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Abstract: Let A(G) be the adjacent matrix and D(G) the diagonal matrix of the degrees of a graph G,
respectively. For 0 ≤ α ≤ 1, the Aα-matrix is the general adjacency and signless Laplacian spectral
matrix having the form of Aα(G) = αD(G) + (1− α)A(G). Clearly, A0(G) is the adjacent matrix and
2A 1

2
is the signless Laplacian matrix. A cactus is a connected graph such that any two of its cycles

have at most one common vertex, that is an extension of the tree. The Aα-spectral radius of a cactus
graph with n vertices and k cycles is explored. The outcomes obtained in this paper can imply some
previous bounds from trees to cacti. In addition, the corresponding extremal graphs are determined.
Furthermore, we proposed all eigenvalues of such extremal cacti. Our results extended and enriched
previous known results.
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1. Introduction

We consider simple finite graph G with vertex set V(G) and edge set E(G) throughout this work.
The order of a graph is |V(G)| = n and the size is |E(G)| = m. For a vertex v ∈ V(G), the neighborhood
of v is the set N(v) = NG(v) = {w ∈ V(G), vw ∈ E(G)}, and dG(v) (or briefly dv) denotes the degree
of v with dG(v) = |N(v)|. For L ⊆ V(G) and R ⊆ E(G), let G[L] be the subgraph of G induced by L,
G− L the subgraph induced by V(G)− L and G− R the subgraph of G obtained by deleting R. Let
w(G− L) be the number of components of G− L, and L be a cut set if w(G− L) ≥ 2. If e is an edge of
G and w(G− e) ≥ 2, then e is a cut edge of G. If G− e contains at least two components, each of which
contains at least two vertices, then e is called a proper cut edge of G. Let Kn, Pn and Sn denote the
clique, the path and the star on n vertices, respectively. If Pk = v1v2 · · · vk is a subgraph of G, d(v1) ≥ 3,
d(vi) = 2(2 ≤ i ≤ k− 1) and d(vk) = 1, then Pk is called a pendant path in G.

Let A(G) be the adjacency matrix and D(G) the diagonal matrix of the degrees of G. The signless
Laplacian matrix of G is considered as

Q(G) = D(G) + A(G).

As the successful considerations on A(G) and Q(G), Nikiforov [1] proposed the matrix Aα(G) of
a graph G

Aα(G) = αD(G) + (1− α)A(G),

for α ∈ [0, 1]. It is not hard to see that if α = 0, Aα is the adjacent matrix, and if α = 1
2 , then 2A 1

2
is the

signless Laplacian matrix of G.
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In the mathematical literature, there are numerous studies of properties of the (signless, Aα)
spectral radius [2–7]. For instance, Chen [8] explored properties of spectra of graphs and line graphs.
Lovász and J. Pelikán [9] deduced the spectral radius of trees. Cvetković [10] proposed the spectra of
signless Laplacians of graphs and discussed a related spectral theory of graphs. Zhou [11] obtained
the bounds of signless Laplacian spectral radius and its hamiltonicity. Lin and Zhou [12] studied
graphs with at most one signless Laplacian eigenvalue exceeding three. In addition to the thriving
considerations of the spectral radius, the Aα-spectral radius would be attractive.

We first introduce some interesting properties for the Aα-matrix. Let G be a graph with
vertex set V(G) = {u1, u2, · · ·, un} and edge set E(G). Denote the eigenvalues of Aα(G) by
λ1(Aα(G)) ≥ λ2(Aα(G)) ≥ · · · ≥ λn(Aα(G)). The largest eigenvalue ρ(G) := λ1(Aα(G)) is
defined as the Aα-spectral radius of G. Denote by X = (xu1 , xu2 , · · ·, xun)

T a real vector. As Aα(G) =

αD(G) + (1− α)A(G), the quadratic form of XT Aα(G)X can be written as

XT Aα(G)X = α ∑
ui∈V(G)

x2
ui

dui + 2(1− α) ∑
uiuj∈E(G)

xui xuj . (1)

Because Aα(G) is a real symmetric matrix, and by Rayleigh principle, we have the
important formula

ρ(G) = maxX 6=0
XT Aα(G)X

XTX
. (2)

If X is an eigenvector of ρ(G) for a connected graph G, then X is positive and unique.
The eigenequations for Aα(G) can be represented as the following form

ρ(G)xui = αdui xui + (1− α) ∑
uiuj∈E(G)

xuj . (3)

Nikiforov et al. [13] studied the Aα-spectra of trees and determined the maximal Aα-spectral
radius. It is known that a tree is a graph without cycles. If we replace some vertices in a tree as a cycle,
then this is an extension of the tree, that is, a cactus graph is a connected graph such that any two of
its cycles have at most one common vertex. Denoted by Ck

n be the set of all cacti with n vertices and
kcycles, for an integer k ≥ 0,. Let Cc be a cactus graph in Ck

n such that all cycles (if any) have length
3 and common the vertex v, that is, Cc contains k cycles vv1v′1v, vv2v′2v, · · ·, vvkv′kv and n − 2k − 1
pendant edges vu1, vu2, · · ·, vun−2k−1. When k = 0, Cc is a star; k = 1, n = 3, Cc is a triangle.

The cactus graph has been considered in mathematical literature, especially for the communication
between graph theory and algebra. Borovićanin and Petrović investigated the properties of cacti with
n vertices [14]. Chen and Zhou [15] obtain the upper bound of the signless Laplacian spectral radius of
cacti. Wu et al. [16] found the spectral radius of cacti with k-pendant vertices. Shen et al. [17] studied
the signless Laplacian spectral radius of cacti with given matching number.

Inspired by the above results, in this paper, we generalize the Aα-spectra from the trees to the
cacti with α ∈ [0, 1) and determine the largest Aα-spectral radius in Ck

n. The extremal graph attaining
the sharp bound is proposed as well. Furthermore, we explore all eigenvalues of such extremal cacti.
By using these outcomes, some previous results can be deduced, see [13–15].

Section 2 starts with Main lemmas, based on our lemmas, we turn to provide the largest
Aα-spectral radius of a cactus graph Ck

n. Section 3 is a conclusion of the paper in the aspect of
the applications. Section 4 is furthermore remarks. Section 5 is the Appendix A; in this Appendix, we
determine the eigenvalues of Cc by a different methods.

2. Main Results and Lemmas

In this section, we first give some important lemmas that are used to our main proof.
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Lemma 1. Let Aα(G) be the Aα-matrix of a connected graph G with 0 ≤ α < 1, u ∈ S ⊂ V(G), and v, w ∈
V(G) such that S ⊂ N(v) \ (N(w) ∪ {w}). Denote by H the graph with vertex set V(G) and edge set
E(G) \ {uv, u ∈ S} ∪ {uw, u ∈ S}, and X a unit eigenvector to ρ(Aα(G)) [13,18]. For |S| 6= 0, if either

(i) XT Aα(H)X ≥ XT Aα(G)X, or
(ii) xw ≥ xv, then

ρ(H) > ρ(G).

Lemma 2. Let Ck
n be a cactus, α ∈ [0, 1) and Cl a cycle of Ck

n. If ρ(Ck
n) is maximal, then Cl is a triangle.

Proof. We prove it by a contradiction. Suppose that Ck
n contains a cycle Cl with the length l ≥ 4.

Let uv be an edge in Cl and X be the unit eigenvector of ρ(G). Without loss of generality, assume
that xu ≥ xv and w ∈ V(Cl) ∩ N(v) \ {u}. We build a graph H with vertex set V(Ck

n) and edge set
E(Ck

n) \ {vw} ∪ {uw}. Then H is a cactus graph and the length of Cl decreases by 1. By Lemma 1, we
have ρ(H) > ρ(Ck

n). This contradiction yields to our proof.

Lemma 3. Let G be a graph such that u0 is a cut vertex, and the path u0u1 · · · uk is a pendant path. For α ∈
[0, 1), if X = (x0, x1, x2, · · ·, xk, · · ·, xn) is a unit eigenvector of ρ(G) corresponding to the vertex set {u0, u1, u2,
· · · , uk, · · ·, un} and ρ(G) > 2, then x0 > x1 > x2 > · · · > xk [18].

Lemma 4. Let Ck
n be a cactus and α ∈ [0, 1), if ρ(Ck

n) is maximal, the length of its pendant path is 1.

Proof. We prove it by a contradiction. Suppose that there is a pendant path u0u1 · · · uk with k ≥ 2 and
u0 is a cut vertex of degree at least 3.

Let X = (x0, x1, x2, · · ·, xn) be a unit eigenvector of G corresponding to ρ(Ck
n) and vertex set

{u0, u1, u2, · · ·, un}. Since Ck
n is not a 2-regular graph, then ρ(Ck

n) > 2. By Lemma 3, we have x0 > x1 >

x2 > · · · > xk.
Let H be a graph with vertex set V(Ck

n) and edge set E(Ck
n) \ {u1u2} ∪ {u0u2}. Then H is a cactus

graph. Since x0 > x1, by Lemma 1, we have ρ(H) > ρ(Ck
n), which is a contradiction. We complete

the proof.

Lemma 5. Let Ck
n be a cactus and α ∈ [0, 1), if ρ(Ck

n) is maximal, there is no proper cut edge.

Proof. We prove it by a contradiction. Suppose that there exists a proper cut edge uv such that Ck
n − uv

contains at least two components G1, G2 such that |Gi| ≥ 2, i = 1, 2.
Let X be the unit eigenvector of ρ(Ck

n). Without loss of generality, assume that xu ≥ xv, u ∈ V(G1)

and v ∈ V(G2). Let S = NG(v) \ {u}. We set a new graph H with vertex set V(Ck
n) and edge set

E(Ck
n) \ {vw, w ∈ S} ∪ {uw, w ∈ S}. Then H is a cactus graph. By Lemma 1, we have ρ(H) > ρ(Ck

n),
which is a contradiction. The proof is completed.

Next, based on our lemmas, we turn to provide the largest Aα-spectral radius of a cactus graph
Ck

n in the set of cacti Ck
n.

Theorem 1. Let Ck
n ∈ Ck

n be a cactus and α ∈ [0, 1). Then

ρ(Ck
n) ≤ ρ(Cc).

Proof. Let α ∈ [0, 1], and Ck
n be a cactus graph of order n such that ρ(Aα(G)) is maximal in Ck

n.
By Lemma 2, all cycles (if any) are of length 3. By Lemma 4, all pendant paths are pendant edges.
By Lemma 5, all cycles are not connected by an edge or a path.

Therefore, it suffices to prove that all cycles and pendant edges are sharing a common cut vertex.
Next we prove the following claim.
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Claim 1. There exists a unique cut vertex in such Ck
n.

Proof. We prove it by a contradiction. Assume that there are at least two cut vertices u, v. By Lemma 5,
uv is not a cut edge.

Let Nu = {w1
u, w2

u, · · ·, wl
u} and Nv = {w1

v, w2
v, · · ·, wr

v} be two neighborhoods of vertices u and v.
Without loss of generality, suppose that xu ≥ xv and w1

v has the shortest distance to the cut vertex u.
Denote w1

v, w2
v and v in a same cycle. Now we build a new graph H1 with vertex set V(Ck

n) and edge
set E(Ck

n) \ {vwi
v, 3 ≤ i ≤ r} ∪ {uwi

v, 3 ≤ i ≤ r}. Note that the component number w(H1) = w(H)− 1
and H1 is still a cactus graph. By Lemma 1, we have ρ(H1) > ρ(Ck

n). This is a contradiction that the
chosen Ck

n has the maximal ρ in Ck
n.

We can recursively apply the process using in Claim 1 and obtain the graph with the maximal ρ.
Thus, we prove that the maximal ρ attains the cactus Cc.

While we consider the relation between adjacent matrix A(G), signless Laplacian matrix Q(G),
we can obtain the following corollary for the spectral radius ρA and ρQ, respectively.

Corollary 1. Let Ck
n ∈ Ck

n be a cactus and α ∈ [0, 1) [14,15]. Then

ρ(A(Ck
n)) ≤ ρ(A(Cc)) and ρ(Q(Ck

n)) ≤ ρ(Q(Cc)).

Finally, we determine the eigenvalues of Aα(Cc). Since Cc contains k 3-cycles, partition the vertex
set of Cc into three subsets: {v}, T, S, where v is the vertex joining V(Cc) {v} with 2k + t edges, and S
is a subset of vertices of degree two joining u, and T = V(Cc) S ∪ {v}. Let x be a Perron vector of Cc.
S = {v1, v2, · · ·, vk, v′1, v′2, · · ·, v′k} and T = {u1, u2, · · ·, ut}. Note that 2k + t + 1 = n.

Theorem 2. Label the vertices of Cc as v, v1, v2, · · ·, vk, v′1, v′2, · · ·, v′k, u1, u2, · · ·, ut with k, t ≥ 0, and t =

n− 2k− 1. The maximum eigenvalues of Aα(Cc) satisfy the equation: f (ρ) = (α− ρ)3 + (nα− 2α + 1)(α−
ρ)2 + [(1− n)α2 + (3n− 4)α + 1− n](α− ρ)− (n− 2k− 1)(1− α)2.

Proof. By the Equation (3)

ρ(G)xv = (2k + t)αxv + (1− α)
k

∑
i=1

(xvi + xv′i
) +

t

∑
j=1

xuj , (4)

ρ(G)xvi = 2αxvi + (1− α)xv + (1− α)xv′i
, (1 ≤ i ≤ k) (5)

ρ(G)xv′i
= 2αxv′i

+ (1− α)xv + (1− α)xvi , (1 ≤ i ≤ k), and (6)

ρ(G)xui = αxui + (1− α)xv, (1 ≤ i ≤ t). (7)

In Equation (7), we obtain:
ρ(xu1 − xu2) = α(xu1 − xu2).

Note that for any graph G with at least one edges, ρ(G) ≥ ∆(G) + 1 = n. Then xu1 = xu2 .
Similary, xu2 = · · · = xut and by Equation (5) and (6), we obtain: xv1 = · · · = xvk = xv′1

= · · · = xv′k
.

Thus, x has constant values, say β2, on the vertices of S, and constant values β3 on the vertices of T.
Letting x(v) =: β1, ρ(Cc) =: ρ, also by (3), we get

((2k + t)α− ρ)β1 + (1− α)(2kβ2 + tβ3) = 0,

(1 + α− ρ)β2 + (1− α)β1 = 0, and

(α− ρ)β3 + (1− α)β1 = 0.
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Then we get

ρ− (2k + t)α =
2k(1− α)2

ρ− α− 1
+

t(1− α)2

ρ− α
.

Note that for n = t + 2k + 1. Then we obtain:

f (ρ) = (α− ρ)3 +(nα− 2α+ 1)(α− ρ)2 +[(1−n)α2 +(3n− 4)α+ 1−n](α− ρ)− (n− 2k− 1)(1− α)2.

Thus, we obtained our results.

We also provide another method for the above result using matrix operations at the
Appendix A section.

Corollary 2. Let G be a cactus graph of order n with k cycle, where k ≥ 0, the maximum adjacency spectral
radius is the largest root of the equation: f (λ) = −λ3 + λ2 + (n− 1)λ− (n− 2k− 1) = 0.

Proof. By Theorem 2, let α = 0, then f (λ) = −λ3 + λ2 + (n− 1)λ− (n− 2k− 1) = 0. It is obvious
since A0 = A(G).

Corollary 3. Let G be a cactus graph of order n with k cycle, where k ≥ 0, the maximum signless Laplacian
spectral radius is twice of the largest root of the equation: f (λ) = ( 1

2 − λ)3 + n
2 (

1
2 − λ)2 + (n−3)

4 ( 1
2 − λ)−

(n−2k−1)
4 = 0.

Proof. By Theorem 2, let α = 1
2 , then f (λ) = ( 1

2 − λ)3 + n
2 (

1
2 − λ)2 + (n−3)

4 ( 1
2 − λ)− (n−2k−1)

4 = 0. It
is obvious since 2A 1

2
= D(G) + A(G).

The largest Aα-spectral radius among trees attains at a star, that is k = 0, t = n− 1. Applying
such k, t to f (λ), we have the characteristic equation is

(α− λ)n−2[(nα− α− λ)(α− λ)− (n− 1)(1− α)2] = 0.

The roots of this equation (or the eigenvalues of Aα-matrix of a star) are α of n − 2 copies,
αn+
√

α2n2+4(n−1)(1−2α)
2 and αn−

√
α2n2+4(n−1)(1−2α)

2 . Note that αn+
√

α2n2+4(n−1)(1−2α)
2 is the largest one

in these roots. In other words, we used a general method to prove the following corollary.

Corollary 4. If T is a tree with n vertices and 0 ≤ α ≤ 1, then

ρ(Aα(T)) ≤
αn +

√
α2n2 + 4(n− 1)(1− 2α)

2
,

the equality holds if and only if T is a star [1,13]. In particular, the eigenvalues of Aα-matrix of a star are

α,
αn +

√
α2n2 + 4(n− 1)(1− 2α)

2
and

αn−
√

α2n2 + 4(n− 1)(1− 2α)

2
.

In addition, when α = 0 or 1
2 , the results of adjacent matrix from Lovász and Pelikán [9] and

signless Laplacian matrix from Chen [8] are deduced analogously, respectively.

3. Conclusions

It is known that carbon chemical structures are foundational in accessing the properties of applied
science. We discuss the type of cactus graphs, in which every two circles will not share at least two
atoms. Based on the monotonicity of transformations on their skeletons, some extremal cases are
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proposed. In general, “Wanted” information may be attained at those extremal ends. As an example,
the graph in Figure 1 is tight and all circles are shared at one point. So the structure may much stronger
than that of linear arrangement. Furthermore, our method combines general adjacency and signless
Laplacian spectral matrix, and deduced an unified results for both these matrices, named Aα index.
Finally, we deduce the extremal cacti and its related eigenvalues.

Figure 1. A tight example.

4. Remarks

As is known, fullerene graphs have regular structures with the degrees of all vertices equal to
three (due to the typical tri-coordination of sp -hybridized carbon atoms) [a]. The possible application
of the cactus graphs may deal with the carbon-based structures containing the carbon atoms with
different coordination. In such structures, tetra-coordinated carbon atoms may correspond to the
vertices common for simple cycles of cacti. In this aspect, cactus graphs seem applicable to the structure
description of mixed carbon allotropes comprising a challenge for current carbon science [19–21].
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Appendix A

In this Appendix, we determine the eigenvalues of Cc by a different methods. The notation as
above, that is, let Cc be a cactus graph in Ck

n such that all cycles (if any) have length 3 and common
the vertex v, that is, Cc contains k cycles vv1v′1v, vv2v′2v, · · ·, vvkv′kv and n − 2k − 1 pendant edges
vu1, vu2, · · ·, vun−2k−1. Let 2k + t + 1 = n. Partition the vertex set of Cc into three subsets: {v}, T, S,
where d(v) = 2k + t, S is a subset of vertices of degree two joining v, and T = V(Cc)− (S ∪ {v}). That
is, S = {v1, v2, · · ·, vk, v′1, v′2, · · ·, v′k} and T = {u1, u2, · · ·, ut}. Let In be the identity matrix of order n.
Let Jn be a matrix of all entries 1 and 0n a matrix of all entries 0, respectively.

Theorem A1. Label the vertices of Cc as v, v1, v2, · · · , vk, v′1, v′2 · · · , v′k, u1, u2, · · ·, ut with k, t ≥ 0. The
eigenvalues of Aα(Cc) are α, α + 1(if k ≥ 2, otherwise none), 3α − 1 and the roots of f (λ) = 0, where
f (λ) = (α− λ)3 + (nα− 2α + 1)(α− λ)2 + [(1− n)α2 + (3n− 4)α + 1− n](α− λ)− t(1− α)2.
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Proof.

Aα − λIn =



(2k + t)α− λ (1− α)JT
k (1− α)JT

k (1− α)JT
t

(1− α)Jk (2α− λ)Ik (1− α)Ik 0

(1− α)Jk (1− α)Ik (2α− λ)Ik 0

(1− α)Jt 0 0 (α− λ)It


. (A1)

From the operations of the determinant det[Aα − λIn], we have

det[Aα − λIn] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2k + t)α− λ (1− α)JT
k (1− α)JT

k (1− α)JT
t

(1− α)Jk (2α− λ)Ik (1− α)Ik 0

(1− α)Jk (1− α)Ik (2α− λ)Ik 0

(1− α)Jt 0 0 (α− λ)It

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(Operations: Column 1 − (Column i) 1−α

α−λ , i ∈ [n− t + 1, n])

= (α− λ)t

∣∣∣∣∣∣∣∣∣∣∣

(2k + t)α− λ− t(1−α)2

α−λ (1− α)JT
k (1− α)JT

k

(1− α)Jk (2α− λ)Ik (1− α)Ik

(1− α)Jk (1− α)Ik (2α− λ)Ik

∣∣∣∣∣∣∣∣∣∣∣
(Operations: Column j − (Column i) 1−α

2α−λ , i ∈ [n− t− k + 1, n− t], j ∈ [1, n− t− k])

= (α− λ)t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2k + t)α− λ− t(1−α)2

α−λ ((1− α)− (1−α)2

2α−λ )JT
k (1− α)JT

k

− k(1−α)2

2α−λ

((1− α)− (1−α)2

2α−λ )Jk ((2α− λ)− (1−α)2

2α−λ )Ik (1− α)Ik

0 0 (2α− λ)Ik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(Operations: Column 1 − (Column i)

(1−α)− (1−α)2
2α−λ

(2α−λ)− (1−α)2
2α−λ

, i ∈ [2, n− t− k])

= (α− λ)t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2k + t)α− λ− t(1−α)2

α−λ − k(1−α)2

2α−λ ((1− α)− (1−α)2

2α−λ )JT
k (1− α)JT

k

− k(1−α)2(3α−λ−1)
(2α−λ)(α−λ+1)

0 ((2α− λ)− (1−α)2

2α−λ )Ik (1− α)Ik

0 0 (2α− λ)Ik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (α− λ)t(2α− λ)k[

(α− λ + 1)(3α− λ− 1)
2α− λ

]k[(2k + t)α− λ− t(1− α)2

α− λ
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− k(1− α)2

2α− λ
− k(1− α)2(3α− λ− 1)

(2α− λ)(α− λ + 1)
]

= (α− λ)t−1(α− λ + 1)k−1(3α− λ− 1)k{[(n− 1)α− λ](α− λ)(α− λ + 1)

−t(1− α)2(α− λ + 1)− 2k(1− α)2(α− λ)}.

In order to find the eigenvalues, we consider the characteristic equation

det[Aα − λIn] = 0.

We have the roots α of multiplicity t− 1, α + 1 (if k ≥ 2, otherwise none) of multiplicity k− 1,
3α− 1 of multiplicity k, and the other roots of f (λ) = (nα− α− λ)(α− λ)(α− λ + 1)− t(1− α)2(α−
λ + 1)− 2k(1− α)2(α− λ) = (α− λ)3 + (nα− 2α + 1)(α− λ)2 + [(1− n)α2 + (3n− 4)α + 1− n](α−
λ)− t(1− α)2 = 0. Therefore, these roots are the eigenvalues of Aα(Cc).
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10. Cvetković, D.; Rowlinson, P.; Simić, S.K. Signless Laplacians of finite graphs. Linear Algebra Its Appl. 2007,

423, 155–171. [CrossRef]
11. Zhou, B. Signless Laplacian spectral radius and Hamiltonicity. Linear Algebra Its Appl. 2010, 432, 566–570.

[CrossRef]
12. Lin, H.; Zhou, B. Graphs with at most one signless Laplacian eigenvalue exceeding three. Linear Multilinear

Algebra 2015, 63, 377–383. [CrossRef]
13. Nikiforov, V.; Pastén, G.; Rojo, O.; Soto, R.L. On the Aα-spectra of trees. Linear Algebra Its Appl. 2017, 520,

286–305. [CrossRef]
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