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Abstract: In this paper, we introduce reflection-like maps in n-dimensional Euclidean spaces, which
. . 1 x X

are affinely conjugated to 6 : (x1,x2,...,X,) — (—, —2, e

X1 X1 X1

maps are line-to-line, cross ratios preserving on lines and quadrics preserving. The goal of this article
was to consider the rigidity of line-to-line maps on the local domain of R” by using reflection-like
maps. We mainly prove that a line-to-line map 7 on any convex domain satisfying 7°% = id and fixing
any points in a super-plane is a reflection or a reflection-like map. By considering the hyperbolic
isometry in the Klein Model, we also prove that any line-to-line bijection f : D" — D" is either
an orthogonal transformation, or a composition of an orthogonal transformation and a reflection-like
map, from which we can find that reflection-like maps are important elements and instruments to

) . We shall prove that reflection-like

consider the rigidity of line-to-line maps.
Keywords: line-to-line maps; reflection-like maps; affine transformations

MSC: 51F15; 30C35

1. Introduction

The research of rigidity of line-to-line maps has a long history (see Reference [1-5], etc.)
from different perspectives. We say that a map f : R"” — R”" is line-to-line, if f(/) is contained
in some line for any line / in R”. Similarly, we say that a circle in Mobious space R” = R" U {co}
(or a geodesic in hyperbolic space H" = {(xq,---,x,-1,%,) € R"|x, > 0}) is a line. For example,
in Reference [4], ]. Jeffers proves that a circle-to-circle bijection f : R” — R" is a Mobious
transformation, a geodesic-to-geodesic bijection f : H" — H" is a hyperbolic isometry and a line-to-line
bijection f : R* — R" is an affine transformation. Various geometries are considered in mathematical
researches of different transformations, such as complex curves, were studied using Laguerre planes
and Griinwald planes in Reference [6].

It is well known that any Mobious transformation is a composition of finite inversions
in n—dimensional spherical space R" (see Reference [7] for details). We can say that inversions
are basic elements of Mobious transformations. Let

H Y = {(xq,..., %0, Xp31) € R x> 0}
1
be (n + 1)—dimensional hyperbolic space with hyperbolic metric pg = . A reflection

Xn+1
on H"*! is an isometry which fixes an n—hyperplane in H"*! and any hyperbolic isometry is

Mathematics 2020, 8, 872; d0i:10.3390/math8060872 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8060872
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/6/872?type=check_update&version=2

Mathematics 2020, 8, 872 20of 11

a composition of finite reflections in H"*!. We can say that reflections are basic elements of hyperbolic
isometries. Similarly,

St = {(x1, -+, Xn, Xpy1) ERE 4402 + 22 =1,x,41 >0} (1)
can be seen as an n—dimensional hyperbolic subspace of H"*1. Let
D" = {(x1,x2,...,%0) € R"|x] + 25 + - + x5 < 1} )
be the Klein Model of hyperbolic space defined by the natural projection

T:S% — D"

(X1, X, Xpy1) = (X1,.- ., %n).

®)

Obviously, amap F : S + S' is a hyperbolic isometry, if and only if the transformation f = To
Fot~!:D"+ D"isa hyperbolic isometry in Klein Model D" in the following commutative diagram

Sy )

|

D" —— D"

A geodesic in Klein Model D" is a segment which is the projection of a geodesic in S| under T,
since any geodesic in S" is an arc perpendicular to 0S". C 9H" L.

For any subset (2 C R", we call L a line in (), if there exists a line / in R”, such that L = 1N Q.
We say that two lines L1, L, in ) are parallel, if /1, I, are parallel. We say that three lines L1, Ly, L3 in Q)
are concurrent, if /1, I, I3 have a common point in R”. We say that a map f : Q) — R" is line-to-line,
if the image points of any collinear points are collinear and f : Q) — ()’ is line-onto-line, if f(L) is a line
in ) C R" for any line L in Q.

One can find that f is a line-to-line bijection in D" because the isometry F is a geodesic-to-geodesic
bijectionin S’} in diagram (4). Especially, if the isometry F : S} > §'} is a reflection, then the line-to-line
map f : D" s D" satisfies f°> = id and its fixed-points set is an (n — 1) —dimensional superplane
in D". Obviously, f may not be an affine transformation. This is the origin of reflection-like maps
considered in this paper. We shall show that reflection-like maps are basic elements and instruments
to consider the rigidity of line-to-line maps.

In Reference [8], B. Li et al., introduce g—reflection maps in R?, which are affinely conjugated to
the map

(x’y)_}(_lix’lix) ©®)

for any point in {(x,y) € R?|x # —1} and give the following result.

Theorem 1 ([8]). Suppose that D C R? is a convex domain and a map f : D +— D is line-to-line and satisfies
f°% = id. If f is not the restriction to D of an affine transformation of R?, then f is a restriction of g—reflection
map to D.

In Reference [9], B. Li et al., use g—reflection maps on the rigidity of line-to-line maps in the upper
plane H C R? and prove that

Theorem 2 ([9]). Suppose that f : H — His a line-to-line surjection. Then, f is either an affine transformation,
or a composition of an affine transformation and a g-reflection map.

In Reference [10], B. Li et al., prove that any g—refection map preserves the cross ratios
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(z1 — 23) (22 — 24)
(z1 — 24)(22 — 23)

of any four collinear points z1, 22, z3,z4 € C and the following result.

[er Z2,23, 24] =

Theorem 3 ([10], Theorem 3.6). Suppose that D C R? is a domain and a line-to-line map f : D +— R? is
injective and non-degenerate. Then, f is either an affine transformation, or a composition of a g-reflection map
and an affine transformation.

Here, a line-to-line map f : D s R? is degenerate (see Reference [11]), if the image space f(D) is
contained in some line (otherwise, it is non-degenerate).

The goal of this article is to consider the rigidity of line-to-line maps on local domains in R”.
We shall introduce the case in n—dimensional space R" of g—reflection maps, named reflection-like
maps in this paper, and prove the following main results.

Theorem 4. Suppose that Q) is any convex domain in R" and A" is a super-plane such that QN AT # Q.
A line-to-line map n : Q — Q satisfies 1°? = id and 17(P) = P for any P € QN A"l. Then, 1 is a reflection or
a reflection-like map.

Theorem 5. Suppose that D" C R" is a Klein Model of n—dimensional hyperbolic space and a map f : D" —
D" is a hyperbolic isometry. Then, f is either an orthogonal transformation, or a composition of an orthogonal
transformation and a reflection-like map.

In the next sections, we shall prove that reflection-like maps are line-to-line and linearly conjugated
to each other. Moreover, the image of three parallel lines under reflection-like maps are parallel or
concurrent. The absolute cross ratios may not be preserved by reflection-like maps. But, we shall
prove that refection-like maps preserve the absolute cross ratios of any four distinct collinear points,
something like projective maps preserve the cross ratios of four points in a projective line in projective
geometries. We shall also prove that refection-like maps transfer spheres to quadrics, from which
we can obtain that they map quadrics to quadrics. Especially, if the image of a sphere is a sphere,
then it is invariant.

2. Reflection-Like Maps in High Dimension Space R"

In this section, we shall give the definition of reflection-like maps firstly and prove invariant
properties under affine conjugation. We mainly prove Theorem 4, the rigidity of reflection-like maps
in local domain of n—dimensional space.

Denote points in R” by X(x1,x2,- -+, %), Y(y1,Y2,- - - ,yn) and the line passing through X, Y by
Lxy, the Euclidean distance between X, Y by |X — Y|. Denote the vector from X to Y by XY.

Let A, B be two (n — 1)—dimensional planes (superplanes) in R” and P be a point

A={(x1,x2,...,x,) € R"|xq =1},
B:{(xlixZI'--/xi’l) ERn‘xlzo}l (6)
P =(-1,0,...,0).

Obviously, P and A have equal Euclidean distances to 3. The map

6:R"\B+— R"\B
x| @)

(x1,%2,...,%n) — (x1,x1,..., P

satisfies 0°2 = id. Moreover, { P} U A is the fixed-point set of 6 and the two components of R" divided
by B are invariant under 6.
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Definition 1. We say that a map v is a reflection-like map in R", if it is affinely conjugated to 0. That is,
one can find an affine transformation g : R" v+ R", such that § = go 6o g~ : R"\g(B) — R™"\g(B).
Obviously, 0 defined in (7) is a refection-like map in R".
Moreover, we say that A defined in (6) is Axis, B is Boundary, and ‘P is Base point of the refection-like map 6.

Generally, given any affine transformation g, the reflection-like map 7 = go 6o g~ ! : R"\¢(B)
R™\¢(B) has Boundary B7 = ¢(B), Axis A" = g(.A), and Base point P"7 = ¢g(P). Obviously, 1 = id,
{P"} U A" is the fixed-point set of , B" is parallel to A7, and P” and A" have equal Euclidean
distances to B7. Moreover, the two components of R" divided by B are invariant under 7.

Definition 2. We call L a line in R"\ B, if there exists a line | in R", such that L = INR™\B. IfIN B = {P},
then we say that L has boundary point P.

Proposition 1. The reflection-like map 6 : R"\ B +— R™\ B is a line-onto-line bijection.

Proof. Let us prove that f is line-to-line in R"\B firstly. That is, for any three collinear

points X (xq,x2, -+ ,xu), Y(Y1, Y2, ,Yn), Z(21,22, -+ ,zn), their image points X'(x},x5,---,x},),

Y' (Y vh - yn), Z'(2,25,- - ,z),) are collinear. There exists some A € R\{0,1}, such that

Z = AX+(1—-A)Y. Thatis, z; = Ax;+ (1 —A)y;, forany i = 1,2,--- ,n. We have x| = 1

7

X1
1
I = —,and
Y "
gt 1
Yz A+ (1-Mn
o ay
Ayp+ (1= A)xg
_ Ay ¥+ (1—A)x] ..
Ay + (1= A)x] Ay + (1 =A)x]
Let A = A—y,l, and then z; = A'x] + (1 — A')y}. Meanwhile, x| = iy yi= Ji for any
Ayy+ (1= A)x] 1 1 1 oxt

i=23,...,nand

g g Mt (= My
! Z1 )\Xl + (1 — /\)]/1
A/ 1—A)x!
=37 e /x§+ /( ) | /y;
Ay + (1= A)x] Ay + (1= A)X]

=Axl+ (1= Ayl

Thus, Z' = M’X' + (1 — A)Y’, which follows that X', Y’, Z" are collinear. Hence, 6 is line-to-line.
Moreover, one can find that 6 is bijective and 6(L) is a line in R"\B for any line L in R"\B, since
0°2 = id. That is, 6 is a line-onto-line bijection and the proof is completed. [

Proposition 2. For any line L in R™\ B, the reflection-like map 6 : R"\ B — R"\ B satisfies the following.

(i) IfL ¢ A, then 6(L) = L, if and only if Base point P € L;
(i) If6(L) # L, then O(L) is parallel to L, if and only if L is parallel to Axis A.

Proof. (i). We only need to prove that P € Lyy for any point X € R"\B and X' = 6(X) # X,

since 6 is line-to-line and satisfies 1902 =id. 1
Let X(x1,x2,...,%,), X' (—, B, .., x—n) and A = , then one can find that
X1 X1 X1 1-— X1
P =AX+ (1- X)X, whichmeans P € Lxy.
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(ii). For two distinct points X(x1,%2,- -+ ,xn), Y(y1,¥2,- - ,yn) in L, denote the image points
1 x2 1 yz ]/n
under 0 by X’ . Y/ _ Obviously, L is parallel to Axis A, if and onl
y (X] X1 xl ) (yl yl yl ) Y p y

if x; = y1(# 0). Then, 6(L) is parallel to L by

N _ —
X/Y,: (0,]/2 x2/”.1yn xn) :i>{—Y>
n 1

1
On the other side, suppose that (L) is parallel to L and x1 # y;1. We can obtain that y; = nakl

1—|—X1
y1+]i1 ,then P = AX + (1 — A)Y, which means that
1— X

P € L,and 6(L) = L by the result of (i). This is a contradiction, and the proof is completed. [

Xi,

H H
foranyi =2,--- ,nby X'Y'//XY. Let A =

Corollary 1. The image of a parallelogram under a reflection-like map is a parallelogram, if and only
if the parallelogram is parallel to Axis of the reflection-like map. Moreover, the image of a square is a square,
if the square is parallel to Axis.

Proposition 3. For any two lines L1, Ly in R\ B, not parallel to A, the reflection-like map 6 : R"\ B — R"\ B
satisfies the followings.

(i)  6(Lq) and 6(Ly) share a common boundary point if Ly is parallel to Ly;
(i)  O(Ly) is parallel to 6(Ly) if Ly and Ly share a common boundary point.

Proof. We only need to prove that L; is a line passing through P. From Proposition 2,
vghave 0(L;) = L;. Denote the boundary point of L; by X(0,xp,---,x,), then the vector

’PX = (1,)(2,--' ,xn) C Ll.

(i)  Suppose that L, is any line parallel to L;. For any point Y (1,2, - - ,¥») in Ly, one can obtain
Ly={(y1 +tya+txp, -, yn+txy)|t € R\{—y1}} and

o 1 Y2 +txo Yn + txp .
o) ={(jp B e e B )

It follows that X is the limit point of §(L;) as t tends to co. That is, (L;) and 6(L;) share
common boundary point if L, is parallel to L;. 3

(i)  Suppose that L; is any line sharing common boundary point X (0, x2, - - - , x,) with L. For any
point Y(y1,Y2,- -+ ,yn) € Ly, we can find that the vector

—

Y = (]/1/}/2 — X2, Yn — xn) C Lz.
So, we have

Ly = {((0+ By, y2 + t(y2 = x2), -+, Yn + Hyn — xa)) [t € R\{-1}},

and
1 pttle—xn) Y+ (Y — xn)
0(L2) = ’ AR te R\{-1}5;.
() {((Hf)yl T+ O 0+ Oy )l e R\{-1}}
As t tends to oo, we obtain its boundary poth( yzy e /y”y_x")_
1 1
Denote 8(Y) = Y/(l,yj,. .. ]/n) € 0(L,), then the vector
Y1 Y1
-
YY/ frd (llﬂll .. x”) C G(LZ)
Vi n
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—= =
which follows that 6(L;) is parallel to 6(L;) for PX = y1YY'. O

Moreover, we can have the following.
Lemma 1. Suppose that a reflection-like map n has the same Base point and Axis as 6. Then, j = 6.

Proof. We need only prove that the reflection-like map is uniquely determined by Base point P
and Axis A. One can know that Boundary B is parallel to .4 and lies between P and A with
equal distances. For any point X € R"\B, let L; be the line in R"\B passing through X and P,
then 17(L;) = Lj by Proposition 2. Choose any point Y € A\L; and let L, be the line in R"\B
passing through X and Y, then it is easy to find Y € 5(Ly). Let L3 be the line passing through P
and parallel to Ly, then 7(L3) = Ls. So 17(L,),7(L3) share common boundary point, denoted by Y
by Proposition 3. It follows that 77(L,) is the line passing through Y and having boundary point Y.
Then, 7(X) = L; Nn(Ly) is determined uniquely. That is, the reflection-like map 7 is determined by
Aand P. Therefore, we havey = 6. O

A transformation g : R” — R" is linear, if it is a composition of translations, scaling and orthogonal
transformations on R”. We say that a reflection-like map 7 is linearly conjugated to 0, if one can find
a linear map g, such thaty = gofog1.

For any super-plane IT and a point P ¢ I1, one can find a linear transformation g such that
¢(A) =TTand g(P) = P. Then, 7 = go 6o g ! is a reflection-like map with Base point P and Axis IT.
So, we can obtain the following by Lemma 1.

Theorem 6. Any reflection-like map is linearly conjugated to 6.

By conjugating affine transformation g : (xq,x2,- -+ ,x,) = (x1 —1,x2,- -+, xp),

X1 Xy Xn )

9/: 0 71: s X200, — - ’ 7ty
gobog (v, X2 %) <1+x1 T+x T+x

is the general form of the g—reflection map defined in (5) on n—dimensional space.

Proof of Theorem 4. Let U/ and U’ be the two components of () divided by A"7. We claim that there
exist P € U and P’ € U’ such that #(P) = P’. Otherwise, suppose that we have X, X’ € U, such that
7(X) = X’ (as in the Figure 1a). For any P’ € U'\Lxx/, denote Y1 € Lxp N A", Y, € Lyx/p N AT and
P e ny2 N LX’er then P € if and P’ = 1’](P)

() (b)

Figure 1. (a) Existence of P, P’ in different sides. (b) Uniqueness determined by P, P’.

We shall prove that the line-to-line map is uniquely determined by P, P’ and A7 N Q. Let V
denote the smallest convex domain containing P,P’ and Q N A"7. For any point X € V\Lpp
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(as in the Figure 1b), let Y; € Lxp N A", Y, € Lxpr N A", we can find that X" = 5(X) € Lpy, N Lpry,
is unique. Moreover, the line-to-line map on () will be uniquely determined by the mapping on its
sub-domain V\ Lppr.

Next, we shall prove the existence of . By conjugating some suitable affine transformation,
we can suppose that A7 = {(x1,x2, -+ ,x4)|x3 =0}, P = (-1,0,---,0) and P’ = (k,0,---,0) (k > 0).
If k = 1, then 7 is a reflection about A"

n(xy, X0, ,Xn) = (=X, X2, -+, Xn).

2k k—1
Otherwise, let P = (—m,o, -+,0)and K = & then
. PR J— xl XZ « e xn
7 (a2, 'x")%( 1+Kx' 1+ Kxy/ '1+Kx1)

is the reflection-like map with Axis A" and Base point P” such that (P) = P'. O

Corollary 2. Suppose that 0 is the reflection-like map defined in (7). Given any positive integer 1 < r < n,
let I1 be any r—dimensional plane in R"\ B passing through P, then 6(I1) = IL. Moreover, if 1IN A # @,
then 0|1y : 11 +— I1is a reflection-like map with Axis 11N A and Base point P.

Remark 1. We give an example (n = 3) to show that Theorem 1 A does not hold in the case of reflection-like
maps in R" (n > 2). That is, a line-to-line map f : Q — Q on a convex domain Q C R" satisfying f°> = id
may not be an affine transformation or a reflection-like map.

Example 1. Let B = {(x1,%,x3) € R3|x; = 0} and f : R®\ B+ R3\ B be defined as

Obviously, f°? = id and f is line-to-line, since f is a composition of an orthogonal transformation
and a reflection-like map, while f cannot be a reflection-like map since its fixed-point setis L1 U Ly,
where L] = {(Xl,JCz,X3) S R3|X1 = 1,X3 = O} and Lz = {(xl,xz,x3) € R3|x1 = —1,JC2 = 0}

3. The Absolute Cross ratios in High Dimension Space R"

For any four distinct points X(x1,x2,---,%u), YW1, Y2, -, Yn), Z(z1,22, - ,2Zn),
W(wy,wy,- -+ ,wy) in R", the absolute cross ratio is defined as

X —Z|-|Y = W]

XY, Z,W|= .

It is very important in high dimensional space. Especially, if Z = oo, we can define it by the limit

as Z tends to oo
Y —W|

X — W[’
It is well known that, for any subdomain () C R", amap f : Q) — R" is a Mobious transformation,
if and only if f preserves the absolute cross ratios. The cross ratio is defined on four collinear points

|X,Y, 00, W| =

in projective geometry, and a projective transformation preserves cross ratios (see Reference [2,12]
for details). While a reflection-like map considers one more dimension than a projectivity, it does not
preserve absolute cross ratios.
For example (as in Figure 2), let X(1,0), Y(1,1), Z(2,1) and W(2,0) € R?, then 6(X) = X'(1,0),
11

6(Y) =Y'(1,1),0(2) = Z’(E, 5) and (W) = W’(%,O). We have that 6 maps the square XYZW
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to the quadrilateral X'Y’Z'W’ since 6 is line-to-line. It is easy to calculate that |X,Y,Z,W| = 2
and | X, Y, Z!,W'| = /5.

y
A
1F- .Z
. 2
-1 O 2

Figure 2. Reflection-like maps may not preserve absolute cross ratios.

In this section, we shall prove that reflection-like maps preserve the absolute cross ratios of any
four collinear points. In fact, for any collinear points X,Y,Z, W, if x; # y; for somei = 1,--- ,n,

then we can have
xi — zi| - lyi — wil

i — wi| - [yi —zi|

|X,Y,Z,W| =

Theorem 7. Suppose that 1 is a reflection-like map with boundary B". Then, for any four distinct collinear
points X, Y, Z, W in R"\ B, the absolute cross ratio | X,Y, Z, W| is invariant under . That is,

1X,Y, Z,W| = [n(X),n(Y),1(2),n1(W)].

Proof. By conjugating some suitable linear transformation, we can suppose that the reflection-like

map is 0 defined in (7). Then, we have 6(X) = X’(l 2o x—n), 0(Y) = Y’(l LES y—n),

, 1 x1 X1 "x1 y1'y1' ']/1

0(zZ) = Z’(Z,i—j,-~ ,%) and O(W) = W’(w—l, Z—j,,%) are collinear. If x; # y;, we have
1
— # —and
X1 A

’l_l ‘l_i

I vl ool At VX1 21 Y1 w1
X1 w1 Al Z

_Ixm =zl |y —w
X1 — w1 |- [y1 — 21
=|X,Y,Z,W|.

If x; = y1, then there exists some i, such that x; # y;. Thus, % * % and
1 1

’ﬁ_ﬁ.ﬂ_ﬁ
X1 Z1 Al w1
!\ 7! 1
'X'Y'Z'W’%_W.%_Zi
X1 w1 1 oz

:|xi —zil - lyi — wil
|xi — wil - [yi — zil
=|X,Y,Z,W|.

We complete the proof. [
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4. Reflection-Like Maps and Quadrics

In this section, we shall prove that 6 maps spheres to quadrics, from which we can obtain that
reflection-like maps transfer quadrics to quadrics. Especially, if the image of a sphere is a sphere,
then it is invariant.

Definition 3. Given any reflection-like map, we say that the line passing its Base point and perpendicular to its
Axis is its Equator.

For example, the Equator of 0 is
L= {(X],O,. . .,0)|X1 €R,x 75 0}.
One can find that, given any affine transformation, the Equator of 7 = ¢ - 6 - ¢~! may not be g(£),
while, if ¢ is linear, the Equator of 77 is g(£).

Theorem 8. The reflection-like map 8 maps any sphere to a quadric.
Ifboth S and 6(S) are (n — 1) —dimensional spheres, then 6(S) = S.
Moreover, if 0(S) = S, then the center of S lies in the equator L of 6.

Forany P € L, such that P' = 6(P) # P, let S be the (n — 1) —dimensional sphere with diameter PP,
then 6(S) = S.

Proof. Suppose that S is a sphere with radius r and center C(cy,¢,...,¢,). Then, any point
X(x1,%2,...,%,) € S satisfies

S:(x1—c1)?+ (xa—c2)?+ -+ (xn —cu)? =72

Denote the image point 6(X) = X'(x{,x5,---,x},) € 6(S), then (X’) = X since 6°* = id.
/
It follows 6(X') = ( L a ) € S, that is

A AR
1 2 X 2 x 2
(—,—cl) —i—(—%—cz) +---+(—7—cn) :rz}.
xl X x1

s>

—_

1 % X

0(8) = {(x}, xp, -, ¥)

Obviously, it is a quadric

0(S) : (1 —c1x))? 4 (xh — c2x})? + -+ (x), — cux))? = r*x3.

Then, 6(S) is a sphere, if and only if c; = ¢3 = -+ = ¢, = 0 and C% — 12 = 1, since —2¢; is
the coefficient of the term x{x/ (i = 2,--- ,n) and ¢ — r? is the coefficient of the term x2. It follows
that, if 6(S) is also a sphere, then

0(S): (xfy —c1)?+xF+-- -+ =12

Thus, 6(S) = S and the center C(c1,0,---,0) € L (as in Figure 3).
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(@) (b)

Figure 3. (a) Invariant sphere crossing Axis. (b) Invariant sphere surrounding Base point.

For any P € L satisfying P’ = 6(P) # P, let S be the (n — 1) —dimensional sphere with diameter
y ymng 1 p

1 1 1 1
ppr! in Fi 3). Denote P "=, ... == ——
(as in Figure 3). Denote P(p1, ,0), P (Pll ,O),cl 5 (p1 + Pl) and r 5 ‘pl " ,then S
has radius r and center C(cq,0,- - ,0) € £. One can find that 6(S) = Ssince 3 — > =1. O

Obviously, the invariant sphere S lies in one component of R"\ B and the interior O of S is invariant
under 0 by the continuity of reflection-like maps, which shows that 8 : Q) — Q) is a line-to-line bijection.
Moveover, if 2 is a Klein Model of hyperbolic space, then 6 : () — () is an isometry.

5. Reflection-Like Maps and Hyperbolic Isometries in Klein Model

In this section, we shall prove Theorem 5, the rigidity of line-to-line maps in a local domain of R"
by hyperbolic isometry on Klein Model defined by projection 7 : S’ + D" as in Equations (1)—(3).

Lemma 2. Suppose that F : S". +— S™ is a reflection. Then, f = to Fot~1: D" — D" is a refection-like
map or a reflection.

Proof. Suppose that F : S +— S is a reflection relative to (n — 1)—hyperbolic plane S C S'.
Then F°? = id and F(P) = P for any P € S. It follows that 7(S) is an (n — 1) —dimensional plane in D"
and f = to Fot ! : D" s D" is a line-onto-line bijection, satisfying f°> = id and f(X) = X for any
X € 7(S). Then, f is the restriction of a refection-like map or a reflection by Theorem 4. Specifically,
f is a reflection if the origin point O € 7(S); otherwise, f is a reflection-like map. O

For any two distinct points P,Q € S', one can always get a unique reflection F : S| +— §',
satisfying that F(P) = Q. We can obtain the following Corollary.

Corollary 3. For any point X € D"\{O}, there is a reflection-like map 1 satisfying that n(D") = D"
and n(O) = X. Moveover, denote Axis of n by A", then ATND" # Q.

Proof of Theorem 5. If f(O) = O, then f : D" — D" is the restriction to D" of an orthogonal
transformation on R”.

If f(O) # O, then there exists a reflection-like map 7 such that (D") = D" and 5(0) = f~1(O)
by Corollary 3, which follows ¢ = fon : D" — D" is a hyperbolic isometry satisfying ¢(O) = O.
Thus, g : D" — D" is the restriction to D" of an orthogonal transformation on R”. It implies that
f=gon

Above all, any hyperbolic isometry in Klein Model is either an orthogonal transformation,
or a composition of an orthogonal transformation and a reflection-like map. [

From Theorem 5, one can deduce that any line-to-line bijection on D" can be extended line-to-line
to R" (or except a superplane).
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