are concurrent, if l1, l2, l3 have a common point in Rn. We say that a map f : Ω 7→ Rn is line-to-line,
if the image points of any collinear points are collinear and f : Ω 7→ Ω′ is line-onto-line, if f (L) is a line
in Ω′ ⊂ Rn for any line L in Ω.

One can find that f is a line-to-line bijection in Dn because the isometry F is a geodesic-to-geodesic
bijection in Sn

+ in diagram (4). Especially, if the isometry F : Sn
+ 7→ Sn

+ is a reflection, then the line-to-line
map f : Dn 7→ Dn satisfies f ◦2 = id and its fixed-points set is an (n− 1)−dimensional superplane
in Dn. Obviously, f may not be an affine transformation. This is the origin of reflection-like maps
considered in this paper. We shall show that reflection-like maps are basic elements and instruments
to consider the rigidity of line-to-line maps.

In Reference [8], B. Li et al., introduce g−reflection maps in R2, which are affinely conjugated to
the map

(x, y)→
(
− x

1 + x
,

y
1 + x

)
(5)

for any point in {(x, y) ∈ R2|x 6= −1} and give the following result.

Theorem 1 ([8]). Suppose that D ⊂ R2 is a convex domain and a map f : D 7→ D is line-to-line and satisfies
f ◦2 = id. If f is not the restriction to D of an affine transformation of R2, then f is a restriction of g−reflection
map to D.

In Reference [9], B. Li et al., use g−reflection maps on the rigidity of line-to-line maps in the upper
plane H ⊂ R2 and prove that

Theorem 2 ([9]). Suppose that f : H 7→ H is a line-to-line surjection. Then, f is either an affine transformation,
or a composition of an affine transformation and a g-reflection map.

In Reference [10], B. Li et al., prove that any g−refection map preserves the cross ratios
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[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

of any four collinear points z1, z2, z3, z4 ∈ C and the following result.

Theorem 3 ([10], Theorem 3.6). Suppose that D ⊂ R2 is a domain and a line-to-line map f : D 7→ R2 is
injective and non-degenerate. Then, f is either an affine transformation, or a composition of a g-reflection map
and an affine transformation.

Here, a line-to-line map f : D 7→ R2 is degenerate (see Reference [11]), if the image space f (D) is
contained in some line (otherwise, it is non-degenerate).

The goal of this article is to consider the rigidity of line-to-line maps on local domains in Rn.
We shall introduce the case in n−dimensional space Rn of g−reflection maps, named reflection-like
maps in this paper, and prove the following main results.

Theorem 4. Suppose that Ω is any convex domain in Rn and Aη is a super-plane such that Ω ∩ Aη 6= ∅.
A line-to-line map η : Ω 7→ Ω satisfies η◦2 = id and η(P) = P for any P ∈ Ω ∩Aη . Then, η is a reflection or
a reflection-like map.

Theorem 5. Suppose that Dn ⊂ Rn is a Klein Model of n−dimensional hyperbolic space and a map f : Dn 7→
Dn is a hyperbolic isometry. Then, f is either an orthogonal transformation, or a composition of an orthogonal
transformation and a reflection-like map.

In the next sections, we shall prove that reflection-like maps are line-to-line and linearly conjugated
to each other. Moreover, the image of three parallel lines under reflection-like maps are parallel or
concurrent. The absolute cross ratios may not be preserved by reflection-like maps. But, we shall
prove that refection-like maps preserve the absolute cross ratios of any four distinct collinear points,
something like projective maps preserve the cross ratios of four points in a projective line in projective
geometries. We shall also prove that refection-like maps transfer spheres to quadrics, from which
we can obtain that they map quadrics to quadrics. Especially, if the image of a sphere is a sphere,
then it is invariant.

2. Reflection-Like Maps in High Dimension Space Rn

In this section, we shall give the definition of reflection-like maps firstly and prove invariant
properties under affine conjugation. We mainly prove Theorem 4, the rigidity of reflection-like maps
in local domain of n−dimensional space.

Denote points in Rn by X(x1, x2, · · · , xn), Y(y1, y2, · · · , yn) and the line passing through X, Y by
LXY, the Euclidean distance between X, Y by |X−Y|. Denote the vector from X to Y by

−→
XY.

Let A,B be two (n− 1)−dimensional planes (superplanes) in Rn and P be a point

A = {(x1, x2, . . . , xn) ∈ Rn|x1 = 1},
B = {(x1, x2, . . . , xn) ∈ Rn|x1 = 0},
P = (−1, 0, . . . , 0).

(6)

Obviously, P and A have equal Euclidean distances to B. The map

θ : Rn\B 7→ Rn\B

(x1, x2, . . . , xn)→
( 1

x1
,

x2

x1
, . . . ,

xn

x1

) (7)

satisfies θ◦2 = id. Moreover, {P} ∪A is the fixed-point set of θ and the two components of Rn divided
by B are invariant under θ.
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Definition 1. We say that a map η is a reflection-like map in Rn, if it is affinely conjugated to θ. That is,
one can find an affine transformation g : Rn 7→ Rn, such that η = g ◦ θ ◦ g−1 : Rn\g(B) 7→ Rn\g(B).

Obviously, θ defined in (7) is a refection-like map in Rn.
Moreover, we say thatA defined in (6) is Axis, B is Boundary, and P is Base point of the refection-like map θ.

Generally, given any affine transformation g, the reflection-like map η = g ◦ θ ◦ g−1 : Rn\g(B) 7→
Rn\g(B) has Boundary Bη = g(B), Axis Aη = g(A), and Base point Pη = g(P). Obviously, η◦2 = id,
{Pη} ∪ Aη is the fixed-point set of η, Bη is parallel to Aη , and Pη and Aη have equal Euclidean
distances to Bη . Moreover, the two components of Rn divided by Bη are invariant under η.

Definition 2. We call L a line in Rn\B, if there exists a line l in Rn, such that L = l ∩Rn\B. If l ∩B = {P̃},
then we say that L has boundary point P̃.

Proposition 1. The reflection-like map θ : Rn\B 7→ Rn\B is a line-onto-line bijection.

Proof. Let us prove that f is line-to-line in Rn\B firstly. That is, for any three collinear
points X(x1, x2, · · · , xn), Y(y1, y2, · · · , yn), Z(z1, z2, · · · , zn), their image points X′(x′1, x′2, · · · , x′n),
Y′(y′1, y′2, · · · , y′n), Z′(z′1, z′2, · · · , z′n) are collinear. There exists some λ ∈ R\{0, 1}, such that

Z = λX + (1 − λ)Y. That is, zi = λxi + (1 − λ)yi, for any i = 1, 2, · · · , n. We have x′1 =
1
x1

,

y′1 =
1
y1

, and

z′1 =
1
z1

=
1

λx1 + (1− λ)y1

=
x′1y′1

λy′1 + (1− λ)x′1

=
λy′1

λy′1 + (1− λ)x′1
x′1 +

(1− λ)x′1
λy′1 + (1− λ)x′1

y′1.

Let λ′ =
λy′1

λy′1 + (1− λ)x′1
, and then z′1 = λ′x′1 + (1− λ′)y′1. Meanwhile, x′i =

xi
x1

, y′i =
yi
y1

for any

i = 2, 3, . . . , n and

z′i =
zi
z1

=
λxi + (1− λ)yi
λx1 + (1− λ)y1

=
λy′1

λy′1 + (1− λ)x′1
x′i +

(1− λ)x′1
λy′1 + (1− λ)x′1

y′i

=λ′x′i + (1− λ′)y′i.

Thus, Z′ = λ′X′ + (1− λ′)Y′, which follows that X′, Y′, Z′ are collinear. Hence, θ is line-to-line.
Moreover, one can find that θ is bijective and θ(L) is a line in Rn\B for any line L in Rn\B, since
θ◦2 = id. That is, θ is a line-onto-line bijection and the proof is completed.

Proposition 2. For any line L in Rn\B, the reflection-like map θ : Rn\B 7→ Rn\B satisfies the following.

(i) If L 6⊂ A, then θ(L) = L, if and only if Base point P ∈ L;
(ii) If θ(L) 6= L, then θ(L) is parallel to L, if and only if L is parallel to Axis A.

Proof. (i). We only need to prove that P ∈ LXX′ for any point X ∈ Rn\B and X′ = θ(X) 6= X,
since θ is line-to-line and satisfies θ◦2 = id.

Let X(x1, x2, . . . , xn), X′
( 1

x1
,

x2

x1
, . . . ,

xn

x1

)
and λ =

1
1− x1

, then one can find that

P = λX + (1− λ)X′, which means P ∈ LXX′ .
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(ii). For two distinct points X(x1, x2, · · · , xn), Y(y1, y2, · · · , yn) in L, denote the image points

under θ by X′
( 1

x1
,

x2

x1
, · · · ,

xn

x1

)
, Y′
( 1

y1
,

y2

y1
, · · · ,

yn

y1

)
. Obviously, L is parallel to Axis A, if and only

if x1 = y1( 6= 0). Then, θ(L) is parallel to L by

−−→
X′Y′ =

(
0,

y2 − x2

y1
, · · · ,

yn − xn

y1

)
=

1
y1

−→
XY.

On the other side, suppose that θ(L) is parallel to L and x1 6= y1. We can obtain that yi =
1 + y1

1 + x1
xi,

for any i = 2, · · · , n by
−−→
X′Y′//

−→
XY. Let λ =

1 + y1

y1 − x1
, then P = λX + (1− λ)Y, which means that

P ∈ L, and θ(L) = L by the result of (i). This is a contradiction, and the proof is completed.

Corollary 1. The image of a parallelogram under a reflection-like map is a parallelogram, if and only
if the parallelogram is parallel to Axis of the reflection-like map. Moreover, the image of a square is a square,
if the square is parallel to Axis.

Proposition 3. For any two lines L1, L2 in Rn\B, not parallel toA, the reflection-like map θ : Rn\B 7→ Rn\B
satisfies the followings.

(i) θ(L1) and θ(L2) share a common boundary point if L1 is parallel to L2;
(ii) θ(L1) is parallel to θ(L2) if L1 and L2 share a common boundary point.

Proof. We only need to prove that L1 is a line passing through P . From Proposition 2,
we have θ(L1) = L1. Denote the boundary point of L1 by X̃(0, x2, · · · , xn), then the vector
−→
P X̃ = (1, x2, · · · , xn) ⊂ L1.

(i) Suppose that L2 is any line parallel to L1. For any point Y(y1, y2, · · · , yn) in L2, one can obtain
L2 = {(y1 + t, y2 + tx2, · · · , yn + txn)|t ∈ R\{−y1}} and

θ(L2) =
{( 1

y1 + t
,

y2 + tx2

y1 + t
, · · · ,

yn + txn

y1 + t

)
|t ∈ R\{−y1}

}
.

It follows that X̃ is the limit point of θ(L2) as t tends to ∞. That is, θ(L2) and θ(L1) share
common boundary point if L2 is parallel to L1.

(ii) Suppose that L2 is any line sharing common boundary point X̃(0, x2, · · · , xn) with L1. For any
point Y(y1, y2, · · · , yn) ∈ L2, we can find that the vector

−→
X̃Y = (y1, y2 − x2, · · · , yn − xn) ⊂ L2.

So, we have

L2 = {((1 + t)y1, y2 + t(y2 − x2), · · · , yn + t(yn − xn))|t ∈ R\{−1}},

and

θ(L2) =
{( 1

(1 + t)y1
,

y2 + t(y2 − x2)

(1 + t)y1
, · · · ,

yn + t(yn − xn)

(1 + t)y1

)
|t ∈ R\{−1}

}
.

As t tends to ∞, we obtain its boundary point Ỹ
(

0,
y2 − x2

y1
, · · · ,

yn − xn

y1

)
.

Denote θ(Y) = Y′
( 1

y1
,

y2

y1
, · · · ,

yn

y1

)
∈ θ(L2), then the vector

−→
ỸY′ =

( 1
y1

,
x2

y1
, · · · ,

xn

y1

)
⊂ θ(L2),
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which follows that θ(L2) is parallel to θ(L1) for
−→
P X̃ = y1

−→
ỸY′.

Moreover, we can have the following.

Lemma 1. Suppose that a reflection-like map η has the same Base point and Axis as θ. Then, η = θ.

Proof. We need only prove that the reflection-like map is uniquely determined by Base point P
and Axis A. One can know that Boundary B is parallel to A and lies between P and A with
equal distances. For any point X ∈ Rn\B, let L1 be the line in Rn\B passing through X and P ,
then η(L1) = L1 by Proposition 2. Choose any point Y ∈ A\L1 and let L2 be the line in Rn\B
passing through X and Y, then it is easy to find Y ∈ η(L2). Let L3 be the line passing through P
and parallel to L2, then η(L3) = L3. So η(L2), η(L3) share common boundary point, denoted by Ỹ
by Proposition 3. It follows that η(L2) is the line passing through Y and having boundary point Ỹ.
Then, η(X) = L1 ∩ η(L2) is determined uniquely. That is, the reflection-like map η is determined by
A and P . Therefore, we have η = θ.

A transformation g : Rn 7→ Rn is linear, if it is a composition of translations, scaling and orthogonal
transformations on Rn. We say that a reflection-like map η is linearly conjugated to θ, if one can find
a linear map g, such that η = g ◦ θ ◦ g−1.

For any super-plane Π and a point P 6∈ Π, one can find a linear transformation g such that
g(A) = Π and g(P) = P. Then, η = g ◦ θ ◦ g−1 is a reflection-like map with Base point P and Axis Π.
So, we can obtain the following by Lemma 1.

Theorem 6. Any reflection-like map is linearly conjugated to θ.

By conjugating affine transformation g : (x1, x2, · · · , xn)→ (x1 − 1, x2, · · · , xn),

θ′ = g ◦ θ ◦ g−1 : (x1, x2, . . . , xn)→
(
− x1

1 + x1
,

x2

1 + x1
, · · · ,

xn

1 + x1

)
is the general form of the g−reflection map defined in (5) on n−dimensional space.

Proof of Theorem 4. Let U and U ′ be the two components of Ω divided by Aη . We claim that there
exist P ∈ U and P′ ∈ U ′ such that η(P) = P′. Otherwise, suppose that we have X, X′ ∈ U , such that
η(X) = X′ (as in the Figure 1a). For any P′ ∈ U ′\LXX′ , denote Y1 ∈ LXP′ ∩Aη , Y2 ∈ LX′P′ ∩Aη and
P ∈ LXY2 ∩ LX′Y1

, then P ∈ U and P′ = η(P).

(a) (b)

Figure 1. (a) Existence of P, P′ in different sides. (b) Uniqueness determined by P, P′.

We shall prove that the line-to-line map is uniquely determined by P, P′ and Aη ∩ Ω. Let V
denote the smallest convex domain containing P, P′ and Ω ∩ Aη . For any point X ∈ V\LPP′
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(as in the Figure 1b), let Y1 ∈ LXP ∩Aη , Y2 ∈ LXP′ ∩Aη , we can find that X′ = η(X) ∈ LPY2 ∩ LP′Y1

is unique. Moreover, the line-to-line map on Ω will be uniquely determined by the mapping on its
sub-domain V\LPP′ .

Next, we shall prove the existence of η. By conjugating some suitable affine transformation,
we can suppose that Aη = {(x1, x2, · · · , xn)|x1 = 0}, P = (−1, 0, · · · , 0) and P′ = (k, 0, · · · , 0) (k > 0).
If k = 1, then η is a reflection about Aη

η : (x1, x2, · · · , xn)→ (−x1, x2, · · · , xn).

Otherwise, let Pη = (− 2k
k− 1

, 0, · · · , 0) and K =
k− 1

k
, then

η : (x1, x2, · · · , xn)→
(
− x1

1 + Kx1
,

x2

1 + Kx1
, · · · ,

xn

1 + Kx1

)
is the reflection-like map with Axis Aη and Base point Pη such that η(P) = P′.

Corollary 2. Suppose that θ is the reflection-like map defined in (7). Given any positive integer 1 < r < n,
let Π be any r−dimensional plane in Rn\B passing through P , then θ(Π) = Π. Moreover, if Π ∩A 6= ∅,
then θ|Π : Π 7→ Π is a reflection-like map with Axis Π ∩A and Base point P .

Remark 1. We give an example (n = 3) to show that Theorem 1 A does not hold in the case of reflection-like
maps in Rn (n > 2). That is, a line-to-line map f : Ω 7→ Ω on a convex domain Ω ⊂ Rn satisfying f ◦2 = id
may not be an affine transformation or a reflection-like map.

Example 1. Let B = {(x1, x2, x3) ∈ R3|x1 = 0} and f : R3\B 7→ R3\B be defined as

f : (x1, x2, x3)→
( 1

x1
,

x2

x1
,− x3

x1

)
.

Obviously, f ◦2 = id and f is line-to-line, since f is a composition of an orthogonal transformation
and a reflection-like map, while f cannot be a reflection-like map since its fixed-point set is L1 ∪ L2,
where L1 = {(x1, x2, x3) ∈ R3|x1 = 1, x3 = 0} and L2 = {(x1, x2, x3) ∈ R3|x1 = −1, x2 = 0}.

3. The Absolute Cross ratios in High Dimension Space Rn

For any four distinct points X(x1, x2, · · · , xn), Y(y1, y2, · · · , yn), Z(z1, z2, · · · , zn),
W(w1, w2, · · · , wn) in Rn, the absolute cross ratio is defined as

|X, Y, Z, W| = |X− Z| · |Y−W|
|X−W| · |Y− Z| .

It is very important in high dimensional space. Especially, if Z = ∞, we can define it by the limit
as Z tends to ∞

|X, Y, ∞, W| = |Y−W|
|X−W| .

It is well known that, for any subdomain Ω ⊂ Rn, a map f : Ω 7→ Rn is a Möbious transformation,
if and only if f preserves the absolute cross ratios. The cross ratio is defined on four collinear points
in projective geometry, and a projective transformation preserves cross ratios (see Reference [2,12]
for details). While a reflection-like map considers one more dimension than a projectivity, it does not
preserve absolute cross ratios.

For example (as in Figure 2), let X(1, 0), Y(1, 1), Z(2, 1) and W(2, 0) ∈ R2, then θ(X) = X′(1, 0),

θ(Y) = Y′(1, 1), θ(Z) = Z′
(1

2
,

1
2

)
and θ(W) = W ′

(1
2

, 0
)

. We have that θ maps the square XYZW
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to the quadrilateral X′Y′Z′W ′ since θ is line-to-line. It is easy to calculate that |X, Y, Z, W| = 2
and |X′, Y′, Z′, W ′| =

√
5.

Figure 2. Reflection-like maps may not preserve absolute cross ratios.

In this section, we shall prove that reflection-like maps preserve the absolute cross ratios of any
four collinear points. In fact, for any collinear points X, Y, Z, W, if xi 6= yi for some i = 1, · · · , n,
then we can have

|X, Y, Z, W| = |xi − zi| · |yi − wi|
|xi − wi| · |yi − zi|

.

Theorem 7. Suppose that η is a reflection-like map with boundary Bη . Then, for any four distinct collinear
points X, Y, Z, W in Rn\Bη , the absolute cross ratio |X, Y, Z, W| is invariant under η. That is,

|X, Y, Z, W| = |η(X), η(Y), η(Z), η(W)|.

Proof. By conjugating some suitable linear transformation, we can suppose that the reflection-like

map is θ defined in (7). Then, we have θ(X) = X′
( 1

x1
,

x2

x1
, · · · ,

xn

x1

)
, θ(Y) = Y′

( 1
y1

,
y2

y1
, · · · ,

yn

y1

)
,

θ(Z) = Z′
( 1

z1
,

z2

z1
, · · · ,

zn

z1

)
and θ(W) = W ′

( 1
w1

,
w2

w1
, · · · ,

wn

w1

)
are collinear. If x1 6= y1, we have

1
x1
6= 1

y1
and

|X′, Y′, Z′, W ′| =

∣∣∣ 1
x1
− 1

z1

∣∣∣ · ∣∣∣ 1
y1
− 1

w1

∣∣∣∣∣∣ 1
x1
− 1

w1

∣∣∣ · ∣∣∣ 1
y1
− 1

z1

∣∣∣
=
|x1 − z1| · |y1 − w1|
|x1 − w1| · |y1 − z1|

=|X, Y, Z, W|.

If x1 = y1, then there exists some i, such that xi 6= yi. Thus,
xi
x1
6= yi

y1
and

|X′, Y′, Z′, W ′| =

∣∣∣ xi
x1
− zi

z1

∣∣∣ · ∣∣∣ yi
y1
− wi

w1

∣∣∣∣∣∣ xi
x1
− wi

w1

∣∣∣ · ∣∣∣ yi
y1
− zi

z1

∣∣∣
=
|xi − zi| · |yi − wi|
|xi − wi| · |yi − zi|

=|X, Y, Z, W|.

We complete the proof.
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4. Reflection-Like Maps and Quadrics

In this section, we shall prove that θ maps spheres to quadrics, from which we can obtain that
reflection-like maps transfer quadrics to quadrics. Especially, if the image of a sphere is a sphere,
then it is invariant.

Definition 3. Given any reflection-like map, we say that the line passing its Base point and perpendicular to its
Axis is its Equator.

For example, the Equator of θ is
L = {(x1, 0, . . . , 0)|x1 ∈ R, x1 6= 0}.

One can find that, given any affine transformation, the Equator of η = g · θ · g−1 may not be g(L),
while, if g is linear, the Equator of η is g(L).

Theorem 8. The reflection-like map θ maps any sphere to a quadric.
If both S and θ(S) are (n− 1)−dimensional spheres, then θ(S) = S.
Moreover, if θ(S) = S, then the center of S lies in the equator L of θ.
For any P ∈ L, such that P′ = θ(P) 6= P, let S be the (n− 1)−dimensional sphere with diameter PP′,

then θ(S) = S.

Proof. Suppose that S is a sphere with radius r and center C(c1, c2, . . . , cn). Then, any point
X(x1, x2, . . . , xn) ∈ S satisfies

S : (x1 − c1)
2 + (x2 − c2)

2 + · · ·+ (xn − cn)
2 = r2.

Denote the image point θ(X) = X′(x′1, x′2, · · · , x′n) ∈ θ(S), then θ(X′) = X since θ◦2 = id.

It follows θ(X′) =
( 1

x′1
,

x′2
x′1

, · · · ,
x′n
x′1

)
∈ S, that is

θ(S) =
{
(x′1, x′2, · · · , x′n)

∣∣∣( 1
x′1
− c1

)2
+
( x′2

x′1
− c2

)2
+ · · ·+

( x′n
x′1
− cn

)2
= r2

}
.

Obviously, it is a quadric

θ(S) : (1− c1x′1)
2 + (x′2 − c2x′1)

2 + · · ·+ (x′n − cnx′1)
2 = r2x2

1.

Then, θ(S) is a sphere, if and only if c2 = c3 = · · · = cn = 0 and c2
1 − r2 = 1, since −2ci is

the coefficient of the term x′1x′i (i = 2, · · · , n) and c2
1 − r2 is the coefficient of the term x′21 . It follows

that, if θ(S) is also a sphere, then

θ(S) : (x′1 − c1)
2 + x′22 + · · ·+ x′2n = r2.

Thus, θ(S) = S and the center C(c1, 0, · · · , 0) ∈ L (as in Figure 3).
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(a) (b)

Figure 3. (a) Invariant sphere crossing Axis. (b) Invariant sphere surrounding Base point.

For any P ∈ L satisfying P′ = θ(P) 6= P, let S be the (n− 1)−dimensional sphere with diameter

PP′ (as in Figure 3). Denote P(p1, · · · , 0), P′
( 1

p1
, · · · , 0

)
, c1 =

1
2

(
p1 +

1
p1

)
and r =

1
2

∣∣∣p1−
1
p1

∣∣∣, then S

has radius r and center C(c1, 0, · · · , 0) ∈ L. One can find that θ(S) = S since c2
1 − r2 = 1.

Obviously, the invariant sphere S lies in one component ofRn\B and the interior Ω of S is invariant
under θ by the continuity of reflection-like maps, which shows that θ : Ω 7→ Ω is a line-to-line bijection.
Moveover, if Ω is a Klein Model of hyperbolic space, then θ : Ω 7→ Ω is an isometry.

5. Reflection-Like Maps and Hyperbolic Isometries in Klein Model

In this section, we shall prove Theorem 5, the rigidity of line-to-line maps in a local domain of Rn

by hyperbolic isometry on Klein Model defined by projection τ : Sn
+ 7→ Dn as in Equations (1)–(3).

Lemma 2. Suppose that F : Sn
+ 7→ Sn

+ is a reflection. Then, f = τ ◦ F ◦ τ−1 : Dn 7→ Dn is a refection-like
map or a reflection.

Proof. Suppose that F : Sn
+ 7→ Sn

+ is a reflection relative to (n − 1)−hyperbolic plane S ⊂ Sn
+.

Then F◦2 = id and F(P) = P for any P ∈ S. It follows that τ(S) is an (n− 1)−dimensional plane in Dn

and f = τ ◦ F ◦ τ−1 : Dn 7→ Dn is a line-onto-line bijection, satisfying f ◦2 = id and f (X) = X for any
X ∈ τ(S). Then, f is the restriction of a refection-like map or a reflection by Theorem 4. Specifically,
f is a reflection if the origin point O ∈ τ(S); otherwise, f is a reflection-like map.

For any two distinct points P, Q ∈ Sn
+, one can always get a unique reflection F : Sn

+ 7→ Sn
+,

satisfying that F(P) = Q. We can obtain the following Corollary.

Corollary 3. For any point X ∈ Dn\{O}, there is a reflection-like map η satisfying that η(Dn) = Dn

and η(O) = X. Moveover, denote Axis of η by Aη , then Aη ∩Dn 6= ∅.

Proof of Theorem 5. If f (O) = O, then f : Dn 7→ Dn is the restriction to Dn of an orthogonal
transformation on Rn.

If f (O) 6= O, then there exists a reflection-like map η such that η(Dn) = Dn and η(O) = f−1(O)

by Corollary 3, which follows g = f ◦ η : Dn 7→ Dn is a hyperbolic isometry satisfying g(O) = O.
Thus, g : Dn 7→ Dn is the restriction to Dn of an orthogonal transformation on Rn. It implies that
f = g ◦ η.

Above all, any hyperbolic isometry in Klein Model is either an orthogonal transformation,
or a composition of an orthogonal transformation and a reflection-like map.

From Theorem 5, one can deduce that any line-to-line bijection on Dn can be extended line-to-line
to Rn (or except a superplane).
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