

Article Reflection-Like Maps in High-Dimensional Euclidean Space

Zhiyong Huang¹ and Baokui Li^{2,3,*}

- ¹ School of Mathematics, Renmin University of China, Beijing 100872, China; huangzhiy@ruc.edu.cn
- ² School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
- ³ Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China
- * Correspondence: henan_lbk@bit.edu.cn

Received: 23 April 2020; Accepted: 25 May 2020; Published: 28 May 2020

Abstract: In this paper, we introduce reflection-like maps in *n*-dimensional Euclidean spaces, which are affinely conjugated to θ : $(x_1, x_2, \ldots, x_n) \rightarrow \left(\frac{1}{x_1}, \frac{x_2}{x_1}, \ldots, \frac{x_n}{x_1}\right)$. We shall prove that reflection-like maps are line-to-line, cross ratios preserving on lines and quadrics preserving. The goal of this article was to consider the rigidity of line-to-line maps on the local domain of \mathbb{R}^n by using reflection-like maps. We mainly prove that a line-to-line map η on any convex domain satisfying $\eta^{\circ 2} = id$ and fixing any points in a super-plane is a reflection or a reflection-like map. By considering the hyperbolic isometry in the Klein Model, we also prove that any line-to-line bijection $f : \mathbb{D}^n \mapsto \mathbb{D}^n$ is either an orthogonal transformation, or a composition of an orthogonal transformation and a reflection-like map, from which we can find that reflection-like maps are important elements and instruments to consider the rigidity of line-to-line maps.

Keywords: line-to-line maps; reflection-like maps; affine transformations

MSC: 51F15; 30C35

1. Introduction

The research of rigidity of line-to-line maps has a long history (see Reference [1–5], etc.) from different perspectives. We say that a map $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ is line-to-line, if f(l) is contained in some line for any line l in \mathbb{R}^n . Similarly, we say that a circle in Möbious space $\hat{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$ (or a geodesic in hyperbolic space $\mathbb{H}^n = \{(x_1, \dots, x_{n-1}, x_n) \in \mathbb{R}^n | x_n > 0\}$) is a line. For example, in Reference [4], J. Jeffers proves that a circle-to-circle bijection $f : \hat{\mathbb{R}}^n \mapsto \hat{\mathbb{R}}^n$ is a Möbious transformation, a geodesic-to-geodesic bijection $f : \mathbb{H}^n \mapsto \mathbb{H}^n$ is a hyperbolic isometry and a line-to-line bijection $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ is an affine transformation. Various geometries are considered in mathematical researches of different transformations, such as complex curves, were studied using Laguerre planes and Grünwald planes in Reference [6].

It is well known that any Möbious transformation is a composition of finite inversions in *n*-dimensional spherical space $\hat{\mathbb{R}}^n$ (see Reference [7] for details). We can say that inversions are basic elements of Möbious transformations. Let

$$\mathbb{H}^{n+1} = \{(x_1, \dots, x_n, x_{n+1}) \in \mathbb{R}^{n+1} | x_{n+1} > 0\}$$

be (n + 1)-dimensional hyperbolic space with hyperbolic metric $\rho_H = \frac{1}{x_{n+1}}$. A reflection on \mathbb{H}^{n+1} is an isometry which fixes an *n*-hyperplane in \mathbb{H}^{n+1} and any hyperbolic isometry is a composition of finite reflections in \mathbb{H}^{n+1} . We can say that reflections are basic elements of hyperbolic isometries. Similarly,

$$\mathbb{S}^{n}_{+} = \{ (x_{1}, \dots, x_{n}, x_{n+1}) \in \mathbb{R}^{n+1} | x_{1}^{2} + \dots + x_{n}^{2} + x_{n+1}^{2} = 1, x_{n+1} > 0 \}$$
(1)

can be seen as an *n*-dimensional hyperbolic subspace of \mathbb{H}^{n+1} . Let

$$\mathbb{D}^{n} = \{ (x_{1}, x_{2}, \dots, x_{n}) \in \mathbb{R}^{n} | x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} < 1 \}$$
(2)

be the Klein Model of hyperbolic space defined by the natural projection

$$\tau: \mathbb{S}^n_+ \mapsto \mathbb{D}^n (x_1, \dots, x_n, x_{n+1}) \to (x_1, \dots, x_n).$$
(3)

Obviously, a map $F : \mathbb{S}^n_+ \mapsto \mathbb{S}^n_+$ is a hyperbolic isometry, if and only if the transformation $f = \tau \circ F \circ \tau^{-1} : \mathbb{D}^n \mapsto D^n$ is a hyperbolic isometry in Klein Model \mathbb{D}^n in the following commutative diagram

$$\begin{array}{ccc} \mathbb{S}^n_+ \xrightarrow{F} \mathbb{S}^n_+ & . & (4) \\ \tau & & & & \downarrow \tau \\ \mathbb{D}^n \xrightarrow{f} \mathbb{D}^n \end{array}$$

A geodesic in Klein Model \mathbb{D}^n is a segment which is the projection of a geodesic in \mathbb{S}^n_+ under τ , since any geodesic in \mathbb{S}^n_+ is an arc perpendicular to $\partial \mathbb{S}^n_+ \subset \partial \mathbb{H}^{n+1}$.

For any subset $\Omega \subset \mathbb{R}^n$, we call L a line in Ω , if there exists a line l in \mathbb{R}^n , such that $L = l \cap \Omega$. We say that two lines L_1, L_2 in Ω are parallel, if l_1, l_2 are parallel. We say that three lines L_1, L_2, L_3 in Ω are concurrent, if l_1, l_2, l_3 have a common point in \mathbb{R}^n . We say that a map $f : \Omega \mapsto \mathbb{R}^n$ is *line-to-line*, if the image points of any collinear points are collinear and $f : \Omega \mapsto \Omega'$ is *line-onto-line*, if f(L) is a line in $\Omega' \subset \mathbb{R}^n$ for any line L in Ω .

One can find that f is a line-to-line bijection in \mathbb{D}^n because the isometry F is a geodesic-to-geodesic bijection in \mathbb{S}^n_+ in diagram (4). Especially, if the isometry $F : \mathbb{S}^n_+ \mapsto \mathbb{S}^n_+$ is a reflection, then the line-to-line map $f : \mathbb{D}^n \mapsto \mathbb{D}^n$ satisfies $f^{\circ 2} = id$ and its fixed-points set is an (n - 1)-dimensional superplane in \mathbb{D}^n . Obviously, f may not be an affine transformation. This is the origin of reflection-like maps considered in this paper. We shall show that reflection-like maps are basic elements and instruments to consider the rigidity of line-to-line maps.

In Reference [8], B. Li et al., introduce g-reflection maps in \mathbb{R}^2 , which are affinely conjugated to the map

$$(x,y) \to \left(-\frac{x}{1+x}, \frac{y}{1+x}\right) \tag{5}$$

for any point in $\{(x, y) \in \mathbb{R}^2 | x \neq -1\}$ and give the following result.

Theorem 1 ([8]). Suppose that $\mathcal{D} \subset \mathbb{R}^2$ is a convex domain and a map $f : \mathcal{D} \mapsto \mathcal{D}$ is line-to-line and satisfies $f^{\circ 2} = id$. If f is not the restriction to \mathcal{D} of an affine transformation of \mathbb{R}^2 , then f is a restriction of g-reflection map to \mathcal{D} .

In Reference [9], B. Li et al., use *g*-reflection maps on the rigidity of line-to-line maps in the upper plane $\mathbb{H} \subset \mathbb{R}^2$ and prove that

Theorem 2 ([9]). Suppose that $f : \mathbb{H} \to \mathbb{H}$ is a line-to-line surjection. Then, f is either an affine transformation, or a composition of an affine transformation and a g-reflection map.

In Reference [10], B. Li et al., prove that any g-refection map preserves the cross ratios

$$[z_1, z_2, z_3, z_4] = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)}$$

of any four collinear points $z_1, z_2, z_3, z_4 \in \mathbb{C}$ and the following result.

Theorem 3 ([10], Theorem 3.6). Suppose that $\mathcal{D} \subset \mathbb{R}^2$ is a domain and a line-to-line map $f : \mathcal{D} \mapsto \mathbb{R}^2$ is injective and non-degenerate. Then, f is either an affine transformation, or a composition of a g-reflection map and an affine transformation.

Here, a line-to-line map $f : \mathcal{D} \mapsto \mathbb{R}^2$ is *degenerate* (see Reference [11]), if the image space $f(\mathcal{D})$ is contained in some line (otherwise, it is *non-degenerate*).

The goal of this article is to consider the rigidity of line-to-line maps on local domains in \mathbb{R}^n . We shall introduce the case in *n*-dimensional space \mathbb{R}^n of *g*-reflection maps, named reflection-like maps in this paper, and prove the following main results.

Theorem 4. Suppose that Ω is any convex domain in \mathbb{R}^n and \mathcal{A}^η is a super-plane such that $\Omega \cap \mathcal{A}^\eta \neq \emptyset$. A line-to-line map $\eta : \Omega \mapsto \Omega$ satisfies $\eta^{\circ 2} = id$ and $\eta(P) = P$ for any $P \in \Omega \cap \mathcal{A}^\eta$. Then, η is a reflection or a reflection-like map.

Theorem 5. Suppose that $\mathbb{D}^n \subset \mathbb{R}^n$ is a Klein Model of n-dimensional hyperbolic space and a map $f : \mathbb{D}^n \mapsto \mathbb{D}^n$ is a hyperbolic isometry. Then, f is either an orthogonal transformation, or a composition of an orthogonal transformation and a reflection-like map.

In the next sections, we shall prove that reflection-like maps are line-to-line and linearly conjugated to each other. Moreover, the image of three parallel lines under reflection-like maps are parallel or concurrent. The absolute cross ratios may not be preserved by reflection-like maps. But, we shall prove that refection-like maps preserve the absolute cross ratios of any four distinct collinear points, something like projective maps preserve the cross ratios of four points in a projective line in projective geometries. We shall also prove that refection-like maps transfer spheres to quadrics, from which we can obtain that they map quadrics to quadrics. Especially, if the image of a sphere is a sphere, then it is invariant.

2. Reflection-Like Maps in High Dimension Space \mathbb{R}^n

In this section, we shall give the definition of reflection-like maps firstly and prove invariant properties under affine conjugation. We mainly prove Theorem 4, the rigidity of reflection-like maps in local domain of n-dimensional space.

Denote points in \mathbb{R}^n by $X(x_1, x_2, \dots, x_n)$, $Y(y_1, y_2, \dots, y_n)$ and the line passing through *X*, *Y* by L_{XY} , the Euclidean distance between *X*, *Y* by |X - Y|. Denote the vector from *X* to *Y* by \overrightarrow{XY} .

Let \mathcal{A}, \mathcal{B} be two (n-1)-dimensional planes (superplanes) in \mathbb{R}^n and \mathcal{P} be a point

$$\mathcal{A} = \{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | x_1 = 1 \},
\mathcal{B} = \{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | x_1 = 0 \},
\mathcal{P} = (-1, 0, \dots, 0).$$
(6)

Obviously, \mathcal{P} and \mathcal{A} have equal Euclidean distances to \mathcal{B} . The map

$$\theta: \mathbb{R}^n \setminus \mathcal{B} \mapsto \mathbb{R}^n \setminus \mathcal{B}$$

$$(x_1, x_2, \dots, x_n) \to \left(\frac{1}{x_1}, \frac{x_2}{x_1}, \dots, \frac{x_n}{x_1}\right)$$
(7)

satisfies $\theta^{\circ 2} = id$. Moreover, $\{\mathcal{P}\} \cup \mathcal{A}$ is the fixed-point set of θ and the two components of \mathbb{R}^n divided by \mathcal{B} are invariant under θ .

Definition 1. We say that a map η is a reflection-like map in \mathbb{R}^n , if it is affinely conjugated to θ . That is, one can find an affine transformation $g: \mathbb{R}^n \to \mathbb{R}^n$, such that $\eta = g \circ \theta \circ g^{-1} : \mathbb{R}^n \setminus g(\mathcal{B}) \to \mathbb{R}^n \setminus g(\mathcal{B})$. *Obviously,* θ *defined in* (7) *is a refection-like map in* \mathbb{R}^{n} *.*

Moreover, we say that A *defined in* (6) *is Axis,* B *is Boundary, and* P *is Base point of the refection-like map* θ *.*

Generally, given any affine transformation g, the reflection-like map $\eta = g \circ \theta \circ g^{-1} : \mathbb{R}^n \setminus g(\mathcal{B}) \mapsto g(\mathcal{B})$ $\mathbb{R}^n \setminus g(\mathcal{B})$ has Boundary $\mathcal{B}^\eta = g(\mathcal{B})$, Axis $\mathcal{A}^\eta = g(\mathcal{A})$, and Base point $\mathcal{P}^\eta = g(\mathcal{P})$. Obviously, $\eta^{\circ 2} = id$, $\{\mathcal{P}^{\eta}\} \cup \mathcal{A}^{\eta}$ is the fixed-point set of η , \mathcal{B}^{η} is parallel to \mathcal{A}^{η} , and \mathcal{P}^{η} and \mathcal{A}^{η} have equal Euclidean distances to \mathcal{B}^{η} . Moreover, the two components of \mathbb{R}^{n} divided by \mathcal{B}^{η} are invariant under η .

Definition 2. We call *L* a line in $\mathbb{R}^n \setminus \mathcal{B}$, if there exists a line *l* in \mathbb{R}^n , such that $L = l \cap \mathbb{R}^n \setminus \mathcal{B}$. If $l \cap \mathcal{B} = \{\tilde{P}\}$, then we say that L has boundary point \tilde{P} .

Proposition 1. *The reflection-like map* $\theta : \mathbb{R}^n \setminus \mathcal{B} \mapsto \mathbb{R}^n \setminus \mathcal{B}$ *is a line-onto-line bijection.*

Proof. Let us prove that f is line-to-line in $\mathbb{R}^n \setminus \mathcal{B}$ firstly. That is, for any three collinear points $X(x_1, x_2, \dots, x_n)$, $Y(y_1, y_2, \dots, y_n)$, $Z(z_1, z_2, \dots, z_n)$, their image points $X'(x'_1, x'_2, \dots, x'_n)$, $Y'(y'_1, y'_2, \cdots, y'_n), Z'(z'_1, z'_2, \cdots, z'_n)$ are collinear. There exists some $\lambda \in \mathbb{R} \setminus \{0, 1\}$, such that $Z = \lambda X + (1 - \lambda)Y$. That is, $z_i = \lambda x_i + (1 - \lambda)y_i$, for any $i = 1, 2, \dots, n$. We have $x'_1 = \frac{1}{x_1}$. $y'_1 = \frac{1}{y_1}$, and

$$z'_{1} = \frac{1}{z_{1}} = \frac{1}{\lambda x_{1} + (1 - \lambda)y_{1}}$$
$$= \frac{x'_{1}y'_{1}}{\lambda y'_{1} + (1 - \lambda)x'_{1}}$$
$$= \frac{\lambda y'_{1}}{\lambda y'_{1} + (1 - \lambda)x'_{1}}x'_{1} + \frac{(1 - \lambda)x'_{1}}{\lambda y'_{1} + (1 - \lambda)x'_{1}}y'_{1}.$$

Let $\lambda' = \frac{\lambda y'_1}{\lambda y'_1 + (1 - \lambda)x'_1}$, and then $z'_1 = \lambda' x'_1 + (1 - \lambda')y'_1$. Meanwhile, $x'_i = \frac{x_i}{x_1}$, $y'_i = \frac{y_i}{y_1}$ for any $i = 2, 3, \dots, n$ and

$$z'_{i} = \frac{z_{i}}{z_{1}} = \frac{\lambda x_{i} + (1 - \lambda)y_{i}}{\lambda x_{1} + (1 - \lambda)y_{1}}$$
$$= \frac{\lambda y'_{1}}{\lambda y'_{1} + (1 - \lambda)x'_{1}}x'_{i} + \frac{(1 - \lambda)x'_{1}}{\lambda y'_{1} + (1 - \lambda)x'_{1}}y'_{i}$$
$$= \lambda' x'_{i} + (1 - \lambda')y'_{i}.$$

Thus, $Z' = \lambda' X' + (1 - \lambda') Y'$, which follows that X', Y', Z' are collinear. Hence, θ is line-to-line. Moreover, one can find that θ is bijective and $\theta(L)$ is a line in $\mathbb{R}^n \setminus \mathcal{B}$ for any line *L* in $\mathbb{R}^n \setminus \mathcal{B}$, since $\theta^{\circ 2} = id$. That is, θ is a line-onto-line bijection and the proof is completed. \Box

Proposition 2. For any line L in $\mathbb{R}^n \setminus \mathcal{B}$, the reflection-like map $\theta : \mathbb{R}^n \setminus \mathcal{B} \mapsto \mathbb{R}^n \setminus \mathcal{B}$ satisfies the following.

- If $L \not\subset A$, then $\theta(L) = L$, if and only if Base point $\mathcal{P} \in L$; (i)
- (ii) If $\theta(L) \neq L$, then $\theta(L)$ is parallel to L, if and only if L is parallel to Axis A.

Proof. (i). We only need to prove that $\mathcal{P} \in L_{XX'}$ for any point $X \in \mathbb{R}^n \setminus \mathcal{B}$ and $X' = \theta(X) \neq X$,

since θ is line-to-line and satisfies $\theta^{\circ 2} = id$. Let $X(x_1, x_2, \dots, x_n)$, $X'\left(\frac{1}{x_1}, \frac{x_2}{x_1}, \dots, \frac{x_n}{x_1}\right)$ and $\lambda = \frac{1}{1-x_1}$, then one can find that $\mathcal{P} = \lambda X + (1-\lambda)X'$, which means $\mathcal{P} \in L_{XX'}$.

(ii). For two distinct points $X(x_1, x_2, \dots, x_n)$, $Y(y_1, y_2, \dots, y_n)$ in *L*, denote the image points under θ by $X'\left(\frac{1}{x_1}, \frac{x_2}{x_1}, \dots, \frac{x_n}{x_1}\right)$, $Y'\left(\frac{1}{y_1}, \frac{y_2}{y_1}, \dots, \frac{y_n}{y_1}\right)$. Obviously, *L* is parallel to Axis *A*, if and only if $x_1 = y_1 (\neq 0)$. Then, $\theta(L)$ is parallel to *L* by

$$\overrightarrow{X'Y'} = \left(0, \frac{y_2 - x_2}{y_1}, \cdots, \frac{y_n - x_n}{y_1}\right) = \frac{1}{y_1} \overrightarrow{XY}.$$

On the other side, suppose that $\theta(L)$ is parallel to L and $x_1 \neq y_1$. We can obtain that $y_i = \frac{1+y_1}{1+x_1}x_i$, for any $i = 2, \dots, n$ by $\overrightarrow{X'Y'} / / \overrightarrow{XY}$. Let $\lambda = \frac{1+y_1}{y_1 - x_1}$, then $\mathcal{P} = \lambda X + (1-\lambda)Y$, which means that $\mathcal{P} \in L$, and $\theta(L) = L$ by the result of (i). This is a contradiction, and the proof is completed. \Box

Corollary 1. The image of a parallelogram under a reflection-like map is a parallelogram, if and only if the parallelogram is parallel to Axis of the reflection-like map. Moreover, the image of a square is a square, if the square is parallel to Axis.

Proposition 3. For any two lines L_1, L_2 in $\mathbb{R}^n \setminus \mathcal{B}$, not parallel to \mathcal{A} , the reflection-like map $\theta : \mathbb{R}^n \setminus \mathcal{B} \mapsto \mathbb{R}^n \setminus \mathcal{B}$ satisfies the followings.

- (i) $\theta(L_1)$ and $\theta(L_2)$ share a common boundary point if L_1 is parallel to L_2 ;
- (ii) $\theta(L_1)$ is parallel to $\theta(L_2)$ if L_1 and L_2 share a common boundary point.

Proof. We only need to prove that L_1 is a line passing through \mathcal{P} . From Proposition 2, we have $\theta(L_1) = L_1$. Denote the boundary point of L_1 by $\tilde{X}(0, x_2, \dots, x_n)$, then the vector $\overrightarrow{\mathcal{PX}} = (1, x_2, \dots, x_n) \subset L_1$.

(i) Suppose that L_2 is any line parallel to L_1 . For any point $Y(y_1, y_2, \dots, y_n)$ in L_2 , one can obtain $L_2 = \{(y_1 + t, y_2 + tx_2, \dots, y_n + tx_n) | t \in \mathbb{R} \setminus \{-y_1\}\}$ and

$$\theta(L_2) = \left\{ \left(\frac{1}{y_1+t}, \frac{y_2+tx_2}{y_1+t}, \cdots, \frac{y_n+tx_n}{y_1+t}\right) | t \in \mathbb{R} \setminus \{-y_1\} \right\}.$$

It follows that \tilde{X} is the limit point of $\theta(L_2)$ as t tends to ∞ . That is, $\theta(L_2)$ and $\theta(L_1)$ share common boundary point if L_2 is parallel to L_1 .

(ii) Suppose that L_2 is any line sharing common boundary point $\tilde{X}(0, x_2, \dots, x_n)$ with L_1 . For any point $Y(y_1, y_2, \dots, y_n) \in L_2$, we can find that the vector

$$\overrightarrow{\widetilde{XY}} = (y_1, y_2 - x_2, \cdots, y_n - x_n) \subset L_2.$$

So, we have

$$L_2 = \{((1+t)y_1, y_2 + t(y_2 - x_2), \cdots, y_n + t(y_n - x_n)) | t \in \mathbb{R} \setminus \{-1\}\},\$$

and

$$\theta(L_2) = \left\{ \left(\frac{1}{(1+t)y_1}, \frac{y_2 + t(y_2 - x_2)}{(1+t)y_1}, \cdots, \frac{y_n + t(y_n - x_n)}{(1+t)y_1} \right) | t \in \mathbb{R} \setminus \{-1\} \right\}$$

As *t* tends to ∞ , we obtain its boundary point $\tilde{Y}\left(0, \frac{y_2 - x_2}{y_1}, \cdots, \frac{y_n - x_n}{y_1}\right)$.

Denote $\theta(Y) = Y'\left(\frac{1}{y_1}, \frac{y_2}{y_1}, \cdots, \frac{y_n}{y_1}\right) \in \theta(L_2)$, then the vector

$$\overrightarrow{\widetilde{Y}Y'} = \left(\frac{1}{y_1}, \frac{x_2}{y_1}, \cdots, \frac{x_n}{y_1}\right) \subset \theta(L_2),$$

Moreover, we can have the following.

Lemma 1. Suppose that a reflection-like map η has the same Base point and Axis as θ . Then, $\eta = \theta$.

Proof. We need only prove that the reflection-like map is uniquely determined by Base point \mathcal{P} and Axis \mathcal{A} . One can know that Boundary \mathcal{B} is parallel to \mathcal{A} and lies between \mathcal{P} and \mathcal{A} with equal distances. For any point $X \in \mathbb{R}^n \setminus \mathcal{B}$, let L_1 be the line in $\mathbb{R}^n \setminus \mathcal{B}$ passing through X and \mathcal{P} , then $\eta(L_1) = L_1$ by Proposition 2. Choose any point $Y \in \mathcal{A} \setminus L_1$ and let L_2 be the line in $\mathbb{R}^n \setminus \mathcal{B}$ passing through X and Y, then it is easy to find $Y \in \eta(L_2)$. Let L_3 be the line passing through \mathcal{P} and parallel to L_2 , then $\eta(L_3) = L_3$. So $\eta(L_2), \eta(L_3)$ share common boundary point, denoted by \tilde{Y} by Proposition 3. It follows that $\eta(L_2)$ is the line passing through Y and having boundary point \tilde{Y} . Then, $\eta(X) = L_1 \cap \eta(L_2)$ is determined uniquely. That is, the reflection-like map η is determined by \mathcal{A} and \mathcal{P} . Therefore, we have $\eta = \theta$. \Box

A transformation $g : \mathbb{R}^n \to \mathbb{R}^n$ is linear, if it is a composition of translations, scaling and orthogonal transformations on \mathbb{R}^n . We say that a reflection-like map η is linearly conjugated to θ , if one can find a linear map g, such that $\eta = g \circ \theta \circ g^{-1}$.

For any super-plane Π and a point $P \notin \Pi$, one can find a linear transformation g such that $g(\mathcal{A}) = \Pi$ and $g(\mathcal{P}) = P$. Then, $\eta = g \circ \theta \circ g^{-1}$ is a reflection-like map with Base point P and Axis Π . So, we can obtain the following by Lemma 1.

Theorem 6. Any reflection-like map is linearly conjugated to θ .

By conjugating affine transformation $g: (x_1, x_2, \dots, x_n) \rightarrow (x_1 - 1, x_2, \dots, x_n)$,

$$\theta' = g \circ \theta \circ g^{-1} : (x_1, x_2, \dots, x_n) \to \left(-\frac{x_1}{1+x_1}, \frac{x_2}{1+x_1}, \cdots, \frac{x_n}{1+x_1} \right)$$

is the general form of the *g*-reflection map defined in (5) on n-dimensional space.

Proof of Theorem 4. Let \mathcal{U} and \mathcal{U}' be the two components of Ω divided by \mathcal{A}^{η} . We claim that there exist $P \in \mathcal{U}$ and $P' \in \mathcal{U}'$ such that $\eta(P) = P'$. Otherwise, suppose that we have $X, X' \in \mathcal{U}$, such that $\eta(X) = X'$ (as in the Figure 1a). For any $P' \in \mathcal{U}' \setminus L_{XX'}$, denote $Y_1 \in L_{XP'} \cap \mathcal{A}^{\eta}$, $Y_2 \in L_{X'P'} \cap \mathcal{A}^{\eta}$ and $P \in L_{XY_2} \cap L_{XY_1}$, then $P \in \mathcal{U}$ and $P' = \eta(P)$.

Figure 1. (a) Existence of *P*, *P*' in different sides. (b) Uniqueness determined by *P*, *P*'.

We shall prove that the line-to-line map is uniquely determined by P, P' and $\mathcal{A}^{\eta} \cap \Omega$. Let \mathcal{V} denote the smallest convex domain containing P, P' and $\Omega \cap \mathcal{A}^{\eta}$. For any point $X \in \mathcal{V} \setminus L_{PP'}$

(as in the Figure 1b), let $Y_1 \in L_{XP} \cap \mathcal{A}^{\eta}$, $Y_2 \in L_{XP'} \cap \mathcal{A}^{\eta}$, we can find that $X' = \eta(X) \in L_{PY_2} \cap L_{P'Y_1}$ is unique. Moreover, the line-to-line map on Ω will be uniquely determined by the mapping on its sub-domain $\mathcal{V} \setminus L_{PP'}$.

Next, we shall prove the existence of η . By conjugating some suitable affine transformation, we can suppose that $\mathcal{A}^{\eta} = \{(x_1, x_2, \dots, x_n) | x_1 = 0\}, P = (-1, 0, \dots, 0) \text{ and } P' = (k, 0, \dots, 0) (k > 0).$ If k = 1, then η is a reflection about \mathcal{A}^{η}

$$\eta:(x_1,x_2,\cdots,x_n)\to(-x_1,x_2,\cdots,x_n).$$

Otherwise, let $\mathcal{P}^{\eta} = (-\frac{2k}{k-1}, 0, \cdots, 0)$ and $K = \frac{k-1}{k}$, then

$$\eta:(x_1,x_2,\cdots,x_n)\to \left(-\frac{x_1}{1+Kx_1},\frac{x_2}{1+Kx_1},\cdots,\frac{x_n}{1+Kx_1}\right)$$

is the reflection-like map with Axis \mathcal{A}^{η} and Base point \mathcal{P}^{η} such that $\eta(P) = P'$. \Box

Corollary 2. Suppose that θ is the reflection-like map defined in (7). Given any positive integer 1 < r < n, let Π be any r-dimensional plane in $\mathbb{R}^n \setminus \mathcal{B}$ passing through \mathcal{P} , then $\theta(\Pi) = \Pi$. Moreover, if $\Pi \cap \mathcal{A} \neq \emptyset$, then $\theta|_{\Pi} : \Pi \mapsto \Pi$ is a reflection-like map with Axis $\Pi \cap \mathcal{A}$ and Base point \mathcal{P} .

Remark 1. We give an example (n = 3) to show that Theorem 1 A does not hold in the case of reflection-like maps in \mathbb{R}^n (n > 2). That is, a line-to-line map $f : \Omega \mapsto \Omega$ on a convex domain $\Omega \subset \mathbb{R}^n$ satisfying $f^{\circ 2} = id$ may not be an affine transformation or a reflection-like map.

Example 1. Let $\mathcal{B} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 = 0\}$ and $f : \mathbb{R}^3 \setminus \mathcal{B} \mapsto \mathbb{R}^3 \setminus \mathcal{B}$ be defined as

$$f:(x_1,x_2,x_3)\to \Big(\frac{1}{x_1},\frac{x_2}{x_1},-\frac{x_3}{x_1}\Big).$$

Obviously, $f^{\circ 2} = id$ and f is line-to-line, since f is a composition of an orthogonal transformation and a reflection-like map, while f cannot be a reflection-like map since its fixed-point set is $L_1 \cup L_2$, where $L_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 = 1, x_3 = 0\}$ and $L_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 = -1, x_2 = 0\}$.

3. The Absolute Cross ratios in High Dimension Space \mathbb{R}^n

For any four distinct points $X(x_1, x_2, \dots, x_n)$, $Y(y_1, y_2, \dots, y_n)$, $Z(z_1, z_2, \dots, z_n)$, $W(w_1, w_2, \dots, w_n)$ in \mathbb{R}^n , the absolute cross ratio is defined as

$$|X, Y, Z, W| = \frac{|X - Z| \cdot |Y - W|}{|X - W| \cdot |Y - Z|}.$$

It is very important in high dimensional space. Especially, if $Z = \infty$, we can define it by the limit as Z tends to ∞

$$|X, Y, \infty, W| = \frac{|Y - W|}{|X - W|}.$$

It is well known that, for any subdomain $\Omega \subset \mathbb{R}^n$, a map $f : \Omega \mapsto \mathbb{R}^n$ is a Möbious transformation, if and only if f preserves the absolute cross ratios. The cross ratio is defined on four collinear points in projective geometry, and a projective transformation preserves cross ratios (see Reference [2,12] for details). While a reflection-like map considers one more dimension than a projectivity, it does not preserve absolute cross ratios.

For example (as in Figure 2), let X(1,0), Y(1,1), Z(2,1) and $W(2,0) \in \mathbb{R}^2$, then $\theta(X) = X'(1,0)$, $\theta(Y) = Y'(1,1)$, $\theta(Z) = Z'\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\theta(W) = W'\left(\frac{1}{2}, 0\right)$. We have that θ maps the square XYZW

to the quadrilateral X'Y'Z'W' since θ is line-to-line. It is easy to calculate that |X, Y, Z, W| = 2 and $|X', Y', Z', W'| = \sqrt{5}$.

Figure 2. Reflection-like maps may not preserve absolute cross ratios.

In this section, we shall prove that reflection-like maps preserve the absolute cross ratios of any four collinear points. In fact, for any collinear points X, Y, Z, W, if $x_i \neq y_i$ for some $i = 1, \dots, n$, then we can have

$$|X, Y, Z, W| = \frac{|x_i - z_i| \cdot |y_i - w_i|}{|x_i - w_i| \cdot |y_i - z_i|}.$$

Theorem 7. Suppose that η is a reflection-like map with boundary \mathcal{B}^{η} . Then, for any four distinct collinear points X, Y, Z, W in $\mathbb{R}^n \setminus \mathcal{B}^{\eta}$, the absolute cross ratio |X, Y, Z, W| is invariant under η . That is,

$$|X, Y, Z, W| = |\eta(X), \eta(Y), \eta(Z), \eta(W)|.$$

Proof. By conjugating some suitable linear transformation, we can suppose that the reflection-like map is θ defined in (7). Then, we have $\theta(X) = X'\left(\frac{1}{x_1}, \frac{x_2}{x_1}, \cdots, \frac{x_n}{x_1}\right), \theta(Y) = Y'\left(\frac{1}{y_1}, \frac{y_2}{y_1}, \cdots, \frac{y_n}{y_1}\right), \theta(Z) = Z'\left(\frac{1}{z_1}, \frac{z_2}{z_1}, \cdots, \frac{z_n}{z_1}\right)$ and $\theta(W) = W'\left(\frac{1}{w_1}, \frac{w_2}{w_1}, \cdots, \frac{w_n}{w_1}\right)$ are collinear. If $x_1 \neq y_1$, we have $\frac{1}{x_1} \neq \frac{1}{y_1}$ and

$$|X',Y',Z',W'| = \frac{\left|\frac{1}{x_1} - \frac{1}{z_1}\right| \cdot \left|\frac{1}{y_1} - \frac{1}{w_1}\right|}{\left|\frac{1}{x_1} - \frac{1}{w_1}\right| \cdot \left|\frac{1}{y_1} - \frac{1}{z_1}\right|}$$
$$= \frac{|x_1 - z_1| \cdot |y_1 - w_1|}{|x_1 - w_1| \cdot |y_1 - z_1|}$$
$$= |X,Y,Z,W|.$$

If $x_1 = y_1$, then there exists some *i*, such that $x_i \neq y_i$. Thus, $\frac{x_i}{x_1} \neq \frac{y_i}{y_1}$ and

$$|X', Y', Z', W'| = \frac{\left|\frac{x_i}{x_1} - \frac{z_i}{z_1}\right| \cdot \left|\frac{y_i}{y_1} - \frac{w_i}{w_1}\right|}{\left|\frac{x_i}{x_1} - \frac{w_i}{w_1}\right| \cdot \left|\frac{y_i}{y_1} - \frac{z_i}{z_1}\right|}$$
$$= \frac{|x_i - z_i| \cdot |y_i - w_i|}{|x_i - w_i| \cdot |y_i - z_i|}$$
$$= |X, Y, Z, W|.$$

We complete the proof. \Box

4. Reflection-Like Maps and Quadrics

In this section, we shall prove that θ maps spheres to quadrics, from which we can obtain that reflection-like maps transfer quadrics to quadrics. Especially, if the image of a sphere is a sphere, then it is invariant.

Definition 3. *Given any reflection-like map, we say that the line passing its Base point and perpendicular to its Axis is its Equator.*

For example, the Equator of θ is

 $\mathcal{L} = \{(x_1, 0, \dots, 0) | x_1 \in \mathbb{R}, x_1 \neq 0\}.$

One can find that, given any affine transformation, the Equator of $\eta = g \cdot \theta \cdot g^{-1}$ may not be $g(\mathcal{L})$, while, if g is linear, the Equator of η is $g(\mathcal{L})$.

Theorem 8. *The reflection-like map* θ *maps any sphere to a quadric.*

If both \mathbb{S} and $\theta(\mathbb{S})$ are (n-1)-dimensional spheres, then $\theta(\mathbb{S}) = \mathbb{S}$.

Moreover, if $\theta(\mathbb{S}) = \mathbb{S}$ *, then the center of* \mathbb{S} *lies in the equator* \mathcal{L} *of* θ *.*

For any $P \in \mathcal{L}$, such that $P' = \theta(P) \neq P$, let \mathbb{S} be the (n-1)-dimensional sphere with diameter PP', then $\theta(\mathbb{S}) = \mathbb{S}$.

Proof. Suppose that S is a sphere with radius r and center $C(c_1, c_2, ..., c_n)$. Then, any point $X(x_1, x_2, ..., x_n) \in S$ satisfies

$$\mathbb{S}: (x_1 - c_1)^2 + (x_2 - c_2)^2 + \dots + (x_n - c_n)^2 = r^2.$$

Denote the image point $\theta(X) = X'(x'_1, x'_2, \dots, x'_n) \in \theta(\mathbb{S})$, then $\theta(X') = X$ since $\theta^{\circ 2} = id$. It follows $\theta(X') = \left(\frac{1}{x'_1}, \frac{x'_2}{x'_1}, \dots, \frac{x'_n}{x'_1}\right) \in \mathbb{S}$, that is

$$\theta(\mathbb{S}) = \left\{ (x'_1, x'_2, \cdots, x'_n) \left| \left(\frac{1}{x'_1} - c_1 \right)^2 + \left(\frac{x'_2}{x'_1} - c_2 \right)^2 + \cdots + \left(\frac{x'_n}{x'_1} - c_n \right)^2 = r^2 \right\}.$$

Obviously, it is a quadric

$$\theta(\mathbb{S}): (1-c_1x_1')^2 + (x_2'-c_2x_1')^2 + \dots + (x_n'-c_nx_1')^2 = r^2x_1^2.$$

Then, $\theta(\mathbb{S})$ is a sphere, if and only if $c_2 = c_3 = \cdots = c_n = 0$ and $c_1^2 - r^2 = 1$, since $-2c_i$ is the coefficient of the term $x'_1x'_i$ ($i = 2, \cdots, n$) and $c_1^2 - r^2$ is the coefficient of the term x'_1^2 . It follows that, if $\theta(\mathbb{S})$ is also a sphere, then

$$\theta(\mathbb{S}): (x'_1 - c_1)^2 + x'_2^2 + \dots + x'_n^2 = r^2.$$

Thus, $\theta(\mathbb{S}) = \mathbb{S}$ and the center $C(c_1, 0, \dots, 0) \in \mathcal{L}$ (as in Figure 3).

Figure 3. (a) Invariant sphere crossing Axis. (b) Invariant sphere surrounding Base point.

For any $P \in \mathcal{L}$ satisfying $P' = \theta(P) \neq P$, let \mathbb{S} be the (n-1)-dimensional sphere with diameter PP' (as in Figure 3). Denote $P(p_1, \dots, 0)$, $P'\left(\frac{1}{p_1}, \dots, 0\right)$, $c_1 = \frac{1}{2}\left(p_1 + \frac{1}{p_1}\right)$ and $r = \frac{1}{2}\left|p_1 - \frac{1}{p_1}\right|$, then \mathbb{S} has radius r and center $C(c_1, 0, \dots, 0) \in \mathcal{L}$. One can find that $\theta(\mathbb{S}) = \mathbb{S}$ since $c_1^2 - r^2 = 1$. \Box

Obviously, the invariant sphere S lies in one component of $\mathbb{R}^n \setminus \mathcal{B}$ and the interior Ω of S is invariant under θ by the continuity of reflection-like maps, which shows that $\theta : \Omega \mapsto \Omega$ is a line-to-line bijection. Moveover, if Ω is a Klein Model of hyperbolic space, then $\theta : \Omega \mapsto \Omega$ is an isometry.

5. Reflection-Like Maps and Hyperbolic Isometries in Klein Model

In this section, we shall prove Theorem 5, the rigidity of line-to-line maps in a local domain of \mathbb{R}^n by hyperbolic isometry on Klein Model defined by projection $\tau : \mathbb{S}^n_+ \mapsto \mathbb{D}^n$ as in Equations (1)–(3).

Lemma 2. Suppose that $F : \mathbb{S}^n_+ \mapsto \mathbb{S}^n_+$ is a reflection. Then, $f = \tau \circ F \circ \tau^{-1} : \mathbb{D}^n \mapsto \mathbb{D}^n$ is a reflection-like map or a reflection.

Proof. Suppose that $F : \mathbb{S}_{+}^{n} \to \mathbb{S}_{+}^{n}$ is a reflection relative to (n-1)-hyperbolic plane $S \subset \mathbb{S}_{+}^{n}$. Then $F^{\circ 2} = id$ and F(P) = P for any $P \in S$. It follows that $\tau(S)$ is an (n-1)-dimensional plane in \mathbb{D}^{n} and $f = \tau \circ F \circ \tau^{-1} : \mathbb{D}^{n} \to \mathbb{D}^{n}$ is a line-onto-line bijection, satisfying $f^{\circ 2} = id$ and f(X) = X for any $X \in \tau(S)$. Then, f is the restriction of a reflection-like map or a reflection by Theorem 4. Specifically, f is a reflection if the origin point $O \in \tau(S)$; otherwise, f is a reflection-like map. \Box

For any two distinct points $P, Q \in \mathbb{S}_+^n$, one can always get a unique reflection $F : \mathbb{S}_+^n \mapsto \mathbb{S}_+^n$, satisfying that F(P) = Q. We can obtain the following Corollary.

Corollary 3. For any point $X \in \mathbb{D}^n \setminus \{O\}$, there is a reflection-like map η satisfying that $\eta(\mathbb{D}^n) = \mathbb{D}^n$ and $\eta(O) = X$. Moveover, denote Axis of η by \mathcal{A}^{η} , then $\mathcal{A}^{\eta} \cap \mathbb{D}^n \neq \emptyset$.

Proof of Theorem 5. If f(O) = O, then $f : \mathbb{D}^n \to \mathbb{D}^n$ is the restriction to \mathbb{D}^n of an orthogonal transformation on \mathbb{R}^n .

If $f(O) \neq O$, then there exists a reflection-like map η such that $\eta(\mathbb{D}^n) = \mathbb{D}^n$ and $\eta(O) = f^{-1}(O)$ by Corollary 3, which follows $g = f \circ \eta : \mathbb{D}^n \mapsto \mathbb{D}^n$ is a hyperbolic isometry satisfying g(O) = O. Thus, $g : \mathbb{D}^n \mapsto \mathbb{D}^n$ is the restriction to \mathbb{D}^n of an orthogonal transformation on \mathbb{R}^n . It implies that $f = g \circ \eta$.

Above all, any hyperbolic isometry in Klein Model is either an orthogonal transformation, or a composition of an orthogonal transformation and a reflection-like map. \Box

From Theorem 5, one can deduce that any line-to-line bijection on \mathbb{D}^n can be extended line-to-line to \mathbb{R}^n (or except a superplane).

Author Contributions: Conceptualization, B.L.; Formal analysis, Z.H. and B.L.; Investigation, Z.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Artin, E. Geometric Algebra; Interscience Publishers, Inc.: New York, NY, USA; London, UK, 1957.
- 2. Beardon, A.F.; Minda, D. Sphere-preserving maps in inversive geometry. *Proc. Am. Math. Soc.* 2001, 130, 987–998. [CrossRef]
- 3. Chubarev, A.; Pinelis, I. Fundamental theorem of geometry without the 1-to-1 assumption. *Proc. Am. Math. Soc.* **1999**, *127*, 2735–2744. [CrossRef]
- 4. Jeffers, J. Lost theorems of geometry. Am. Math. Monthly 2000, 107, 800–812. [CrossRef]
- 5. Özgür, N.; Bulut, S. A note on the characteristic properties of Möbius transformations. Rad. Mat. 2004, 12, 129–133.
- Belova, O.; Mikeš, J.; Strambach, K. Complex Curves as Lines of Geometries. *Results Math.* 2017, 71, 145–165. [CrossRef]
- 7. Beardon, A.F. *The Geometry of Discrete Groups*; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1983; Volume 91.
- 8. Li, B.; Wang, X.; Wang, Y. The pseudo-affine transformations in ℝ². *Sci. China Math.* **2010**, *53*, 755–762. [CrossRef]
- 9. Li, B.; Wang, Y. A New Characterization of Line-to-line Maps in the Upper Plane. *Filomat* **2013**, 27, 127–133. [CrossRef]
- Li, B.; Wang, Y. Fundamental theorem of geometry without surjective assumption. *Trans. Am. Math. Soc.* 2016, 368, 6819–6834. [CrossRef]
- 11. Li, B.; Wang, Y. Transformations and non-degenerate maps. Sci. China Math. 2005, 48, 195–205. [CrossRef]
- 12. Onishchik, A.L.; Sulanke, R. *Projective and Cayley-Klein Geometries*; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2006.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).