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Abstract: We prove that the Lebesgue space of variable exponent Lp(·)(Ω) is modularly uniformly
convex in every direction provided the exponent p is finite a.e. and different from 1 a.e. The notion
of uniform convexity in every direction was first introduced by Garkavi for the case of a norm.
The contribution made in this work lies in the discovery of a modular, uniform-convexity-like
structure of Lp(·)(Ω), which holds even when the behavior of the exponent p(·) precludes uniform
convexity of the Luxembourg norm. Specifically, we show that the modular ρ(u) =

∫
Ω
|u(x)|dx

possesses a uniform-convexity-like structure even if the variable exponent is not bounded away from
1 or ∞. Our result is new and we present an application to fixed point theory.

Keywords: modular uniform convexity; modular vector spaces; uniform convexity; variable
exponent spaces

1. Introduction

The most remote origins of the notion of variable exponent Lebesgue spaces Lp(·) can be traced
back to [1], where a particular case was introduced as a generalization of the variable exponent
sequence spaces. The first systematic treatment of Lp(·) spaces is to be found in [2]. Since then, due to
the variety of applications in which these spaces play a role, a vast amount of research was devoted to
the study of variable exponent spaces.

The applicability of the variable exponent spaces was already demonstrated by their role the
description of the hydrodynamical behavior of non-Newtonian fluids; see for example [3–5] and the
model of image restoration [6,7] for more details.

Early on, the issue of uniform convexity with respect to the Luxemburg norm was identified
as an important problem and was studied in [8]. It was proved there that if Ω ⊆ Rn has positive
Lebesgue measure, then the Luxemburg norm on Lp(·)(Ω) is uniformly convex if and only if the
variable exponent is bounded away from 1 and ∞. More precisely, if

p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x),

then the uniform convexity of the Luxemburg norm is equivalent to the condition 1 < p− ≤ p+ < ∞.
The condition p+ < ∞ is, in turn, necessary and sufficient for the validity of the ∆2 condition on
the modular

Lp(·)(Ω) 3 u→
∫
Ω

|u(x)|p(x)dx = ρ(u),
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defined on Lp(·)(Ω). In particular, the preceding modular does not fulfill the ∆2 condition when

p+ = ∞. More precisely, setting Ω∞ = {x ∈ Ω : p(x) = ∞}, the ∆2 condition fails for ρ if p+ = ∞,
even if |Ω∞| = 0; see [9]. In the sequel we will refer to this case as that of an everywhere finite,
unbounded exponent. On the other hand, in view of the result in [8], the condition p− = 1 also
precludes the uniform convexity for the Luxemburg norm, even if p(x) > 1 everywhere.

In the present work we address the preceding two cases and prove that the modular ρ is uniformly
convex in every direction (Definition 1) under the assumptions that p(x) > 1 almost everywhere
and that |Ω∞| = 0. The novelty here is that the discussed uniform convexity of ρ holds even in the
limit-point cases p− = 1 or p+ = ∞. This notion was first introduced by Garkavi [10,11] for the case of
a norm. As an application of the geometric property of ρ alluded to above, we present a fixed point

result for mappings which are nonexpansive in the modular sense.

2. Preliminaries

Given a domain Ω ⊂ Rn, M(Ω) will stand for the vector space of all real-valued,
Borel-measurable functions defined on Ω. The subset of M(Ω) consisting of admissible
exponents functions

p : Ω −→ [1, ∞]

will be denoted by P(Ω). As usual, the Lebesgue measure of a subset A ⊂ Rn will be denoted by |A|.
We say that ρ :M(Ω)→ [0, ∞] is a convex regular modular function if the following hold:

(1) ρ(φ) = 0 if and only if φ = 0;
(2) ρ(αφ) = ρ(φ), if |α| = 1;
(3) ρ(αφ + (1− α)ψ) ≤ αρ(φ) + (1− α)ρ(ψ), for any α ∈ [0, 1],

where φ, ψ ∈ M(Ω). If the inequality (3) is strict whenever φ 6= ψ and α ∈ (0, 1), ρ is called
strictly convex (SC).

For each such p ∈ P(Ω) define the modular ρ :M(Ω)→ [0, ∞] by

ρ(u) =
∫

Ω0∪Ω1

|u(x)|p(x)dt + sup
x∈Ω∞

|u(x)|, (1)

where
Ω0 = {x ∈ Ω : 1 < p(x) < ∞},
Ω1 = {x ∈ Ω : p(x) = 1},
Ω∞ = {x ∈ Ω : p(x) = ∞}.

For p ∈ P(Ω) the following notation will be used throughout this work:

p− := ess inf
x∈Ω0

p(x) and p+ := ess sup
x∈Ω0

p(x).

The space Lp(·)(Ω) is defined as

Lp(·)(Ω) = {u ∈ M(Ω); there exists λ > 0 such that ρ(u/λ) < ∞},

furnished with the Luxemburg norm; namely, for u ∈ Lp(·)(Ω) one will set

‖u‖p(·) = inf
{

λ > 0 : ρ
( u

λ

)
≤ 1

}
. (2)

It is well known [2,12] that under the above assumptions Lp(·)(Ω) is a Banach space. Of particular
importance is the question of uniform convexity of the norm (2). The matter is in fact settled: uniform
convexity of the Luxemburg norm has been characterized in the following theorem:
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Theorem 1. [8] Conditions (i)–(iii) are equivalent:

(i) Lp(·)(Ω) is reflexive.

(ii) Lp(·)(Ω) is uniformly convex.

(iii) 1 < p− ≤ p+ < ∞.

There is therefore no hope of uniform convexity of the Luxemburg norm unless the variable
exponent is bounded away from 1 and ∞. At first glance, the situation when the exponent p is either
unbounded or its infimum is 1 seems to be insurmountable if one insists on focusing on the norm.
However, a closer examination reveals a uniform-convexity-like structure of the modular whose depth
and implications justify further analysis. This is the driving motivation of the present work. We open
the discussion with some preliminary results whose relevance will be apparent in the sequel.

3. Uniform Convexity in Every Direction (UCED)

The following technical lemma is a cornerstone in the approach that follows. For a detailed proof
we refer the reader to [13].

Lemma 1. [14] Let p ∈ R, 1 < p ≤ 2. Then the following inequality holds:∣∣∣∣ a + b
2

∣∣∣∣p + p(p− 1)
2

∣∣∣∣ a− b
|a|+ |b|

∣∣∣∣2−p ∣∣∣∣ a− b
2

∣∣∣∣p ≤ 1
2

(
|a|p + |b|p

)
,

for any a, b ∈ R such that |a|+ |b| 6= 0.

The next result is elementary; see [2,12,13] for more details.

Lemma 2. Let Ω ⊆ Rn be a domain and let p ∈ P(Ω) satisfy p+ < ∞. Then

‖u‖p(·) ≤ max

{(∫
Ω
|u|p dt

) 1
p−

,
(∫

Ω
|u|p dt

) 1
p+

}
(3)

The following theorem is the simplest form of the result in [9], to which we refer the reader for
a complete proof.

Theorem 2. [9] Let Ω ⊂ Rn be a bounded domain and assume that p ∈ P(Ω) satisfies p− > 1 and p(t) < ∞
a.e. in Ω. Then for fixed r > 0, 0 < ε ≤ 1 and any a ∈ Lp(·)(Ω), b ∈ Lp(·)(Ω) such that ρ(a) ≤ r, ρ(b) ≤ r
and ρ

(
a−b

2

)
≥ εr, one has the estimate

ρ

(
a + b

2

)
≤ r

(
1−min

{
ε

2
, (p− − 1)

ε2

2

})
.

To conclude this section we present Definition 1, which captures the essential modular convexity
property to be dealt with in the rest of this work.

Definition 1. A convex modular ρ on a vector space X is said to be uniformly convex in every direction (in short
(UCED)) if and only if for any z1 6= z2 ∈ X and R > 0, there exists δ = δ(z1, z2, R) > 0 such that{

ρ(x− z1) ≤ R
ρ(x− z2) ≤ R

=⇒ ρ

(
x− z1 + z2

2

)
≤ R(1− δ),
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for any x ∈ X. Moreover, we will say ρ is UUCED if for any z1 6= z2 and R0 > 0, there exists η(z1, z2, R0) > 0
such that

δ(z1, z2, R) ≥ η(z1, z2, R0),

for any R ≤ R0.

The following technical result will be useful to establish some fixed point results later on.

Lemma 3. Assume that a convex modular ρ on a vector space X is (UUCED). Let z1, z2 ∈ X. Assume there
exist R ≥ 0 and xn ∈ X such that 

lim sup
n→∞

ρ(xn − z1) ≤ R

lim sup
n→∞

ρ(xn − z2) ≤ R,

lim sup
n→∞

ρ
(

xn − z1+z2
2

)
= R.

Then z1 = z2 holds.

Proof. If R = 0, then
lim sup

n→∞
ρ(xn − z1) = lim sup

n→∞
ρ(xn − z2) = 0.

which implies that {xn} ρ-converges to z1 and z2. The uniqueness of the ρ-limit implies z1 = z2.
Otherwise, assume R > 0 and z1 6= z2. Fix ε > 0. Using the definition of the limit-sup, there exists
n0 ≥ 1 such that

ρ(xn − z1) ≤ R + ε and ρ(xn − z2) ≤ R + ε,

for any n ≥ n0. Since ρ is UUCED, set η = η(z1, z2, R) > 0. Then we have δ(z1, z2, R + ε) ≥ η

which implies

ρ

(
xn −

z1 + z2

2

)
≤ (R + ε)(1− δ(z1, z2, R + ε)) ≤ (R + ε)(1− η),

for any n ≥ n0. Letting n→ ∞, it follows that

lim sup
n→∞

ρ

(
xn −

z1 + z2

2

)
≤ (R + ε)(1− η).

Since ε was taken arbitrarily, we get

R = lim sup
n→∞

ρ

(
xn −

z1 + z2

2

)
≤ R (1− η) < R.

This contradiction forces z1 = z2, as claimed.

Note that it is easy to check that if ρ is UUCED, then it is strictly convex.

4. The (UUCED) Property for the Variable Exponent Spaces Lp(·)

We aim at proving the following Theorem:

Theorem 3. Let Ω ⊆ Rn be a bounded domain and p ∈ P(Ω) be an admissible exponent. Then the following
properties are equivalent

(i) |Ω1| = |Ω∞| = 0.



Mathematics 2020, 8, 870 5 of 12

(ii) The modular ρ is strictly convex (SC).
(iii) The modular ρ is (UUCED).

Proof. As we noted before, it is clear that (iii) implies (ii). Since L1(Ω1) and L∞(Ω∞) are not strictly
convex, then (ii) implies (i). To complete the proof, we need to show that (i) implies (iii).

Note that the assumption (i) implies that 1 < p(x) < ∞ a.e. Let z1 and z2 be in Lp(·)(Ω) such that
z1 6= z2. Thus, the set

Ω̃ = {x ∈ Ω; z1(x) 6= z2(x)}

has positive measure; i.e., |Ω̃| > 0. Fix a ∈ (1, 2). We have Ω̃ = Ω̃1a ∪ Ω̃a∞, where

Ω̃1a = {x ∈ Ω̃ : 1 < p(x) < a} and Ω̃a∞ = {x ∈ Ω̃ : a ≤ p(x)}.

Fix R > 0 and let u ∈ Lp(·)(Ω), be selected in such a way that

ρ(u− z1) ≤ R and ρ(u− z2) ≤ R.

It will be shown that there exists δ(z1, z2, R) > 0 such that

ρ

(
u− z1 + z2

2

)
≤ R (1− δ(z1, z2, R)).

To simplify the notation, for v ∈ Lp(·)(Ω) we set

ρ1a(v) =
∫

Ω̃1a

|v(x)|p(x)dx and ρc
1a(v) =

∫
(Ω̃1a)c

|v(x)|p(x)dx.

The proof of Theorem 3 is split in two different scenarios, depending on whether |Ω̃1a| > 0 or
|Ω̃1a| = 0.

Case 1: |Ω̃1a| > 0

By definition and in accordance with the above terminology, one has

ρ

(
u− z1 + z2

2

)
= ρ1a

(
u− z1 + z2

2

)
+ ρc

1a

(
u− z1 + z2

2

)
.

For x ∈ Ω̃1a, Lemma 1 implies∣∣∣∣u(x)− z1(x) + z2(x)
2

∣∣∣∣p(x)
+ Z(x) ≤ 1

2

(
|u(x)− z1(x)|p(x) + |u(x)− z2(x)|p(x)

)
, (4)

where

Z(x) =
p(x)(p(x)− 1)

2

∣∣∣∣ z1(x)− z2(x)
|u(x)− z1(x)|+ |u(x)− z2(x)|

∣∣∣∣2−p(x) ∣∣∣∣ z1(x)− z2(x)
2

∣∣∣∣p(x)

=
p(x)(p(x)− 1)

2p(x)+1
|z1(x)− z2(x)|2∣∣∣|u(x)− z1(x)|+ |u(x)− z2(x)|

∣∣∣2−p(x)
.
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To facilitate the computations, for x ∈ Ω̃1a set

γ(x) =
p(x)(p(x)− 1)

2p(x)+1
<

a(a− 1)
4

<
1
2

,

f (x) = γ(x)|z1(x)− z2(x)|2,

g(x) =
1(

|u(x)− z1(x)|+ |u(x)− z2(x)|
)2−p(x)

.

By assumption, one has

∫
Ω̃1a

(
1

g(x)p(x)/2

)2/(2−p(x))
dx =

∫
Ω̃1a

(
|u(x) + z1(x)|+ |u(x)− z2(x)|

)p(x)
dx

≤
∫

Ω̃1a

2p(x)−1
(
|u(x)− z1(x)|p(x) + |u(x)− z2(x)|p(x)

)
dt

≤ 2
∫

Ω̃1a

(
|u(x)− z1(x)|p(x) + |u(x)− z2(x)|p(x)

)
dx

≤ 2(2R) = 4R.

Next, a direct application of Hölder’s inequality yields∫
Ω̃1a

f (x)p(x)/2dx =
∫

Ω̃1a

( f (x)g(x))p(x)/2 1
g(x)p(x)/2

dx

≤ Cp

∥∥∥( f (x)g(x))p(x)/2
∥∥∥

2/p(x)

∥∥∥ 1
g(x)p(x)/2

∥∥∥
2/2−p(x)

,

where Cp is a constant that depends only on the exponent function p(·); in fact, Cp can be chosen to
depend only on the auxiliary parameter a. Since for t ∈ Ω̃1a, 2/p(x) ≤ 2 and 2/(2− p(x)) ≤ 2/(2− a)
hold, a straightforward application of Lemma 2 yields

∫
Ω̃1a

f (x)p(x)/2dt ≤ Cp

( ∫
Ω̃1a

f (x)g(x)dx

)α ( ∫
Ω̃1a

1
g(x)p(x)/(2−p(x))

dx

)β

≤ Cp (4 R)β

( ∫
Ω̃1a

f (x)g(x)dx

)α

,

where α ∈ A = {(2/p)+, (2/p)−} and β ∈ B = {(2/(2− p))+, (2/(2− p))−}. Set

∆(R, z1, z2, α, β) =
1(

Cp (4 R)β
)1/α

( ∫
Ω̃1a

γ(x)p(x)/2|z1(x)− z2(x)|p(x)dx

)1/α

(5)

and define
∆(R, z1, z2) = min{∆(R, z1, z2, α, β), α ∈ A, β ∈ B}.

Since 1 < p(x) < ∞ a.e., we have ∆(R, z1, z2) > 0. It thus follows that

∫
Ω̃1a

f (x)g(x)dx =
∫

Ω̃1a

γ(x)|z1(x)− z2(x)|2(
|u(x)− z1(x)|+ |u(x)− z2(x)|

)2−p(x)
dx ≥ ∆(R, z1, z2).
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In conclusion, on account of inequality (4), we have

ρ1a

(
u− z1 + z2

2

)
+ ∆(R, z1, z2) ≤

ρ1a(u− z1) + ρ1a(u− z2)

2
.

The convexity of ρc
1a yields

ρc
1a

(
u− z1 + z2

2

)
≤

ρc
1a(u− z1) + ρc

1a(u− z2)

2
,

the preceding inequalities, added up, imply

ρ

(
u− z1 + z2

2

)
+ ∆(R, z1, z2) ≤

ρ(u− z1) + ρ(u− z2)

2
≤ R.

Set δ1(z1, z2, R) =
1
R

∆(R, z1, z2). Then δ1(z1, z2, R) is a decreasing, positive function of R and
we have

ρ

(
u− z1 + z2

2

)
≤ R(1− δ1(z1, z2, R)).

Case 2: |Ω̃1a| = 0; i.e., Ω̃ = Ω̃a∞

In this case, the restriction of p(·) to Ω1 satisfies p− ≥ a > 1. Let u1, z11 and z12 be the restrictions
to Ω1, of u, z1 and z2 respectively. For v ∈ Lp(·)(Ω), write

ρ1a(v) =
∫
Ω̃

|v(x)|p(x)dx and ρc
1a(v) =

∫
(Ω̃)c

|v(x)|p(x)dx.

It is clear from the fact that z1 = z2 on (Ω̃)c that

ρc
1a(u− z1) = ρc

1a(u− z2) = ρc
1a

(
u− z1 + z2

2

)
= Ru ≤ R. (6)

For the same reason,

ρ1a

(
z1 − z2

2

)
= ρ

(
z1 − z2

2

)
> 0.

Set ε = ρ((z1 − z2)/2)/R. Hence

R ε = ρ1a

(
z1 − z2

2

)
≤ ρ1a(u− z1) + ρ1a(u− z2)

2
≤ R− Ru ≤ R.

Thus, 
ρ1a

(
z1 − z2

2

)
≥ (R− Ru) ε,

ρ1a(u− z1) ≤ R− Ru,
ρ1a(u− z2) ≤ R− Ru,

It follows from |Ω∞| = 0 and the application of Theorem 2 to the modular ρ1a on Lp(·)(Ω1) with
r = R− Ru that

ρ1a

(
u− z1 + z2

2

)
≤ (R− Ru)

(
1− δ2(ε)

)
.

where

δ2(ε) = min
{

ε

2
, (p− − 1)

ε2

2

}
.
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Hence

ρ

(
u− z1 + z2

2

)
= ρ1a

(
u− z1 + z2

2

)
+ ρc

1a

(
u− z1 + z2

2

)
= ρ1a

(
u− z1 + z2

2

)
+ Ru

≤ (R− Ru)
(

1− δ2(ε)
)
+ Ru

= R
(

1− R− Ru

R
δ2(ε)

)
≤ R (1− ε δ2(ε)) ,

since R− Ru ≥ Rε. Set

δ(z1, z2, R) = min
{

δ1(z1, z2, R),
ρ((z1 − z2)/2)

R
δ2

(
ρ((z1 − z2)/2)

R

)}
.

Then δ(z1, z2, R) is a decreasing positive function of R and we have

ρ

(
u− z1 + z2

2

)
≤ R (1− δ(z1, z2, R)),

which completes the proof of our claim.

5. Example

We present an example, originally given in ([15], Example 2.15), to illustrate the relevance of our
main result. Consider the set B = {u ∈ Lp(x)((0, ∞)) : ‖u‖∞ ≤ 1

2 , where p(x) = x + 1} , let τh be the
translation operator on Lx+1((0, ∞)) (i.e., τh(u)(x) = u(x− h) ) and ρ be the modular on Lx+1((0, ∞))

defined as
ρ(u) = e−2

∫ ∞

0
|u(x)|x+1dx. (7)

Consider the operator

J : Lx+1((0, ∞)) → Lx+1((0, ∞))

u → χ[1,∞]τ−1u,

observe that

χ[1,∞]τ−1u(x) =

{
u(x− 1), if x ≥ 1,

0, if 0 ≤ x < 1.

It is a trivial matter to verify that J(B) ⊆ B. Observe that for u, v ∈ B,

ρ(J(u)− J(v)) = e−2
∫ ∞

0
|J(u)(x)− J(v)(x)|x+1dx

= e−2
∫ ∞

1
|u(x− 1)− v(x− 1)|x+1dx

= e−2
∫ ∞

0
|u(x)− v(x)|x+1|u(x)− v(x)|dx

≤ ρ(u− v).
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Hence, J is ρ-nonexpansive. However,

ρ(eχ[0,1]) = e−2
∫ 1

0
ex+1dx = e−1(e− 1) < 1,

whereas

ρ(J(eχ[0,1])) = e−2
∫ 2

1
ex+1dx = e− 1 > 1.

Denote the Luxemburg norm associated to the modular ρ given in (7) on Lx+1((0, ∞)) by
‖ · ‖x+1. It follows from the preceding two inequalities that ‖2−1eχ[0,1]‖x+1 ≤ 2−1, whereas
‖J(2−1eχ[0,1])‖x+1 > 2−1; in other words, J is not ‖ · ‖x+1-nonexpansive on B.

6. Application

Next, we discuss an application of the modular UUCED to the fixed point problem for
ρ-nonexpansive mappings. The following technical lemma will be useful.

Lemma 4. Let Ω ⊆ Rn be a bounded domain and p ∈ P(Ω) be an admissible exponent, such that |Ω1| =
|Ω∞| = 0. Let W ⊂ Lp(·)(Ω) be a convex nonempty subset and {un} be a sequence in Lp(·)(Ω). Define
Θ : W → [0, ∞] by

Θ(w) = lim sup
n→∞

ρ(un − w).

Assume inf
w∈W

Θ(w) < ∞. Then Θ has at most one minimum point.

Proof. Assume there exist v∗, w∗ ∈W such that

Θ(v∗) = Θ(w∗) = inf
w∈W

Θ(w) = inf
w∈W

(
lim sup

n→∞
ρ(un − w)

)
.

Since ρ is convex and W is a convex subset, it follows that

inf
w∈W

Θ(w) ≤ Θ
(

w∗ + v∗

2

)
≤ Θ(w∗) + Θ(v∗)

2
= inf

w∈W
Θ(w),

which implies

Θ(w∗) = Θ(v∗) = Θ(
w∗ + v∗

2
).

Theorem 3 and Lemma 3, with R = inf
w∈W

Θ(w), yield v∗ = w∗.

Next, we discuss the existence of the minimum point. This is not a sure thing even in the case of
a norm in a Banach space. We will start our discussion with the case of a uniformly continuous modular.

Definition 2. Let Ω ⊆ Rn be a bounded domain and p ∈ P(Ω) be an admissible exponent. ρ is said to be
uniformly continuous if for every ε > 0 and L > 0, there exists δ > 0 such that

|ρ(x + y)− ρ(x)| ≤ ε,

whenever ρ(y) ≤ δ and ρ(x) ≤ L, for any x, y ∈ Lp(·)(Ω).

As shown in the works by Chen [16] and Kaminska [17], the modular ρ in Lp(·)(Ω) is uniformly
continuous if and only if p+ < ∞. Lemma 5.1 in [18] implies the following
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Lemma 5. Let Ω ⊆ Rn be a bounded domain and p ∈ P(Ω) be an admissible exponent. Assume that ρ is
uniformly continuous; then the function Θ : W → [0, ∞] defined by

Θ(w) = lim sup
n→∞

ρ(un − w),

where {un} is a sequence in Lp(·)(Ω), is ρ-lower semicontinuous.

Recall that the modular ρ has the property (R) [18] if and only if every nonincreasing sequence
{Cn} of nonempty, ρ-bounded, ρ-closed, convex subsets of Lp(·)(Ω) has nonempty a intersection.
For concrete examples of Lp(·)(Ω) spaces for which ρ has the property (R), the reader may consult [9].

Lemma 6. Let Ω ⊆ Rn be a bounded domain and p ∈ P(Ω) be an admissible exponent, such that |Ω1| = 0
and p+ < ∞. Assume ρ has the property (R). Let W ⊂ Lp(·)(Ω) be a ρ-bounded, ρ-closed, convex nonempty
subset and {un} be a sequence in Lp(·)(Ω). Define Θ : W → [0, ∞] by

Θ(w) = lim sup
n→∞

ρ(un − w).

Assume inf
w∈W

Θ(w) < ∞. Then Θ has a minimum point in W.

Proof. Under the above assumptions, Θ is ρ-lower semicontinuous. Set

Wn =

{
w ∈W, Θ(w) ≤ inf

w∈W
Θ(w) +

1
n

}
,

for n ≥ 1. Clearly Wn is a nonempty ρ-closed and convex subset of W, for any n ≥ 1. The property (R)
implies

⋂
n≥1

Wn 6= ∅. Clearly, we have Θ(w∗) = inf
w∈W

Θ(w), for any w∗ ∈ ⋂
n≥1

Wn; i.e., Θ has a minimum

point in W as claimed.

Now we are ready to state the main application of this work.

Theorem 4. Let Ω ⊆ Rn be a bounded domain and p ∈ P(Ω) be an admissible exponent, such that |Ω1| = 0
and p+ < ∞. Assume ρ has the property (R). Let W ⊂ Lp(·)(Ω) be ρ-bounded, ρ-closed, convex nonempty
subset. Let T : W →W be ρ-nonexpansive; i.e.,

ρ(T(x)− T(y)) ≤ ρ(x− y), x, y ∈W.

Then T has a fixed point.

Proof. Fix x0 ∈W. Consider Θ : W → [0, ∞] defined by

Θ(w) = lim sup
n→∞

ρ(Tn(x0)− w).

Since W is ρ-bounded, it readily follows that Θ(w) ≤ sup
w1,w2∈W

ρ(w1 − w2) < ∞, for any w ∈ W,

which implies inf
w∈W

Θ(w) < ∞. Lemmas 4 and 6 imply that Θ has a unique minimum point z ∈W. Since

Θ(T(z)) = lim sup
n→∞

ρ(Tn(x0)− T(z))

≤ lim sup
n→∞

ρ(Tn−1(x0)− z)

= Θ(z),
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we conclude that T(z) is also a minimum point of Θ. The uniqueness of the minimum proved in
Lemma 4 forces T(z) = z; i.e., z is a fixed point of T.

7. Conclusions

In this paper we were able to shed light on the uniform-convexity structure ((SE), (UCED) and
(UUCED)) of the modular ρ under the optimal assumptions |Ω1| = |Ω∞| = 0. We underline the fact
that our result applies to the end-point cases

p− := ess inf
x∈Ω0

p(x) = 1 and p+ = ess sup
x∈Ω0

p(x) := ∞.

and that it is the first of its kind in the literature. Theorem 3 cannot be improved. In fact, it follows
by definition that the modular ρ coincides with the L1 norm on any function supported in Ω1 and
with the L∞ norm on any function supported on Ω∞. Since neither L1 or L∞ is even strictly convex,
it follows that our result cannot be extended to the case when either Ω1 or Ω∞ has positive measure;
i.e., Theorem 3 is optimal.

Theorem 3 has also opened a new direction in the applications of the estimate for variable
exponent spaces; see [12,19]. Theorem 4 is an example of a result that was hitherto unknown for the
end point case p− = 1.
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