## Article

# Reflection-Like Maps in High-Dimensional Euclidean Space 

Zhiyong Huang ${ }^{1}$ and Baokui $\mathrm{Li}^{2,3, *}$<br>1 School of Mathematics, Renmin University of China, Beijing 100872, China; huangzhiy@ruc.edu.cn<br>2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China<br>3 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China<br>* Correspondence: henan_lbk@bit.edu.cn

Received: 23 April 2020; Accepted: 25 May 2020; Published: 28 May 2020
Abstract: In this paper, we introduce reflection-like maps in $n$-dimensional Euclidean spaces, which are affinely conjugated to $\theta:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow\left(\frac{1}{x_{1}}, \frac{x_{2}}{x_{1}}, \ldots, \frac{x_{n}}{x_{1}}\right)$. We shall prove that reflection-like maps are line-to-line, cross ratios preserving on lines and quadrics preserving. The goal of this article was to consider the rigidity of line-to-line maps on the local domain of $\mathbb{R}^{n}$ by using reflection-like maps. We mainly prove that a line-to-line map $\eta$ on any convex domain satisfying $\eta^{\circ 2}=i d$ and fixing any points in a super-plane is a reflection or a reflection-like map. By considering the hyperbolic isometry in the Klein Model, we also prove that any line-to-line bijection $f: \mathbb{D}^{n} \mapsto \mathbb{D}^{n}$ is either an orthogonal transformation, or a composition of an orthogonal transformation and a reflection-like map, from which we can find that reflection-like maps are important elements and instruments to consider the rigidity of line-to-line maps.

Keywords: line-to-line maps; reflection-like maps; affine transformations
MSC: 51F15; 30C35

## 1. Introduction

The research of rigidity of line-to-line maps has a long history (see Reference [1-5], etc.) from different perspectives. We say that a map $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is line-to-line, if $f(l)$ is contained in some line for any line $l$ in $\mathbb{R}^{n}$. Similarly, we say that a circle in Möbious space $\hat{\mathbb{R}}^{n}=\mathbb{R}^{n} \cup\{\infty\}$ (or a geodesic in hyperbolic space $\mathbb{H}^{n}=\left\{\left(x_{1}, \cdots, x_{n-1}, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>0\right\}$ ) is a line. For example, in Reference [4], J. Jeffers proves that a circle-to-circle bijection $f: \widehat{\mathbb{R}}^{n} \mapsto \mathbb{\mathbb { R }}^{n}$ is a Möbious transformation, a geodesic-to-geodesic bijection $f: \mathbb{H}^{n} \mapsto \mathbb{H}^{n}$ is a hyperbolic isometry and a line-to-line bijection $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is an affine transformation. Various geometries are considered in mathematical researches of different transformations, such as complex curves, were studied using Laguerre planes and Grünwald planes in Reference [6].

It is well known that any Möbious transformation is a composition of finite inversions in $n$-dimensional spherical space $\hat{\mathbb{R}}^{n}$ (see Reference [7] for details). We can say that inversions are basic elements of Möbious transformations. Let

$$
\mathbb{H}^{n+1}=\left\{\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{n+1}>0\right\}
$$

be $(n+1)$-dimensional hyperbolic space with hyperbolic metric $\rho_{H}=\frac{1}{x_{n+1}}$. A reflection on $\mathbb{H}^{n+1}$ is an isometry which fixes an $n$-hyperplane in $\mathbb{H}^{n+1}$ and any hyperbolic isometry is
a composition of finite reflections in $\mathbb{H}^{n+1}$. We can say that reflections are basic elements of hyperbolic isometries. Similarly,

$$
\begin{equation*}
\mathbb{S}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{1}^{2}+\cdots+x_{n}^{2}+x_{n+1}^{2}=1, x_{n+1}>0\right\} \tag{1}
\end{equation*}
$$

can be seen as an $n$-dimensional hyperbolic subspace of $\mathbb{H}^{n+1}$. Let

$$
\begin{equation*}
\mathbb{D}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}<1\right\} \tag{2}
\end{equation*}
$$

be the Klein Model of hyperbolic space defined by the natural projection

$$
\begin{align*}
\tau: & \mathbb{S}_{+}^{n} \mapsto \mathbb{D}^{n}  \tag{3}\\
& \left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)
\end{align*}
$$

Obviously, a map $F: \mathbb{S}_{+}^{n} \mapsto \mathbb{S}_{+}^{n}$ is a hyperbolic isometry, if and only if the transformation $f=\tau \circ$ $F \circ \tau^{-1}: \mathbb{D}^{n} \mapsto D^{n}$ is a hyperbolic isometry in Klein Model $\mathbb{D}^{n}$ in the following commutative diagram


A geodesic in Klein Model $\mathbb{D}^{n}$ is a segment which is the projection of a geodesic in $\mathbb{S}_{+}^{n}$ under $\tau$, since any geodesic in $\mathbb{S}_{+}^{n}$ is an arc perpendicular to $\partial \mathbb{S}_{+}^{n} \subset \partial \mathbb{H}^{n+1}$.

For any subset $\Omega \subset \mathbb{R}^{n}$, we call $L$ a line in $\Omega$, if there exists a line $l$ in $\mathbb{R}^{n}$, such that $L=l \cap \Omega$. We say that two lines $L_{1}, L_{2}$ in $\Omega$ are parallel, if $l_{1}, l_{2}$ are parallel. We say that three lines $L_{1}, L_{2}, L_{3}$ in $\Omega$ are concurrent, if $l_{1}, l_{2}, l_{3}$ have a common point in $\mathbb{R}^{n}$. We say that a map $f: \Omega \mapsto \mathbb{R}^{n}$ is line-to-line, if the image points of any collinear points are collinear and $f: \Omega \mapsto \Omega^{\prime}$ is line-onto-line, if $f(L)$ is a line in $\Omega^{\prime} \subset \mathbb{R}^{n}$ for any line $L$ in $\Omega$.

One can find that $f$ is a line-to-line bijection in $\mathbb{D}^{n}$ because the isometry $F$ is a geodesic-to-geodesic bijection in $\mathbb{S}_{+}^{n}$ in diagram (4). Especially, if the isometry $F: \mathbb{S}_{+}^{n} \mapsto \mathbb{S}_{+}^{n}$ is a reflection, then the line-to-line $\operatorname{map} f: \mathbb{D}^{n} \mapsto \mathbb{D}^{n}$ satisfies $f^{\circ 2}=i d$ and its fixed-points set is an $(n-1)$-dimensional superplane in $\mathbb{D}^{n}$. Obviously, $f$ may not be an affine transformation. This is the origin of reflection-like maps considered in this paper. We shall show that reflection-like maps are basic elements and instruments to consider the rigidity of line-to-line maps.

In Reference [8], B. Li et al., introduce $g$-reflection maps in $\mathbb{R}^{2}$, which are affinely conjugated to the map

$$
\begin{equation*}
(x, y) \rightarrow\left(-\frac{x}{1+x}, \frac{y}{1+x}\right) \tag{5}
\end{equation*}
$$

for any point in $\left\{(x, y) \in \mathbb{R}^{2} \mid x \neq-1\right\}$ and give the following result.
Theorem 1 ([8]). Suppose that $\mathcal{D} \subset \mathbb{R}^{2}$ is a convex domain and a map $f: \mathcal{D} \mapsto \mathcal{D}$ is line-to-line and satisfies $f^{\circ 2}=$ id. If $f$ is not the restriction to $\mathcal{D}$ of an affine transformation of $\mathbb{R}^{2}$, then $f$ is a restriction of $g$-reflection map to $\mathcal{D}$.

In Reference [9], B. Li et al., use $g$-reflection maps on the rigidity of line-to-line maps in the upper plane $\mathbb{H} \subset \mathbb{R}^{2}$ and prove that

Theorem 2 ([9]). Suppose that $f: \mathbb{H} \mapsto \mathbb{H}$ is a line-to-line surjection. Then, $f$ is either an affine transformation, or a composition of an affine transformation and a $g$-reflection map.

In Reference [10], B. Li et al., prove that any $g$-refection map preserves the cross ratios

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}
$$

of any four collinear points $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}$ and the following result.
Theorem 3 ([10], Theorem 3.6). Suppose that $\mathcal{D} \subset \mathbb{R}^{2}$ is a domain and a line-to-line map $f: \mathcal{D} \mapsto \mathbb{R}^{2}$ is injective and non-degenerate. Then, $f$ is either an affine transformation, or a composition of a $g$-reflection map and an affine transformation.

Here, a line-to-line map $f: \mathcal{D} \mapsto \mathbb{R}^{2}$ is degenerate (see Reference [11]), if the image space $f(\mathcal{D})$ is contained in some line (otherwise, it is non-degenerate).

The goal of this article is to consider the rigidity of line-to-line maps on local domains in $\mathbb{R}^{n}$. We shall introduce the case in $n$-dimensional space $\mathbb{R}^{n}$ of $g$-reflection maps, named reflection-like maps in this paper, and prove the following main results.

Theorem 4. Suppose that $\Omega$ is any convex domain in $\mathbb{R}^{n}$ and $\mathcal{A}^{\eta}$ is a super-plane such that $\Omega \cap \mathcal{A}^{\eta} \neq \varnothing$. A line-to-line map $\eta: \Omega \mapsto \Omega$ satisfies $\eta^{\circ 2}=$ id and $\eta(P)=P$ for any $P \in \Omega \cap \mathcal{A}^{\eta}$. Then, $\eta$ is a reflection or a reflection-like map.

Theorem 5. Suppose that $\mathbb{D}^{n} \subset \mathbb{R}^{n}$ is a Klein Model of $n$-dimensional hyperbolic space and a map $f: \mathbb{D}^{n} \mapsto$ $\mathbb{D}^{n}$ is a hyperbolic isometry. Then, $f$ is either an orthogonal transformation, or a composition of an orthogonal transformation and a reflection-like map.

In the next sections, we shall prove that reflection-like maps are line-to-line and linearly conjugated to each other. Moreover, the image of three parallel lines under reflection-like maps are parallel or concurrent. The absolute cross ratios may not be preserved by reflection-like maps. But, we shall prove that refection-like maps preserve the absolute cross ratios of any four distinct collinear points, something like projective maps preserve the cross ratios of four points in a projective line in projective geometries. We shall also prove that refection-like maps transfer spheres to quadrics, from which we can obtain that they map quadrics to quadrics. Especially, if the image of a sphere is a sphere, then it is invariant.

## 2. Reflection-Like Maps in High Dimension Space $\mathbb{R}^{n}$

In this section, we shall give the definition of reflection-like maps firstly and prove invariant properties under affine conjugation. We mainly prove Theorem 4, the rigidity of reflection-like maps in local domain of $n$-dimensional space.

Denote points in $\mathbb{R}^{n}$ by $X\left(x_{1}, x_{2}, \cdots, x_{n}\right), Y\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ and the line passing through $X, Y$ by $L_{X Y}$, the Euclidean distance between $X, Y$ by $|X-Y|$. Denote the vector from $X$ to $Y$ by $\overrightarrow{X Y}$.

Let $\mathcal{A}, \mathcal{B}$ be two ( $n-1$ )-dimensional planes (superplanes) in $\mathbb{R}^{n}$ and $\mathcal{P}$ be a point

$$
\begin{align*}
\mathcal{A} & =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}=1\right\} \\
\mathcal{B} & =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}=0\right\}  \tag{6}\\
\mathcal{P} & =(-1,0, \ldots, 0)
\end{align*}
$$

Obviously, $\mathcal{P}$ and $\mathcal{A}$ have equal Euclidean distances to $\mathcal{B}$. The map

$$
\begin{align*}
\theta: & \mathbb{R}^{n} \backslash \mathcal{B} \mapsto \mathbb{R}^{n} \backslash \mathcal{B} \\
& \left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow\left(\frac{1}{x_{1}}, \frac{x_{2}}{x_{1}}, \ldots, \frac{x_{n}}{x_{1}}\right) \tag{7}
\end{align*}
$$

satisfies $\theta^{\circ 2}=i d$. Moreover, $\{\mathcal{P}\} \cup \mathcal{A}$ is the fixed-point set of $\theta$ and the two components of $\mathbb{R}^{n}$ divided by $\mathcal{B}$ are invariant under $\theta$.

Definition 1. We say that a map $\eta$ is a reflection-like map in $\mathbb{R}^{n}$, if it is affinely conjugated to $\theta$. That is, one can find an affine transformation $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, such that $\eta=g \circ \theta \circ g^{-1}: \mathbb{R}^{n} \backslash g(\mathcal{B}) \mapsto \mathbb{R}^{n} \backslash g(\mathcal{B})$.

Obviously, $\theta$ defined in (7) is a refection-like map in $\mathbb{R}^{n}$.
Moreover, we say that $\mathcal{A}$ defined in (6) is Axis, $\mathcal{B}$ is Boundary, and $\mathcal{P}$ is Base point of the refection-like map $\theta$.
Generally, given any affine transformation $g$, the reflection-like map $\eta=g \circ \theta \circ g^{-1}: \mathbb{R}^{n} \backslash g(\mathcal{B}) \mapsto$ $\mathbb{R}^{n} \backslash g(\mathcal{B})$ has Boundary $\mathcal{B}^{\eta}=g(\mathcal{B})$, Axis $\mathcal{A}^{\eta}=g(\mathcal{A})$, and Base point $\mathcal{P}^{\eta}=g(\mathcal{P})$. Obviously, $\eta^{\circ 2}=i d$, $\left\{\mathcal{P}^{\eta}\right\} \cup \mathcal{A}^{\eta}$ is the fixed-point set of $\eta, \mathcal{B}^{\eta}$ is parallel to $\mathcal{A}^{\eta}$, and $\mathcal{P}^{\eta}$ and $\mathcal{A}^{\eta}$ have equal Euclidean distances to $\mathcal{B}^{\eta}$. Moreover, the two components of $\mathbb{R}^{n}$ divided by $\mathcal{B}^{\eta}$ are invariant under $\eta$.

Definition 2. We call $L$ a line in $\mathbb{R}^{n} \backslash \mathcal{B}$, if there exists a line $l$ in $\mathbb{R}^{n}$, such that $L=l \cap \mathbb{R}^{n} \backslash \mathcal{B}$. If $l \cap \mathcal{B}=\{\tilde{P}\}$, then we say that $L$ has boundary point $\tilde{P}$.

Proposition 1. The reflection-like map $\theta: \mathbb{R}^{n} \backslash \mathcal{B} \mapsto \mathbb{R}^{n} \backslash \mathcal{B}$ is a line-onto-line bijection.
Proof. Let us prove that $f$ is line-to-line in $\mathbb{R}^{n} \backslash \mathcal{B}$ firstly. That is, for any three collinear points $X\left(x_{1}, x_{2}, \cdots, x_{n}\right), Y\left(y_{1}, y_{2}, \cdots, y_{n}\right), Z\left(z_{1}, z_{2}, \cdots, z_{n}\right)$, their image points $X^{\prime}\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right)$, $Y^{\prime}\left(y_{1}^{\prime}, y_{2}^{\prime}, \cdots, y_{n}^{\prime}\right), Z^{\prime}\left(z_{1}^{\prime}, z_{2}^{\prime}, \cdots, z_{n}^{\prime}\right)$ are collinear. There exists some $\lambda \in \mathbb{R} \backslash\{0,1\}$, such that $Z=\lambda X+(1-\lambda) Y$. That is, $z_{i}=\lambda x_{i}+(1-\lambda) y_{i}$, for any $i=1,2, \cdots, n$. We have $x_{1}^{\prime}=\frac{1}{x_{1}}$, $y_{1}^{\prime}=\frac{1}{y_{1}}$, and

$$
\begin{aligned}
z_{1}^{\prime}=\frac{1}{z_{1}} & =\frac{1}{\lambda x_{1}+(1-\lambda) y_{1}} \\
& =\frac{x_{1}^{\prime} y_{1}^{\prime}}{\lambda y_{1}^{\prime}+(1-\lambda) x_{1}^{\prime}} \\
& =\frac{\lambda y_{1}^{\prime}}{\lambda y_{1}^{\prime}+(1-\lambda) x_{1}^{\prime}} x_{1}^{\prime}+\frac{(1-\lambda) x_{1}^{\prime}}{\lambda y_{1}^{\prime}+(1-\lambda) x_{1}^{\prime}} y_{1}^{\prime} .
\end{aligned}
$$

Let $\lambda^{\prime}=\frac{\lambda y_{1}^{\prime}}{\lambda y_{1}^{\prime}+(1-\lambda) x_{1}^{\prime}}$, and then $z_{1}^{\prime}=\lambda^{\prime} x_{1}^{\prime}+\left(1-\lambda^{\prime}\right) y_{1}^{\prime}$. Meanwhile, $x_{i}^{\prime}=\frac{x_{i}}{x_{1}}, y_{i}^{\prime}=\frac{y_{i}}{y_{1}}$ for any $i=2,3, \ldots, n$ and

$$
\begin{aligned}
z_{i}^{\prime}=\frac{z_{i}}{z_{1}} & =\frac{\lambda x_{i}+(1-\lambda) y_{i}}{\lambda x_{1}+(1-\lambda) y_{1}} \\
& =\frac{\lambda y_{1}^{\prime}}{\lambda y_{1}^{\prime}+(1-\lambda) x_{1}^{\prime}} x_{i}^{\prime}+\frac{(1-\lambda) x_{1}^{\prime}}{\lambda y_{1}^{\prime}+(1-\lambda) x_{1}^{\prime}} y_{i}^{\prime} \\
& =\lambda^{\prime} x_{i}^{\prime}+\left(1-\lambda^{\prime}\right) y_{i}^{\prime} .
\end{aligned}
$$

Thus, $Z^{\prime}=\lambda^{\prime} X^{\prime}+\left(1-\lambda^{\prime}\right) Y^{\prime}$, which follows that $X^{\prime}, Y^{\prime}, Z^{\prime}$ are collinear. Hence, $\theta$ is line-to-line. Moreover, one can find that $\theta$ is bijective and $\theta(L)$ is a line in $\mathbb{R}^{n} \backslash \mathcal{B}$ for any line $L$ in $\mathbb{R}^{n} \backslash \mathcal{B}$, since $\theta^{\circ 2}=i d$. That is, $\theta$ is a line-onto-line bijection and the proof is completed.

Proposition 2. For any line $L$ in $\mathbb{R}^{n} \backslash \mathcal{B}$, the reflection-like map $\theta: \mathbb{R}^{n} \backslash \mathcal{B} \mapsto \mathbb{R}^{n} \backslash \mathcal{B}$ satisfies the following.
(i) If $L \not \subset \mathcal{A}$, then $\theta(L)=L$, if and only if Base point $\mathcal{P} \in L$;
(ii) If $\theta(L) \neq L$, then $\theta(L)$ is parallel to $L$, if and only if $L$ is parallel to Axis $\mathcal{A}$.

Proof. (i). We only need to prove that $\mathcal{P} \in L_{X X^{\prime}}$ for any point $X \in \mathbb{R}^{n} \backslash \mathcal{B}$ and $X^{\prime}=\theta(X) \neq X$, since $\theta$ is line-to-line and satisfies $\theta^{\circ 2}=i d$.

Let $X\left(x_{1}, x_{2}, \ldots, x_{n}\right), X^{\prime}\left(\frac{1}{x_{1}}, \frac{x_{2}}{x_{1}}, \ldots, \frac{x_{n}}{x_{1}}\right)$ and $\lambda=\frac{1}{1-x_{1}}$, then one can find that $\mathcal{P}=\lambda X+(1-\lambda) X^{\prime}$, which means $\mathcal{P} \in L_{X X^{\prime}}$.
(ii). For two distinct points $X\left(x_{1}, x_{2}, \cdots, x_{n}\right), Y\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ in $L$, denote the image points under $\theta$ by $X^{\prime}\left(\frac{1}{x_{1}}, \frac{x_{2}}{x_{1}}, \cdots, \frac{x_{n}}{x_{1}}\right), Y^{\prime}\left(\frac{1}{y_{1}}, \frac{y_{2}}{y_{1}}, \cdots, \frac{y_{n}}{y_{1}}\right)$. Obviously, $L$ is parallel to Axis $\mathcal{A}$, if and only if $x_{1}=y_{1}(\neq 0)$. Then, $\theta(L)$ is parallel to $L$ by

$$
\overrightarrow{X^{\prime} Y^{\prime}}=\left(0, \frac{y_{2}-x_{2}}{y_{1}}, \cdots, \frac{y_{n}-x_{n}}{y_{1}}\right)=\frac{1}{y_{1}} \overrightarrow{X Y}
$$

On the other side, suppose that $\theta(L)$ is parallel to $L$ and $x_{1} \neq y_{1}$. We can obtain that $y_{i}=\frac{1+y_{1}}{1+x_{1}} x_{i}$, for any $i=2, \cdots, n$ by $\overrightarrow{X^{\prime} Y^{\prime}} / / \overrightarrow{X Y}$. Let $\lambda=\frac{1+y_{1}}{y_{1}-x_{1}}$, then $\mathcal{P}=\lambda X+(1-\lambda) Y$, which means that $\mathcal{P} \in L$, and $\theta(L)=L$ by the result of (i). This is a contradiction, and the proof is completed.

Corollary 1. The image of a parallelogram under a reflection-like map is a parallelogram, if and only if the parallelogram is parallel to Axis of the reflection-like map. Moreover, the image of a square is a square, if the square is parallel to Axis.

Proposition 3. For any two lines $L_{1}, L_{2}$ in $\mathbb{R}^{n} \backslash \mathcal{B}$, not parallel to $\mathcal{A}$, the reflection-like map $\theta: \mathbb{R}^{n} \backslash \mathcal{B} \mapsto \mathbb{R}^{n} \backslash \mathcal{B}$ satisfies the followings.
(i) $\theta\left(L_{1}\right)$ and $\theta\left(L_{2}\right)$ share a common boundary point if $L_{1}$ is parallel to $L_{2}$;
(ii) $\quad \theta\left(L_{1}\right)$ is parallel to $\theta\left(L_{2}\right)$ if $L_{1}$ and $L_{2}$ share a common boundary point.

Proof. We only need to prove that $L_{1}$ is a line passing through $\mathcal{P}$. From Proposition 2, we have $\theta\left(L_{1}\right)=L_{1}$. Denote the boundary point of $L_{1}$ by $\tilde{X}\left(0, x_{2}, \cdots, x_{n}\right)$, then the vector $\overrightarrow{\mathcal{P} \tilde{X}}=\left(1, x_{2}, \cdots, x_{n}\right) \subset L_{1}$.
(i) Suppose that $L_{2}$ is any line parallel to $L_{1}$. For any point $Y\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ in $L_{2}$, one can obtain $L_{2}=\left\{\left(y_{1}+t, y_{2}+t x_{2}, \cdots, y_{n}+t x_{n}\right) \mid t \in \mathbb{R} \backslash\left\{-y_{1}\right\}\right\}$ and

$$
\theta\left(L_{2}\right)=\left\{\left.\left(\frac{1}{y_{1}+t}, \frac{y_{2}+t x_{2}}{y_{1}+t}, \cdots, \frac{y_{n}+t x_{n}}{y_{1}+t}\right) \right\rvert\, t \in \mathbb{R} \backslash\left\{-y_{1}\right\}\right\}
$$

It follows that $\tilde{X}$ is the limit point of $\theta\left(L_{2}\right)$ as $t$ tends to $\infty$. That is, $\theta\left(L_{2}\right)$ and $\theta\left(L_{1}\right)$ share common boundary point if $L_{2}$ is parallel to $L_{1}$.
(ii) Suppose that $L_{2}$ is any line sharing common boundary point $\tilde{X}\left(0, x_{2}, \cdots, x_{n}\right)$ with $L_{1}$. For any point $Y\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in L_{2}$, we can find that the vector

$$
\overrightarrow{\widetilde{X} Y}=\left(y_{1}, y_{2}-x_{2}, \cdots, y_{n}-x_{n}\right) \subset L_{2}
$$

So, we have

$$
L_{2}=\left\{\left((1+t) y_{1}, y_{2}+t\left(y_{2}-x_{2}\right), \cdots, y_{n}+t\left(y_{n}-x_{n}\right)\right) \mid t \in \mathbb{R} \backslash\{-1\}\right\}
$$

and

$$
\theta\left(L_{2}\right)=\left\{\left.\left(\frac{1}{(1+t) y_{1}}, \frac{y_{2}+t\left(y_{2}-x_{2}\right)}{(1+t) y_{1}}, \cdots, \frac{y_{n}+t\left(y_{n}-x_{n}\right)}{(1+t) y_{1}}\right) \right\rvert\, t \in \mathbb{R} \backslash\{-1\}\right\}
$$

As $t$ tends to $\infty$, we obtain its boundary point $\tilde{Y}\left(0, \frac{y_{2}-x_{2}}{y_{1}}, \ldots, \frac{y_{n}-x_{n}}{y_{1}}\right)$.
Denote $\theta(Y)=Y^{\prime}\left(\frac{1}{y_{1}}, \frac{y_{2}}{y_{1}}, \cdots, \frac{y_{n}}{y_{1}}\right) \in \theta\left(L_{2}\right)$, then the vector

$$
\overrightarrow{\widetilde{Y} Y^{\prime}}=\left(\frac{1}{y_{1}}, \frac{x_{2}}{y_{1}}, \cdots, \frac{x_{n}}{y_{1}}\right) \subset \theta\left(L_{2}\right)
$$

which follows that $\theta\left(L_{2}\right)$ is parallel to $\theta\left(L_{1}\right)$ for $\overrightarrow{\mathcal{P} \widetilde{X}}=y_{1} \overrightarrow{\tilde{Y} Y^{\prime}}$.
Moreover, we can have the following.
Lemma 1. Suppose that a reflection-like map $\eta$ has the same Base point and Axis as $\theta$. Then, $\eta=\theta$.
Proof. We need only prove that the reflection-like map is uniquely determined by Base point $\mathcal{P}$ and Axis $\mathcal{A}$. One can know that Boundary $\mathcal{B}$ is parallel to $\mathcal{A}$ and lies between $\mathcal{P}$ and $\mathcal{A}$ with equal distances. For any point $X \in \mathbb{R}^{n} \backslash \mathcal{B}$, let $L_{1}$ be the line in $\mathbb{R}^{n} \backslash \mathcal{B}$ passing through $X$ and $\mathcal{P}$, then $\eta\left(L_{1}\right)=L_{1}$ by Proposition 2. Choose any point $Y \in \mathcal{A} \backslash L_{1}$ and let $L_{2}$ be the line in $\mathbb{R}^{n} \backslash \mathcal{B}$ passing through $X$ and $Y$, then it is easy to find $Y \in \eta\left(L_{2}\right)$. Let $L_{3}$ be the line passing through $\mathcal{P}$ and parallel to $L_{2}$, then $\eta\left(L_{3}\right)=L_{3}$. So $\eta\left(L_{2}\right), \eta\left(L_{3}\right)$ share common boundary point, denoted by $\tilde{Y}$ by Proposition 3. It follows that $\eta\left(L_{2}\right)$ is the line passing through $Y$ and having boundary point $\tilde{Y}$. Then, $\eta(X)=L_{1} \cap \eta\left(L_{2}\right)$ is determined uniquely. That is, the reflection-like map $\eta$ is determined by $\mathcal{A}$ and $\mathcal{P}$. Therefore, we have $\eta=\theta$.

A transformation $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is linear, if it is a composition of translations, scaling and orthogonal transformations on $\mathbb{R}^{n}$. We say that a reflection-like map $\eta$ is linearly conjugated to $\theta$, if one can find a linear map $g$, such that $\eta=g \circ \theta \circ g^{-1}$.

For any super-plane $\Pi$ and a point $P \notin \Pi$, one can find a linear transformation $g$ such that $g(\mathcal{A})=\Pi$ and $g(\mathcal{P})=P$. Then, $\eta=g \circ \theta \circ g^{-1}$ is a reflection-like map with Base point $P$ and Axis $\Pi$. So, we can obtain the following by Lemma 1.

Theorem 6. Any reflection-like map is linearly conjugated to $\theta$.
By conjugating affine transformation $g:\left(x_{1}, x_{2}, \cdots, x_{n}\right) \rightarrow\left(x_{1}-1, x_{2}, \cdots, x_{n}\right)$,

$$
\theta^{\prime}=g \circ \theta \circ g^{-1}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow\left(-\frac{x_{1}}{1+x_{1}}, \frac{x_{2}}{1+x_{1}}, \cdots, \frac{x_{n}}{1+x_{1}}\right)
$$

is the general form of the $g$-reflection map defined in (5) on $n$-dimensional space.
Proof of Theorem 4. Let $\mathcal{U}$ and $\mathcal{U}^{\prime}$ be the two components of $\Omega$ divided by $\mathcal{A}^{\eta}$. We claim that there exist $P \in \mathcal{U}$ and $P^{\prime} \in \mathcal{U}^{\prime}$ such that $\eta(P)=P^{\prime}$. Otherwise, suppose that we have $X, X^{\prime} \in \mathcal{U}$, such that $\eta(X)=X^{\prime}$ (as in the Figure 1a). For any $P^{\prime} \in \mathcal{U}^{\prime} \backslash L_{X X^{\prime}}$, denote $Y_{1} \in L_{X P^{\prime}} \cap \mathcal{A}^{\eta}, Y_{2} \in L_{X^{\prime} P^{\prime}} \cap \mathcal{A}^{\eta}$ and $P \in L_{X Y_{2}} \cap L_{X^{\prime} Y_{1}}$, then $P \in \mathcal{U}$ and $P^{\prime}=\eta(P)$.

(a)

(b)

Figure 1. (a) Existence of $P, P^{\prime}$ in different sides. (b) Uniqueness determined by $P, P^{\prime}$.
We shall prove that the line-to-line map is uniquely determined by $P, P^{\prime}$ and $\mathcal{A}^{\eta} \cap \Omega$. Let $\mathcal{V}$ denote the smallest convex domain containing $P, P^{\prime}$ and $\Omega \cap \mathcal{A}^{\eta}$. For any point $X \in \mathcal{V} \backslash L_{P P^{\prime}}$
(as in the Figure 1b), let $Y_{1} \in L_{X P} \cap \mathcal{A}^{\eta}, Y_{2} \in L_{X P^{\prime}} \cap \mathcal{A}^{\eta}$, we can find that $X^{\prime}=\eta(X) \in L_{P Y_{2}} \cap L_{P^{\prime} Y_{1}}$ is unique. Moreover, the line-to-line map on $\Omega$ will be uniquely determined by the mapping on its sub-domain $\mathcal{V} \backslash L_{P P^{\prime}}$.

Next, we shall prove the existence of $\eta$. By conjugating some suitable affine transformation, we can suppose that $\mathcal{A}^{\eta}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid x_{1}=0\right\}, P=(-1,0, \cdots, 0)$ and $P^{\prime}=(k, 0, \cdots, 0)(k>0)$. If $k=1$, then $\eta$ is a reflection about $\mathcal{A}^{\eta}$

$$
\eta:\left(x_{1}, x_{2}, \cdots, x_{n}\right) \rightarrow\left(-x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Otherwise, let $\mathcal{P}^{\eta}=\left(-\frac{2 k}{k-1}, 0, \cdots, 0\right)$ and $K=\frac{k-1}{k}$, then

$$
\eta:\left(x_{1}, x_{2}, \cdots, x_{n}\right) \rightarrow\left(-\frac{x_{1}}{1+K x_{1}}, \frac{x_{2}}{1+K x_{1}}, \cdots, \frac{x_{n}}{1+K x_{1}}\right)
$$

is the reflection-like map with Axis $\mathcal{A}^{\eta}$ and Base point $\mathcal{P}^{\eta}$ such that $\eta(P)=P^{\prime}$.
Corollary 2. Suppose that $\theta$ is the reflection-like map defined in (7). Given any positive integer $1<r<n$, let $\Pi$ be any $r$-dimensional plane in $\mathbb{R}^{n} \backslash \mathcal{B}$ passing through $\mathcal{P}$, then $\theta(\Pi)=\Pi$. Moreover, if $\Pi \cap \mathcal{A} \neq \varnothing$, then $\left.\theta\right|_{\Pi}: \Pi \mapsto \Pi$ is a reflection-like map with Axis $\Pi \cap \mathcal{A}$ and Base point $\mathcal{P}$.

Remark 1. We give an example $(n=3)$ to show that Theorem $1 \mathbf{A}$ does not hold in the case of reflection-like maps in $\mathbb{R}^{n}(n>2)$. That is, a line-to-line map $f: \Omega \mapsto \Omega$ on a convex domain $\Omega \subset \mathbb{R}^{n}$ satisfying $f^{\circ 2}=$ id may not be an affine transformation or a reflection-like map.

Example 1. Let $\mathcal{B}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=0\right\}$ and $f: \mathbb{R}^{3} \backslash \mathcal{B} \mapsto \mathbb{R}^{3} \backslash \mathcal{B}$ be defined as

$$
f:\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\frac{1}{x_{1}}, \frac{x_{2}}{x_{1}},-\frac{x_{3}}{x_{1}}\right) .
$$

Obviously, $f^{\circ 2}=i d$ and $f$ is line-to-line, since $f$ is a composition of an orthogonal transformation and a reflection-like map, while $f$ cannot be a reflection-like map since its fixed-point set is $L_{1} \cup L_{2}$, where $L_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=1, x_{3}=0\right\}$ and $L_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=-1, x_{2}=0\right\}$.
3. The Absolute Cross ratios in High Dimension Space $\mathbb{R}^{n}$

For any four distinct points $X\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad Y\left(y_{1}, y_{2}, \cdots, y_{n}\right), \quad Z\left(z_{1}, z_{2}, \cdots, z_{n}\right)$, $W\left(w_{1}, w_{2}, \cdots, w_{n}\right)$ in $\mathbb{R}^{n}$, the absolute cross ratio is defined as

$$
|X, Y, Z, W|=\frac{|X-Z| \cdot|Y-W|}{|X-W| \cdot|Y-Z|}
$$

It is very important in high dimensional space. Especially, if $Z=\infty$, we can define it by the limit as $Z$ tends to $\infty$

$$
|X, Y, \infty, W|=\frac{|Y-W|}{|X-W|}
$$

It is well known that, for any subdomain $\Omega \subset \mathbb{R}^{n}$, a map $f: \Omega \mapsto \mathbb{R}^{n}$ is a Möbious transformation, if and only if $f$ preserves the absolute cross ratios. The cross ratio is defined on four collinear points in projective geometry, and a projective transformation preserves cross ratios (see Reference [2,12] for details). While a reflection-like map considers one more dimension than a projectivity, it does not preserve absolute cross ratios.

For example (as in Figure 2), let $X(1,0), Y(1,1), Z(2,1)$ and $W(2,0) \in \mathbb{R}^{2}$, then $\theta(X)=X^{\prime}(1,0)$, $\theta(Y)=Y^{\prime}(1,1), \theta(Z)=Z^{\prime}\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\theta(W)=W^{\prime}\left(\frac{1}{2}, 0\right)$. We have that $\theta$ maps the square $X Y Z W$
to the quadrilateral $X^{\prime} Y^{\prime} Z^{\prime} W^{\prime}$ since $\theta$ is line-to-line. It is easy to calculate that $|X, Y, Z, W|=2$ and $\left|X^{\prime}, Y^{\prime}, Z^{\prime}, W^{\prime}\right|=\sqrt{5}$.


Figure 2. Reflection-like maps may not preserve absolute cross ratios.
In this section, we shall prove that reflection-like maps preserve the absolute cross ratios of any four collinear points. In fact, for any collinear points $X, Y, Z, W$, if $x_{i} \neq y_{i}$ for some $i=1, \cdots, n$, then we can have

$$
|X, Y, Z, W|=\frac{\left|x_{i}-z_{i}\right| \cdot\left|y_{i}-w_{i}\right|}{\left|x_{i}-w_{i}\right| \cdot\left|y_{i}-z_{i}\right|}
$$

Theorem 7. Suppose that $\eta$ is a reflection-like map with boundary $\mathcal{B}^{\eta}$. Then, for any four distinct collinear points $X, Y, Z, W$ in $\mathbb{R}^{n} \backslash \mathcal{B}^{\eta}$, the absolute cross ratio $|X, Y, Z, W|$ is invariant under $\eta$. That is,

$$
|X, Y, Z, W|=|\eta(X), \eta(Y), \eta(Z), \eta(W)| .
$$

Proof. By conjugating some suitable linear transformation, we can suppose that the reflection-like map is $\theta$ defined in (7). Then, we have $\theta(X)=X^{\prime}\left(\frac{1}{x_{1}}, \frac{x_{2}}{x_{1}}, \cdots, \frac{x_{n}}{x_{1}}\right), \theta(Y)=Y^{\prime}\left(\frac{1}{y_{1}}, \frac{y_{2}}{y_{1}}, \cdots, \frac{y_{n}}{y_{1}}\right)$, $\theta(Z)=Z^{\prime}\left(\frac{1}{z_{1}}, \frac{z_{2}}{z_{1}}, \cdots, \frac{z_{n}}{z_{1}}\right)$ and $\theta(W)=W^{\prime}\left(\frac{1}{w_{1}}, \frac{w_{2}}{w_{1}}, \cdots, \frac{w_{n}}{w_{1}}\right)$ are collinear. If $x_{1} \neq y_{1}$, we have $\frac{1}{x_{1}} \neq \frac{1}{y_{1}}$ and

$$
\begin{aligned}
\left|X^{\prime}, Y^{\prime}, Z^{\prime}, W^{\prime}\right| & =\frac{\left|\frac{1}{x_{1}}-\frac{1}{z_{1}}\right| \cdot\left|\frac{1}{y_{1}}-\frac{1}{w_{1}}\right|}{\left|\frac{1}{x_{1}}-\frac{1}{w_{1}}\right| \cdot\left|\frac{1}{y_{1}}-\frac{1}{z_{1}}\right|} \\
& =\frac{\left|x_{1}-z_{1}\right| \cdot\left|y_{1}-w_{1}\right|}{\left|x_{1}-w_{1}\right| \cdot\left|y_{1}-z_{1}\right|} \\
& =|X, Y, Z, W| .
\end{aligned}
$$

If $x_{1}=y_{1}$, then there exists some $i$, such that $x_{i} \neq y_{i}$. Thus, $\frac{x_{i}}{x_{1}} \neq \frac{y_{i}}{y_{1}}$ and

$$
\begin{aligned}
\left|X^{\prime}, Y^{\prime}, Z^{\prime}, W^{\prime}\right| & =\frac{\left|\frac{x_{i}}{x_{1}}-\frac{z_{i}}{z_{1}}\right| \cdot\left|\frac{y_{i}}{y_{1}}-\frac{w_{i}}{w_{1}}\right|}{\left|\frac{x_{i}}{x_{1}}-\frac{w_{i}}{w_{1}}\right| \cdot\left|\frac{y_{i}}{y_{1}}-\frac{z_{i}}{z_{1}}\right|} \\
& =\frac{\left|x_{i}-z_{i}\right| \cdot\left|y_{i}-w_{i}\right|}{\left|x_{i}-w_{i}\right| \cdot\left|y_{i}-z_{i}\right|} \\
& =|X, Y, Z, W| .
\end{aligned}
$$

We complete the proof.

## 4. Reflection-Like Maps and Quadrics

In this section, we shall prove that $\theta$ maps spheres to quadrics, from which we can obtain that reflection-like maps transfer quadrics to quadrics. Especially, if the image of a sphere is a sphere, then it is invariant.

Definition 3. Given any reflection-like map, we say that the line passing its Base point and perpendicular to its Axis is its Equator.

For example, the Equator of $\theta$ is

$$
\mathcal{L}=\left\{\left(x_{1}, 0, \ldots, 0\right) \mid x_{1} \in \mathbb{R}, x_{1} \neq 0\right\}
$$

One can find that, given any affine transformation, the Equator of $\eta=g \cdot \theta \cdot g^{-1}$ may not be $g(\mathcal{L})$, while, if $g$ is linear, the Equator of $\eta$ is $g(\mathcal{L})$.

Theorem 8. The reflection-like map $\theta$ maps any sphere to a quadric.
If both $\mathbb{S}$ and $\theta(\mathbb{S})$ are $(n-1)$-dimensional spheres, then $\theta(\mathbb{S})=\mathbb{S}$.
Moreover, if $\theta(\mathbb{S})=\mathbb{S}$, then the center of $\mathbb{S}$ lies in the equator $\mathcal{L}$ of $\theta$.
For any $P \in \mathcal{L}$, such that $P^{\prime}=\theta(P) \neq P$, let $\mathbb{S}$ be the $(n-1)$-dimensional sphere with diameter $P P^{\prime}$, then $\theta(\mathbb{S})=\mathbb{S}$.

Proof. Suppose that $\mathbb{S}$ is a sphere with radius $r$ and center $C\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. Then, any point $X\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{S}$ satisfies

$$
\mathbb{S}:\left(x_{1}-c_{1}\right)^{2}+\left(x_{2}-c_{2}\right)^{2}+\cdots+\left(x_{n}-c_{n}\right)^{2}=r^{2} .
$$

Denote the image point $\theta(X)=X^{\prime}\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right) \in \theta(\mathbb{S})$, then $\theta\left(X^{\prime}\right)=X$ since $\theta^{\circ 2}=i d$. It follows $\theta\left(X^{\prime}\right)=\left(\frac{1}{x_{1}^{\prime}}, \frac{x_{2}^{\prime}}{x_{1}^{\prime}}, \cdots, \frac{x_{n}^{\prime}}{x_{1}^{\prime}}\right) \in \mathbb{S}$, that is

$$
\theta(\mathbb{S})=\left\{\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right) \left\lvert\,\left(\frac{1}{x_{1}^{\prime}}-c_{1}\right)^{2}+\left(\frac{x_{2}^{\prime}}{x_{1}^{\prime}}-c_{2}\right)^{2}+\cdots+\left(\frac{x_{n}^{\prime}}{x_{1}^{\prime}}-c_{n}\right)^{2}=r^{2}\right.\right\} .
$$

Obviously, it is a quadric

$$
\theta(\mathbb{S}):\left(1-c_{1} x_{1}^{\prime}\right)^{2}+\left(x_{2}^{\prime}-c_{2} x_{1}^{\prime}\right)^{2}+\cdots+\left(x_{n}^{\prime}-c_{n} x_{1}^{\prime}\right)^{2}=r^{2} x_{1}^{2} .
$$

Then, $\theta(\mathbb{S})$ is a sphere, if and only if $c_{2}=c_{3}=\cdots=c_{n}=0$ and $c_{1}^{2}-r^{2}=1$, since $-2 c_{i}$ is the coefficient of the term $x_{1}^{\prime} x_{i}^{\prime}(i=2, \cdots, n)$ and $c_{1}^{2}-r^{2}$ is the coefficient of the term $x_{1}^{\prime 2}$. It follows that, if $\theta(\mathbb{S})$ is also a sphere, then

$$
\theta(\mathbb{S}):\left(x_{1}^{\prime}-c_{1}\right)^{2}+x_{2}^{\prime 2}+\cdots+x_{n}^{\prime 2}=r^{2} .
$$

Thus, $\theta(\mathbb{S})=\mathbb{S}$ and the center $C\left(c_{1}, 0, \cdots, 0\right) \in \mathcal{L}$ (as in Figure 3).


Figure 3. (a) Invariant sphere crossing Axis. (b) Invariant sphere surrounding Base point.
For any $P \in \mathcal{L}$ satisfying $P^{\prime}=\theta(P) \neq P$, let $\mathbb{S}$ be the $(n-1)$-dimensional sphere with diameter $P P^{\prime}\left(\right.$ as in Figure 3). Denote $P\left(p_{1}, \cdots, 0\right), P^{\prime}\left(\frac{1}{p_{1}}, \cdots, 0\right), c_{1}=\frac{1}{2}\left(p_{1}+\frac{1}{p_{1}}\right)$ and $r=\frac{1}{2}\left|p_{1}-\frac{1}{p_{1}}\right|$, then $\mathbb{S}$ has radius $r$ and center $C\left(c_{1}, 0, \cdots, 0\right) \in \mathcal{L}$. One can find that $\theta(\mathbb{S})=\mathbb{S}$ since $c_{1}^{2}-r^{2}=1$.

Obviously, the invariant sphere $\mathbb{S}$ lies in one component of $\mathbb{R}^{n} \backslash \mathcal{B}$ and the interior $\Omega$ of $\mathbb{S}$ is invariant under $\theta$ by the continuity of reflection-like maps, which shows that $\theta: \Omega \mapsto \Omega$ is a line-to-line bijection. Moveover, if $\Omega$ is a Klein Model of hyperbolic space, then $\theta: \Omega \mapsto \Omega$ is an isometry.

## 5. Reflection-Like Maps and Hyperbolic Isometries in Klein Model

In this section, we shall prove Theorem 5, the rigidity of line-to-line maps in a local domain of $\mathbb{R}^{n}$ by hyperbolic isometry on Klein Model defined by projection $\tau: \mathbb{S}_{+}^{n} \mapsto \mathbb{D}^{n}$ as in Equations (1)-(3).

Lemma 2. Suppose that $F: \mathbb{S}_{+}^{n} \mapsto \mathbb{S}_{+}^{n}$ is a reflection. Then, $f=\tau \circ F \circ \tau^{-1}: \mathbb{D}^{n} \mapsto \mathbb{D}^{n}$ is a refection-like map or a reflection.

Proof. Suppose that $F: \mathbb{S}_{+}^{n} \mapsto \mathbb{S}_{+}^{n}$ is a reflection relative to $(n-1)$-hyperbolic plane $S \subset \mathbb{S}_{+}^{n}$. Then $F^{\circ 2}=i d$ and $F(P)=P$ for any $P \in S$. It follows that $\tau(S)$ is an $(n-1)$-dimensional plane in $\mathbb{D}^{n}$ and $f=\tau \circ F \circ \tau^{-1}: \mathbb{D}^{n} \mapsto \mathbb{D}^{n}$ is a line-onto-line bijection, satisfying $f^{\circ 2}=i d$ and $f(X)=X$ for any $X \in \tau(S)$. Then, $f$ is the restriction of a refection-like map or a reflection by Theorem 4. Specifically, $f$ is a reflection if the origin point $O \in \tau(S)$; otherwise, $f$ is a reflection-like map.

For any two distinct points $P, Q \in \mathbb{S}_{+}^{n}$, one can always get a unique reflection $F: \mathbb{S}_{+}^{n} \mapsto \mathbb{S}_{+}^{n}$, satisfying that $F(P)=Q$. We can obtain the following Corollary.

Corollary 3. For any point $X \in \mathbb{D}^{n} \backslash\{O\}$, there is a reflection-like map $\eta$ satisfying that $\eta\left(\mathbb{D}^{n}\right)=\mathbb{D}^{n}$ and $\eta(O)=X$. Moveover, denote Axis of $\eta$ by $\mathcal{A}^{\eta}$, then $\mathcal{A}^{\eta} \cap \mathbb{D}^{n} \neq \varnothing$.

Proof of Theorem 5. If $f(O)=O$, then $f: \mathbb{D}^{n} \mapsto \mathbb{D}^{n}$ is the restriction to $\mathbb{D}^{n}$ of an orthogonal transformation on $\mathbb{R}^{n}$.

If $f(O) \neq O$, then there exists a reflection-like map $\eta$ such that $\eta\left(\mathbb{D}^{n}\right)=\mathbb{D}^{n}$ and $\eta(O)=f^{-1}(O)$ by Corollary 3 , which follows $g=f \circ \eta: \mathbb{D}^{n} \mapsto \mathbb{D}^{n}$ is a hyperbolic isometry satisfying $g(O)=O$. Thus, $g: \mathbb{D}^{n} \mapsto \mathbb{D}^{n}$ is the restriction to $\mathbb{D}^{n}$ of an orthogonal transformation on $\mathbb{R}^{n}$. It implies that $f=g \circ \eta$.

Above all, any hyperbolic isometry in Klein Model is either an orthogonal transformation, or a composition of an orthogonal transformation and a reflection-like map.

From Theorem 5, one can deduce that any line-to-line bijection on $\mathbb{D}^{n}$ can be extended line-to-line to $\mathbb{R}^{n}$ (or except a superplane).

Author Contributions: Conceptualization, B.L.; Formal analysis, Z.H. and B.L.; Investigation, Z.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

## References

1. Artin, E. Geometric Algebra; Interscience Publishers, Inc.: New York, NY, USA; London, UK, 1957.
2. Beardon, A.F.; Minda, D. Sphere-preserving maps in inversive geometry. Proc. Am. Math. Soc. 2001, 130, 987-998. [CrossRef]
3. Chubarev, A.; Pinelis, I. Fundamental theorem of geometry without the 1-to-1 assumption. Proc. Am. Math. Soc. 1999, 127, 2735-2744. [CrossRef]
4. Jeffers, J. Lost theorems of geometry. Am. Math. Monthly 2000, 107, 800-812. [CrossRef]
5. Özgür, N.; Bulut, S. A note on the characteristic properties of Möbius transformations. Rad. Mat. 2004, 12, 129-133.
6. Belova, O.; Mikeš, J.; Strambach, K. Complex Curves as Lines of Geometries. Results Math. 2017, 71, 145-165. [CrossRef]
7. Beardon, A.F. The Geometry of Discrete Groups; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1983; Volume 91.
8. Li, B.; Wang, X.; Wang, Y. The pseudo-affine transformations in $\mathbb{R}^{2}$. Sci. China Math. 2010, 53, 755-762. [CrossRef]
9. Li, B.; Wang, Y. A New Characterization of Line-to-line Maps in the Upper Plane. Filomat 2013, 27, 127-133. [CrossRef]
10. Li, B.; Wang, Y. Fundamental theorem of geometry without surjective assumption. Trans. Am. Math. Soc. 2016, 368, 6819-6834. [CrossRef]
11. Li, B.; Wang, Y. Transformations and non-degenerate maps. Sci. China Math. 2005, 48, 195-205. [CrossRef]
12. Onishchik, A.L.; Sulanke, R. Projective and Cayley-Klein Geometries; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2006.
(c) 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).
