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Abstract: We work on special divisor classes on blow-ups Fp,r of Hirzebruch surfaces over the field of
complex numbers, and extend fundamental properties of special divisor classes on del Pezzo surfaces
parallel to analogous ones on surfaces Fp,r. We also consider special divisor classes on surfaces Fp,r

with respect to monoidal transformations and explain the tie-ups among them contrast to the special
divisor classes on del Pezzo surfaces. In particular, the fundamental properties of quartic rational
divisor classes on surfaces Fp,r are studied, and we obtain interwinded relationships among rulings,
exceptional systems and quartic rational divisor classes along with monoidal transformations.
We also obtain the effectiveness for the rational divisor classes on Fp,r with positivity condition.
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1. Introduction

In this article, we work over the field of complex numbers. Algebraic surfaces birational to the
projective plane are rational surfaces. When a rational surface has no (−1)-curve, the rational surface
is either a projective plane or a Hirzebruch surface. According to the blow-up/down of (−1)-curves,
it is natural to expect analogies between the studies of blown-up projective planes and the blown-up
Hirzebruch surfaces [1–3]. For del Pezzo surfaces, (−1)-curves are rational and the configuration
of (−1)-curves are closely related to the vertices of Gosset polytopes [4,5]. Moreover, the rational
divisor classes D on del Pezzo surfaces with D2 = 0, −1 are fundamental objects and it turns out that
these are also understood by the symmetry of Gosset polytopes. Therefore, we introduce rational
divisor classes on Hirzebruch surfaces and study the fundamental properties along the symmetry of
Gosset polytopes.

A del Pezzo surface is a smooth irreducible surface Sr such that the anticanonical divisor class −KSr

is ample. Each del Pezzo surface can be constructed by blowing up P2 at r points (0 ≤ r ≤ 8) in a
general position unless it is P1 × P1(for this case 1 ≤ r ≤ 7 we get Sr+1). For each k ∈ Z, we consider
rational divisor classes D with D2 = k.

Sr(k) :=
{

D ∈ Pic(Sr)
∣∣∣ D2 = k, − KSr · D = k + 2

}
.
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For k = −2,−1, 0, 1, we call the rational divisor classes as special divisor classes denoted by
another notations.

Rr := Sr(−2) =
{

d ∈ Pic(Sr)
∣∣∣ d2 = −2, d · KSr = 0

}
(roots),

Lr := Sr(−1) = {l ∈ Pic(Sr)
∣∣∣ l2 = −1, l · KSr = −1} (lines),

Mr := Sr(0) = {m ∈ Pic(Sr)
∣∣∣ m2 = 0, m · KSr = −2} (rulings),

Er := Sr(1) = {e ∈ Pic(Sr)
∣∣∣ e2 = 1, e · KSr = −3} (exceptional systems).

We call a special divisor class in Sr(−2) = Rr as a root d. We define a reflection σd on K⊥Sr
in

Pic(Sr) by
σd(D) := D + (D · d)d for D ∈ K⊥Sr

,

and the reflections given by roots generate the Weyl group W(Sr) = Er for each 3 ≤ r ≤ 8 where the
extended list of Er contains E3 = A1 × A2, E4 = A4 and E5 = D5. This reflection σd on K⊥Sr

⊂Pic(Sr)

can be extended to a map of Pic(Sr). Moreover, since the reflection σd preserves the intersection · and
KSr , the Weyl group W(Sr) acts on each subset of Pic(Sr) consisting of divisor classes D satisfying
D ·KSr = α, D2 = β for fixed integers α and β. Thus, there is a natural representation of W(Sr) on Sr(k).

A line l is a special divisor class in Sr(−1) = Lr including a smooth rational curve embedded
by a linear system | − KSr | as a projective line. For 3 ≤ r ≤ 8, the set Lr of lines in Pic(Sr) is finite,
and the Weyl group Er is its symmetry group. Moreover, Lr is bijective to the set of vertices in a
Gosset polytope (r− 4)21, a r-dimensional semiregular polytope of the Coxeter group Er, discovered
by Gosset. In particular, the set of 27-lines on S6 is bijective to the set of vertices of a Gosset polytope
221, and Coxeter [6] used the bijection to study the geometry of 221. The bijection between the set of
vertices in (r− 4)21 and the set Lr of lines is applied in many different research fields [7]. In particular,
the classical approach to the configurations of lines on del Pezzo surfaces can be found in the study
of Du Val [8], and recently applications of the configurations of lines via representation theory are
studied by Manivel [9].

A ruling m with m2 = 0, KSr ·m = −2 in Sr(0) = Mr is a divisor class in Pic(Sr) which gives a
fibration of Sr over P1. Since a ruling in Sr consists of a sum of two lines, the quadratic relations are
related to rulings. Batyrev and Popov [10] conjectured that generators of Cox ring of Sr for 4 ≤ r ≤ 8
have quadratic relations. There are several partial results [11–15] to work for the conjecture of Batyrev
and Popov which is finally proved in [16,17]. Moreover, the first author [4] showed that rulings in Mr

correspond to (r− 1)-crosspolytopes of the polytope (r− 4)21, and studied more in [5].
An exceptional system e with e2 = 1, KSr · e = −3 in Sr(1) = Er is a divisor class in Pic(Sr) whose

linear system gives a regular map from Sr to P2. For S6, each linear system with the above conditions
contains a twisted cubic curve. In fact, there is a correspondence between exceptional systems in Sr(1)
and (r− 1)-simplexes of the polytope (r− 4)21 [4]. These divisor classes play an important role in the
first author’s works [4,5].

By using the special divisor classes defined above, we can derive more relations on top of the
bijection between vertices in (r− 4)21 and lines in Pic(Sr). In [4], the first author showed that the convex
hull of Lr in Pic(Sr) is the Gosset polytope (r − 4)21 and extends the bijection to correspondences
between special divisor classes (resp. skew m-lines 1 ≤ m ≤ r, rulings, and exceptional systems) in
Pic(Sr) and faces (resp. (m− 1)-simplexes 1 ≤ m ≤ r, crosspolytope facets, and (r− 1)-simplex facets)
in (r− 4)21. Moreover, in [5] the configurations of lines are studied according to the combinatorial
data of the polytope (r− 4)21 along the above correspondences between basic divisor classes and faces
in the Gosset polytopes.

As an extension of the studies of special divisor classes on a del Pezzo surface, we consider the
blow-ups of Hirzebruch surfaces. Let Fp be a Hirzebruch surface PP1(OP1 ⊕OP1(p)), p ≥ 0 which is
a rational ruled surface considered as a P1-fibration over P1 containing a special section, which is
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a (−p)-curve. The Hirzebruch surfaces have only one ruling except for F0 = P1 × P1. For p 6= 1,
a Hirzebruch surface Fp is a relatively minimal rational surface which is not the projective plane P2.
In particular, F1 is a blow-up of the projective plane P2 at one point. As a del Pezzo surface is a
blown-up surface of P2, we consider rational surfaces Fp,r given by blowing up of Hirzebruch surfaces
Fp at r points in general position according to the study on del Pezzo surfaces.

Definition 1 ([18], Definition 2.1). Distinct points p1, p2, . . . , pr on Fp are in general position if a point pj
for each j = 1, 2, . . . , r is not in the special section on Fp for p 6= 0 and there are no two points pj1 , pj2 for
j1 6= j2 ∈ {1, 2, . . . , r} in a same fiber of a P1-fibration over P1.

For p = 0, F0,r with r ≥ 1 is considered as a blown-up Sr+1 of a projective plane P2 at r + 1 points
in general position. We define F0,0 = F0 as P1 × P1. For p = 1, F1,r with r ≥ 0 is also a blown-up Sr+1.
When p 6= 1, a blown-up Hirzebruch surface Fp,r has a relative minimal rational surface Fp.

As a positivity condition of a del Pezzo surface came from an ampleness of the anticanonical
divisor class, we need a positive self intersection number of the canonical divisor class on a surface Fp,r

(i.e., K2
Fp,r

> 0). The positivity of K2
Fp,r

implies that the intersection matrix of the orthogonal complement
of KFp,r is negative definite by Hodge index theorem.

As our approach to a blow-up of a Hirzebruch surface is relatively new, in Section 2.1 we discuss
about non-negative dimensions of linear systems of some divisor classes D in the Picard group of
a blown-up Hirzebruch surface Fp,r such that D2 = k, KFp,r · D = − (k + 2) for an integer k ≥ −1.
We obtain a criterion of the effectiveness for the divisor class D as follows.

Theorem 1 (Theorem 2). For integers 0 ≤ r ≤ 8, p ≥ 0 and k ≥ −1, each divisor class D in Pic(Fp,r) such
that D2 = k, KFp,r · D = −k− 2 is effective, and the dimension of the linear system |D| is greater than or equal
to k + 1.

Then, we extend the results [4] for del Pezzo surfaces to roots, lines, rulings and exceptional
systems for blown-up Hirzebruch surfaces. We provide correspondences in [19] that are compatible
with the Weyl group W(Fp,r) = Er+1 between special divisor classes in the Picard group Pic(Fp,r) and
subpolytopes of a Gosset polytope (r− 3)21.

In this article, we focus on explaining relations among roots, lines, rulings and exceptional systems
on each surface Fp,r with respect to monoidal transformations. These relations for roots and lines
via monoidal transformations are obtained as straightforward comparisons, but rulings on Fp,7 and
exceptional systems on Fp,r involve nontrivial issues. To resolve these issues, we consider quartic
rational divisor classes, skew a-lines and sextic divisor classes. In particular, we show that sextics
D2 = 10, D · KFp,6 = −6 on Fp,6 consist of two E7 Weyl orbits and use them to understand exceptional
systems on Fp,6 via monoidal transformations.

2. Rational Divisor Classes on Blown-Up Hirzebruch Surfaces

The Picard group of a Hirzebruch surface Fp (p ≥ 0) is generated by a class f representing a fiber
and the class s of the special section of a P1-fibration over P1, namely, Pic(Fp) = Z f

⊕
Zs, where f 2 = 0,

f · s = 1 and s2 = −p. As Hirzebruch surfaces are ruled, all the fibers are isomorphic and numerically
equivalent. The canonical divisor class KFp is given as KFp ≡ (−p− 2) f − 2s. For further detail, see ([3]
Chapter III).

In this section, we consider rational surfaces Fp,r obtained by the blow-up of Fp at r points in
general position. Then Fp,r has a natural fibration φp : Fp,r −→ P1 and its general fiber is f ∈ Pic(Fp,r).
We consider a rational divisor class D ∈ Sp,r(k) as an element of

Pic(Fp,r) = Z f ⊕Zs⊕Ze1 ⊕ · · · ⊕Zer,
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namely, D ≡ a f + bs + ∑r
i=1 xiei for some a, b and xi ∈ Z , where ei is the i-th exceptional divisor class

on Fp,r.
We define rational divisor classes on Fp,r.

Definition 2. For k ∈ Z, the Sp,r(k) is a set of rational divisor classes on Fp,r with self intersection number
k defined as

Sp,r(k) :=
{

D ∈ Pic(Fp,r)
∣∣∣ D2 = k, KFp,r · D = − (k + 2)

}
.

In [19], the authors introduced the following special divisor classes (roots, lines, rulings, and
exceptional systems) on Fp,r as an extension of study on special divisor classes on del Pezzo surfaces.
It was naturally obtained that the parallel study on Fp,r to the one on correspondences between special
divisor classes on del Pezzo surfaces and subpolytopes of Gosset polytopes.

Rp,r := Sp,r(−2) =
{

d ∈ Pic
(
Fp,r
) ∣∣∣ d2 = −2, d · KFp,r = 0

}
(roots),

Lp,r := Sp,r(−1) =
{

l ∈ Pic
(
Fp,r
) ∣∣∣ l2 = l · KFp,r = −1

}
(lines),

Mp,r := Sp,r(0) =
{

m ∈ Pic
(
Fp,r
) ∣∣∣ m2 = 0, m · KFp,r = −2

}
(rulings),

Ep,r := Sp,r(1) =
{

e ∈ Pic
(
Fp,r
) ∣∣∣ e2 = 1, e · KFp,r = −3

}
(exceptional systems).

We also add one more rational divisor classes to our attention.

Qp,r := Sp,r(2) =
{

q ∈ Pic
(
Fp,r
) ∣∣∣ q2 = 2, q · KFp,r = −4

}
(quartic rational).

When we fix a fibration φp : Fp,r −→ P1 and its general fiber f ∈ Pic
(
Fp,r
)
, for each subset B of

Pic
(
Fp,r
)
, we define B0 and B+ by

B0 := B ∩
{

D ∈ Pic
(
Fp,r
)
| D · f = 0

}
and

B+ := B ∩
{

D ∈ Pic
(
Fp,r
)
| D · f 6= 0

}
.

Note that we often omit the subscript p, r (e.g., denote Fp,r as F) if there is no confusion.

2.1. Linear Systems of Special Divisor Classes

For 0 ≤ r ≤ 8 and p ≥ 0, if k ≥ −1 then we verify that there is a linearly equivalent effective
divisor class for each rational divisor class D ≡ a f + bs + ∑r

i=1 xiei ∈ Sp,r(k).

Lemma 1. When 1 ≤ r ≤ 8 and p ≥ 0, each rational divisor class a f + bs + ∑r
i=1 xiei in Sp,r(k), k ≥

−1, satisfies a, b ∈ Z+(= N∪ {0}). Moreover, a is positive if 1 ≤ r ≤ 7, k ≥ 0, p ≥ 1, and b is positive if
k > 0.

Proof. From D2 = k and D ·KF = (a f + bs+∑r
i=1 xiei)((−2− p) f − 2s+∑r

i=1 ei) = −k− 2, we induce

pb2 +
r

∑
i=1

x2
i = 2ab− k and (−2 + p)b−

r

∑
i=1

xi + k + 2 = 2a. (1)

By combining these equations, we have

1
4
(r− 8)b2 + (k + 2)b− k =

r

∑
i=1

(
xi +

b
2

)2
≥ 0. (2)

When 1 ≤ r ≤ 7 and k ≥ −1, we get b > −1. Moreover, if k > 0, then b > 0. When r = 8 and
k ≥ −1, we also obtain b ≥ 0 because (k + 2)b ≥ k and there is no D with b = −1 and k = −1.
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We consider the following cases to conclude a ≥ 0. (i) If k ≥ 0 , p ≥ 0 and b > 0, then a ≥ 0 by
Equation (1). (ii) If k ≥ 0, p ≥ 0 and b = 0, then there is the only divisor class D = f in Sp,r(0) so that
a = 0. (iii) If k = −1, p ≥ 0 and b > 0, then a ≥ 0 since Equation (1) implies 2ab ≥ −1. (iv) If k = −1,
p ≥ 0 and b = 0, then there are the divisor classes ei, f − ei for some i ∈ {1, · · · , r} so that a ≥ 0.

One can easily obtain a is positive if k ≥ 0 and p ≥ 1 in (i).

Remark 1. When r = 0 and p ≥ 0, we also obtain a ≥ 0 and b ≥ 0 for k ≥ −1.

Remark 2. For 1 ≤ r ≤ 7, k ≥ −1 and p ≥ 0, the number of elements of Sp,r(k) is finite by (2) in Lemma 1.

Now, we consider the effectiveness of rational divisor classes in Sp,r(k) when 0 ≤ r ≤ 8, p ≥ 0
and k ≥ −1 as follows.

Theorem 2. For integers 0 ≤ r ≤ 8, p ≥ 0 and k ≥ −1, each rational divisor class D ∈ Sp,r(k) is effective
and the dimension of the corresponding linear system |D| is greater than or equal to k + 1.

Proof. When 1 ≤ r ≤ 8 we have

H2 (F,OF(D)) = H0 (F,OF (KF − D))

⊂ H0

(
F,OF

(
KF − ∑

i∈I−

xiei

))

for D ≡ a f + bs + ∑r
i=1 xiei by Lemma 1, where I− is the set of i such that xi < 0 for 1 ≤ i ≤ r.

We assume that xi < 0 for some i and consider

0 −→ OF (KF) −→ OF

(
KF − ∑

i∈I−

xiei

)
−→ OF

(
KF − ∑

i∈I−

xiei

)∣∣∣∣∣
−∑i∈I− xiei

−→ 0

to get

H0

(
F,OF

(
KF − ∑

i∈I−

xiei

))

= H0

− ∑
i∈I−

xiei, OF

(
KF − ∑

i∈I−

xiei

)∣∣∣∣∣
−∑i∈I− xiei

 = 0.

Here the first equality is obtained from

h0 (F,OF (KF)) = h1 (F,OF (KF)) = 0

which is given by the fact F is birational to a Hirzebruch surface, and the second equality is
deduced from

H0

− ∑
i∈I−

xiei, OF

(
KF − ∑

i∈I−

xiei

)∣∣∣∣∣
−∑i∈I− xiei


=
⊕
i∈I−

H0

−xiei, OF

(
KF − ∑

i∈I−

xiei

)∣∣∣∣∣
−xiei

 = 0
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since xi(1− xi) < 0 for all i ∈ I−. Therefore, we obtain

H2 (F,OF(D)) = 0,

and moreover,

h0 (F,OF(D))− h1 (F,OF(D)) = χ (OF(D)) = χ (OF) +
1
2

(
D2 − KF · D

)
= k + 2.

It implies h0 (F,OF(D)) ≥ k + 2. When r = 0, we obtain u ≡ a f + bs with a ≥ 0 and b ≥ 0 by
Remark 1 if it exists. Hence each special divisor class u ∈ Sp,r(k) for 0 ≤ r ≤ 8, p ≥ 0 and k ≥ −1
is effective.

Remark 3. Lahyane showed in ([20] Lemma 2.2) that every line is effective on a smooth rational surface such
that the anticanonical divisor class −K is nef. It implies an effectiveness of a line in Lp,r for p = 0, 1, 2 with
r = 0, 1, . . . , 7 under Jiang’s stronger definition, ([21] Remark 7.1), than Definition 1. Because Jiang [21]
provided under the definition, ([21] Remark 7.1), that −KFp,r is nef for 0 ≤ r ≤ 7 in Example 7.1 when p = 0, 1,
and in Theorem 7.2 when p = 2.

Lahyane and Harbourne gave an effectiveness criterion for a line on a smooth rational surface with K2 ≥ 0
in ([22] Lemma 3.2). Their result contains the effectiveness of lines in Lp,r for 0 ≤ r ≤ 8 which is a part of
Theorem 2.

3. Positivity Condition of the Canonical Divisor Classes

In this section we extend the study on special divisor classes on del Pezzo surfaces in [4,5] to
analogous ones of blown-up Hirzebruch surfaces. Corresponding issues on special divisor classes on
Hirzebruch surfaces via Weyl action to related divisors on del Pezzo surfaces are explained in [19].

From now on, we focus on the blow-up Fp,r of a Hirzebruch surface Fp at r points in general
position only for r = 1, 2, . . . , 7, so that we have the positivity condition,

K2
Fp,r

= 8− r > 0.

Due to this condition, the intersection matrix of the orthogonal complement of KFp,r in Pic
(
Fp,r
)

is
negative definite by Hodge index theorem.

The Picard group Pic
(
Fp,r
)

is generated by a general fiber f and the special p-section s (i.e.,
(−p)-curve) of a fibration over P1, and r exceptional curves ei, i = 1, 2, . . . , r on Fp,r over Fp. As we
know from Remark 2, each of Rp,r, Lp,r, Mp,r, Ep,r andQp,r has a finite number of elements. As Lemma
1, by solving the corresponding systems of integer equations

k = D2 = 2ab− b2 p−
r

∑
i=1

x2
i , k + 2 = −KFp,r · D = (2− p) b + 2a +

r

∑
i=1

xi

for k = −2,−1, 0, 1, 2, we obtain the following tables. We also apply the similar procedure to R0
p,r, L0

p,r,
M0

p,r,E0
p,r and Q0

p,r.

Remark 4. The numerical data in the Tables 1 and 2 are independent of p because each of them presents the
cardinal of the orbit(s) given by Weyl group whose nature is determined by r in Section 3.2.
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Table 1. Numbers of elements of Rp,r, Lp,r, Mp,r, Ep,r,Qp,r.

r 1 2 3 4 5 6 7

Rp,r 2 8 20 40 72 126 240
Lp,r 3 6 10 16 27 56 240
Mp,r 2 3 5 10 27 126 2160
Ep,r 1 2 5 16 72 576 17, 520
Qp,r 1 3 10 40 216 2072 82, 560

Table 2. Numbers of elements of R0
p,r, L0

p,r, M0
p,r, E0

p,r,Q0
p,r.

r 1 2 3 4 5 6 7

R0
p,r 0 4 12 24 40 60 84

L0
p,r 2 4 6 8 10 12 14

M0
p,r 1 1 1 1 1 1 1
E0

p,r 0 0 0 0 0 0 0
Q0

p,r 0 0 0 0 0 0 0

3.1. Monoidal Transformations

From Tables 1 and 2, we derive interesting relationships among R+
p,r, L+

p,r, M+
p,r and E+p,r along

with monoidal transformations described in below.
We consider the birational morphism φh : Fp+1,r+1 → Fp+1,r given by the blow-up of a point x in

Fp+1,r, which is not in the (p + 1)-section (i.e., −(p + 1)-curve), to an exceptional divisor class er+1

on Fp+1,r+1. Here, we observe that f − er+1 is also a line on Fp+1,r+1 satisfying ( f − er+1) · er+1 = 1.
In fact, for any line l and ruling f ′ with f ′ · l = 0 on a blown-up Hirzebruch surface Fp,r, f ′ − l is also
a line satisfying ( f ′ − l) · l = 1. From this choice of (−1)-curve f − er+1, we get another birational
morphism φv : Fp+1,r+1 → Fp,r given by blowing down f − er+1. Here, since ( f − er+1) · s = f · s = 1,
the exceptional curve f − er+1 is blown down to a point y in the p-section in Fp,r. We denote φ∗h and
φ∗v as total transforms induced from φh and φv respectively.

The above is depicted as the following diagram (Figure 1). This diagram is extended not only
infinitely up but also infinitely to the right.

ϕh∗( f ) ϕh∗( f − er+1)

ϕh∗(s)qx
Fp+1,r

�
ϕh

�
�
�
��

f

er+1

s

f − er+1

Fp+1,r+1

?

ϕv

ϕv∗( f ) ϕv∗(er+1)

ϕv∗(s)q
y

Fp,r

Figure 1. Monoidal transformations.

Moreover, we can make the following diagram (Figure 2) for p = 1, 2, 3, . . . from the above
elementary transformation.
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· · · · · · · · · · · · · · ·
↓ ↓ ↓ ↓ ↓
F3 ←− F3,1 ←− F3,2 ←− · · · ←− F3,6 ←− F3,7

↓ ↓ ↓ ↓ ↓
F2 ←− F2,1 ←− F2,2 ←− · · · ←− F2,6 ←− F2,7

↓ ↓ ↓ ↓ ↓
F1 ←− F1,1 ←− F1,2 ←− · · · ←− F1,6 ←− F1,7
‖ ‖ ‖ ‖ ‖
P2

1 ←− P2
2 ←− P2

3 ←− · · · ←− P2
7 ←− P2

8

Figure 2. Chain of monoidal transformations.

Here, P2
r is r-th blow-up of the projective plane P2 at r points in general position.

3.2. Root Systems and Weyl Groups

When p = 1, since the blown-up Hirzebruch surfaces F1,r can be considered as del Pezzo surfaces
Sr+1, the numerical data in Tables 1 and 2 match with those of del Pezzo surfaces in [4]. Furthermore,
as those special divisor classes on the del Pezzo surfaces Sr+1 = F1,r are identified as orbits of Weyl
groups given by the root spaces in [4], we can also obtain the parallel results for the special divisor
classes on Fp,r by considering the root system on Fp,r and the corresponding E-type Weyl group action.

Here, we introduce the simple roots of root systems on Fp,r so that we can see the corresponding
Weyl group is E-type. Further study on Fp,r along the Weyl action and corresponding Gosset polytopes
was dealt in [19].

Once we have the positivity condition K2
Fp,r

> 0, the inner product given by the intersection on

Pic
(
Fp,r
)

induces a negative definite metric on
(
ZKFp,r

)⊥
in Pic

(
Fp,r
)

where each root defines a natural

reflection. To define reflections on
(
ZKFp,r

)⊥
in Pic(Fp,r), we consider a root system

Rp,r = {d ∈ Pic
(
Fp,r
)
| d2 = −2, d · KFp,r = 0},

with simple roots 
d0 = e1 − e2

d1 =
p−2

2 f + s
d2 = f − e1 − e2

di = ei−1 − ei, 3 ≤ i ≤ r
(Note that we have only d0, d1, d2 when r = 2)

if p is even,


d0 = f − e1 − e2

d1 =
p−1

2 f + s− e1
di = ei−1 − ei, 2 ≤ i ≤ r

if p is odd

corresponding to Coxeter–Dynkin diagram of type Er+1, r ≥ 2 (Figure 3).

u u u u u
u

r r r
d1 d2 d3 d4 dr

d0

.

Figure 3. Coxeter–Dynkin diagram of type Er+1, r ≥ 2.
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Since each element d in Rp,r defines a reflection σd on
(
ZKFp,r

)⊥
in Pic

(
Fp,r
)
,

σd(D) := D + (D · d) d for D ∈
(
ZKFp,r

)⊥
,

the corresponding Weyl group W
(
Fp,r
)

is Er+1 where 2 ≤ r ≤ 7. If we add the orthogonality condition
to f , then the corresponding Weyl group will be Dr−1-type, where each root system is determined by
d1 · f = 1 and di · f = 0. The similar consideration for del Pezzo surfaces can be found in [18,23,24]
with an orthogonality condition to the fixed fiber class.

4. Special Divisor Classes and Monoidal Transformations

In this section we deal with a relation among rulings, exceptional systems and quartic rational
divisor classes on Fp,r via monoidal transformations. We require the positivity condition of

K2
Fp,r

= 8− r,

and so r is to be an integer 1, 2, · · · , 6 or 7.
To characterize special divisor classes D via monoidal transformations, we consider the

intersection between a line and D since the birational maps φh and φv are defined by the choices
of (−1)-curves contained in special divisor classes lines. Then, we identify the subset of special
divisor classes with a fixed intersection by other special divisor classes or certain rational divisor
classes. For roots and lines, the tie-ups of special divisors with others are obtained by straightforward
comparisons via monoidal transformations. We need to resolve nontrivial issues involved for rulings
and the exceptional systems on Fp,7. For rulings on Fp,7, we use skew a-lines which are given by
l1 + · · ·+ la where l1, . . . , la are disjoint lines. For the exceptional systems, we consider sextic divisor
classes on Fp,6 and their orbit structures induced by E7 Weyl group. Then the rational quartic divisor
classes appear to characterize the exceptional systems via monoidal transformations.

We note that Mp,r = M+
p,r∪̇ { f }, and we remark that Ep,r = E+p,r (resp. Qp,r = Q+

p,r) because
each exceptional system e (resp. quartic rational divisor class q) satisfies f · e > 0 (resp. f · q > 0) by
Lemma 1. Thus, it is rather natural for us to consider Mp,r, Ep,r and Qp,r instead of M+

p,r, E+p,r and Q+
p,r.

4.1. Lines and Monoidal Transformations

4.1.1. Intersection Between Lines

For any two lines l and l′ on Fp,r, by Hodge index theorem and K2
Fp,r

> 0, we have

K2
Fp,r

(
l ± l′

)2 ≤
(

KFp,r · l ± KFp,r · l′
)2

and we obtain
−1 ≤ l · l′ ≤ 2

8−r + 1.

Therefore, the possible intersection numbers between lines are given as

l · l′ =


−1, 0, 1 for r ≤ 5
−1, 0, 1, 2 for r = 6
−1, 0, 1, 2, 3 for r = 7

.

4.1.2. Lines Via Monoidal Transformations

According to the list of intersections of lines, we describe L+
p+1,r+1.
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Theorem 3. For 0 ≤ r ≤ 6,

L+
p+1,r+1 = φ∗h

(
L+

p+1,r

)
∪̇
(

φ∗h

(
M+

p+1,r

)
− er+1

)
∪̇Hp+1,r+1

= φ∗v

(
L+

p,r

)
∪̇
(

φ∗v

(
M+

p,r

)
− ( f − er+1)

)
∪̇Vp+1,r+1,

where 
Hp+1,r+1 = Vp+1,r+1 = ∅ for r ≤ 4,

Hp+1,6 =
{
−KFp+1,6 − e6

}
, Vp+1,6 =

{
−KFp+1,6 − f + e6

}
,

Hp+1,7 =
{

φ∗h(l̃ − KFp+1,6 )− 2e7
∣∣ l̃ ∈ Lp+1,6

}
∪̇
{
−2KFp+1,7 − e7

}
,

Vp+1,7 =
{

φ∗v
(

l̃ − KFp,6

)
− 2( f − e7)

∣∣ l̃ ∈ Lp,6

}
∪̇
{
−2KFp+1,7 − f + e7

}
.

Proof. We consider the map φv induced by a line f − er+1.
For each line l in the set L+

p+1,r+1 on Fp+1,r+1, we consider the following cases according to the
intersection l · ( f − er+1).

(Case 1) l · ( f − er+1) = 0 for r ≤ 6
Such l corresponds to a line φv∗(l) on Fp,r with φv∗(l) · φv∗( f ) = l · f 6= 0. Thus we have{

l ∈ L+
p+1,r+1 | l · ( f − er+1) = 0

}
= φ∗v

(
L+

p,r

)
.

(Case 2) l · ( f − er+1) = 1 for r ≤ 6
Such l can be written as φ∗v(D)− ( f − er+1) with a divisor class D on Fp,r satisfying

D2 = φ∗v(D)2 = (l + f − er+1)
2 = 0,

D · KFp,r = φ∗v(D) · φ∗v
(

KFp,r

)
= (l + f − er+1) ·

(
KFp+1,r+1 − f + er+1

)
= −2.

Thus D is a ruling on Fp,r with D · φv∗( f ) = φ∗v(D) · f = (l + f − er+1) · f = l · f 6= 0 and{
l ∈ L+

p+1,r+1 | l · ( f − er+1) = 1
}
= φ∗v

(
M+

p,r

)
− ( f − er+1).

(Case 3) l · ( f − er+1) = 2 for r = 5, 6
Such l can be written as φ∗v(D)− 2( f − er+1) with D satisfying

D2 = φ∗v(D)2 = (l + 2 f − 2er+1)
2 = 3,

D · KFp,r = φ∗v(D) · φ∗v
(

KFp,r

)
= (l + 2 f − 2er+1) ·

(
KFp+1,r+1 − f + er+1

)
= −3.

Moreover, D · φv∗( f ) = φ∗v(D) · f = (l + 2 f − 2er+1) · f = l · f 6= 0.
When r = 5, −KFp,5 is the only divisor class on Fp,5 satisfying the above conditions. Thus{

l ∈ L+
p+1,6 | l · ( f − e6) = 2

}
=
{

φ∗v(−KFp,5)− 2( f − e6)
}

=
{
−KFp+1,6 − f + e6

}
= Vp+1,6.

When r = 6, such D corresponds to a line l̃ on Fp,6 via D ≡ l̃ − KFp,6 . Therefore{
l ∈ L+

p+1,7 | l · ( f − e7) = 2
}
=
{

φ∗v

(
l̃ − KFp,6

)
− 2( f − e7)

∣∣ l̃ ∈ Lp,6

}
.
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(Case 4) l · ( f − er+1) = 3 for r = 6
Such l can be written as φ∗v(D)− 3( f − e7) with D satisfying

D2 = φ∗v(D)2 = (l + 3 f − 3e7)
2 = 8,

D · KFp,6 = φ∗v(D) · φ∗v
(

KFp,6

)
= (l + 3 f − 3e7) ·

(
KFp+1,7 − f + e7

)
= −4.

Moreover, D · φv∗( f ) = φ∗v(D) · f = (l + 3 f − 3e7) · f = l · f 6= 0.
In fact, −2KFp,6 is the only divisor class on Fp,6 with the above conditions. Thus, we have{

l ∈ L+
p+1,7 | l · ( f − e7) = 3

}
=
{

φ∗v

(
−2KFp,6

)
− 3( f − e7)

}
=
{
−2KFp+1,7 − f + e7

}
,

and we conclude

Vp+1,7 =
{

φ∗v(l̃ − KFp,6)− 2( f − e7)
∣∣ l̃ ∈ Lp,6

}
∪̇
{
−2KFp+1,7 − f + e7

}
.

By applying a similar process for l · er+1, we derive the equality for φh and obtain

Hp+1,6 =
{
−KFp+1,6 − e6

}
,

Hp+1,7 =
{

φ∗h(l̃ − KFp+1,6)− 2e7
∣∣ l̃ ∈ Lp+1,6

}
∪̇
{
−2KFp+1,7 − e7

}
.

Remark 5. Comparing Tables 1 and 2, we get

44 =
∣∣∣L+

p+1,6

∣∣∣ = ∣∣∣L+
p,5

∣∣∣+ ∣∣∣M+
p,5

∣∣∣+ ∣∣Vp+1,6
∣∣ = 17 + 26 + 1,

44 =
∣∣∣L+

p+1,6

∣∣∣ = ∣∣∣L+
p+1,5

∣∣∣+ ∣∣∣M+
p+1,5

∣∣∣+ ∣∣Hp+1,6
∣∣ = 17 + 26 + 1,

226 =
∣∣∣L+

p+1,7

∣∣∣ = ∣∣∣L+
p,6

∣∣∣+ ∣∣∣M+
p,6

∣∣∣+ ∣∣Vp+1,7
∣∣ = 44 + 125 + 57,

226 =
∣∣∣L+

p+1,7

∣∣∣ = ∣∣∣L+
p+1,6

∣∣∣+ ∣∣∣M+
p+1,6

∣∣∣+ ∣∣Hp+1,7
∣∣ = 44 + 125 + 57.

4.2. Roots and Monoidal Transformations

4.2.1. Intersection between a Line and A Root

For any two roots d and d′ on Fp,r, by Hodge index theorem and K2
Fp,r

> 0, we have

K2
Fp,r

(
d± d′

)2 ≤
(

KFp,r · d± KFp,r · d′
)2

= 0.

Thus we obtain
−2 ≤ d · d′ ≤ 2.

For a line l and a root d on Fp,r, we have

K2
Fp,r

(l ± d)2 ≤ (KFp,r · l ± KFp,r · d)2 = 1

and it implies
− 1

2(8−r) −
3
2 ≤ l · d ≤ 1

2(8−r) +
3
2 .
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Thus, the possible intersection numbers between lines and roots are given as

l · d =

{
−1, 0, 1 for r ≤ 6

−2,−1, 0, 1, 2 for r = 7
.

4.2.2. Roots Via Monoidal Transformations I

According to the list of intersections of lines and roots, we describe R+
p+1,r+1.

Theorem 4. For 0 ≤ r ≤ 6,

R+
p+1,r+1 = φ∗h

(
R+

p+1,r

)
∪̇
(

φ∗h

(
L+

p+1,r

)
− er+1

)
∪̇
(
−φ∗h

(
L+

p+1,r

)
+ er+1

)
∪̇Hp+1,r+1

= φ∗v

(
R+

p,r

)
∪̇
(

φ∗v

(
L+

p,r

)
− ( f − er+1)

)
∪̇
(
−φ∗v

(
L+

p,r

)
+ ( f − er+1)

)
∪̇ Vp+1,r+1,

where 
Hp+1,r+1 = Vp+1,r+1 = ∅ for r ≤ 5,

Hp+1,7 =
{
±
(

KFp+1,7 + e7

)}
,

Vp+1,7 =
{
±
(

KFp+1,7 + f − e7

)}
.

Proof. We consider the map φh given by a line er+1.
For each root d in the set R+

p+1,r+1 on Fp+1,r+1, we consider the following cases according to the
intersection d · er+1.

(Case 1) d · er+1 = 0 for r ≤ 6
Such d corresponds to a root φh∗(d) on Fp,r with φh∗(d) · φh∗( f ) = d · f 6= 0. Thus{

d ∈ R+
p+1,r+1 | d · er+1 = 0

}
= φ∗h

(
R+

p+1,r

)
.

(Case 2) ±d · er+1 = 1 for r ≤ 6
Such ±d can be written as φ∗h(D)− er+1 with D satisfying

D2 = φ∗h(D)2 = (±d + er+1)
2 = −1,

D · KFp+1,r = φ∗h(D) · φ∗h
(

KFp+1,r

)
= (±d + er+1) ·

(
KFp+1,r+1 − er+1

)
= −1.

Thus D is a line on Fp+1,r with D · φh∗( f ) = φ∗h(D) · f = (±d + er+1) · f = ±d · f 6= 0, and so{
d ∈ R+

p+1,r+1 | ±d · er+1 = 1
}
= ±

(
φ∗h

(
L+

p+1,r

)
− er+1

)
.

(Case 3) ±d · er+1 = 2 for r = 6
Such ±d can be written as φ∗h(D)− 2e7 with D satisfying

D2 = φ∗h(D)2 = (±d + 2e7)
2 = 2,

D · KFp+1,6 = φ∗h(D) · φ∗h
(

KFp+1,6

)
= (±d + 2e7) ·

(
KFp+1,7 − e7

)
= −2.
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Moreover, D · φh∗( f ) = φ∗h(D) · f = (±d + 2e7) · f = ±d · f 6= 0. In fact, −KFp+1,6 is the only

possible D on Fp+1,6 with the above conditions. Thus ±d ≡ φ∗h

(
−KFp+1,6

)
− 2e7 ≡ −KFp+1,7 − e7, and

Hp+1,7 =
{
±
(

KFp+1,7 + e7

)}
.

By applying a similar process for d · ( f − er+1), we derive the equality for φv and obtain

Vp+1,7 =
{
±
(

KFp+1,7 + f − e7

)}
.

Remark 6. Comparing Tables 1 and 2, we obtain

156 =
∣∣∣R+

p+1,7

∣∣∣ = ∣∣∣R+
p+1,6

∣∣∣+ 2
∣∣∣L+

p+1,6

∣∣∣+ ∣∣Hp+1,7
∣∣ = 66 + 88 + 2,

156 =
∣∣∣R+

p+1,7

∣∣∣ = ∣∣∣R+
p,6

∣∣∣+ 2
∣∣∣L+

p,6

∣∣∣+ ∣∣Vp+1,7
∣∣ = 66 + 88 + 2.

4.2.3. Roots Via Monoidal Transformations Ii

For a root d and a ruling f ′ on Fp,r, we have

K2
Fp,r

(
d± f ′

)2 ≤ (KFp,r · d± KFp,r · f ′)2 = 4

and it implies
− 2

8−r − 1 ≤ f ′ · d ≤ 2
8−r + 1

Thus, the possible intersection numbers between rulings and roots are given as

f ′ · d =


0,±1 for r ≤ 5

0,±1,±2 for r = 6
0,±1,±2,±3 for r = 7

.

We observe that a root d on Fp+1,r+1 with d · f 6= 0 cannot satisfy both d · er+1 = 0 and d · ( f −
er+1) = 0. Moreover, we obtain another version of Theorem 4 as follows.

Theorem 5. For 0 ≤ r ≤ 6,

R+
p+1,r+1 = φ∗h

(
R+

p+1,r

)
∪̇ φ∗v

(
R+

p,r

)
∪̇ Ap+1,r+1,

where 
Ap+1,r+1 = ∅ for r ≤ 4,

Ap+1,6 =
{
±
(
−KFp+1,6 − f

)}
,

Ap+1,7 =
{
±
(

φ∗h(l)− KFp+1,7 − f
) ∣∣∣ l ∈ L0

p+1,6

}
=
{
±
(

φ∗v(l)− KFp+1,7 − f
) ∣∣∣ l ∈ L0

p,6

}
.

Proof. We consider the following cases according to the intersection numbers d · er+1 for roots d in the
set R+

p+1,r+1 on Fp+1,r+1. Note that d · f 6= 0.
(Case 1) d · er+1 = 0 (and d · ( f − er+1) 6= 0) for r ≤ 6
Such d corresponds to a root φh∗(d) on Fp+1,r with φh∗(d) · φh∗( f ) = d · f 6= 0. Thus we have{

d ∈ R+
p+1,r+1 | d · er+1 = 0, d · ( f − er+1) 6= 0

}
= φ∗h

(
R+

p+1,r

)
.
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(Case 2) ±d · er+1 = 1 and d · ( f − er+1) = 0 for r ≤ 6
By applying Theorem 4, as in (Case 1) we get{

d ∈ R+
p+1,r+1 | d · er+1 6= 0, d · ( f − er+1) = 0

}
= φ∗v

(
R+

p,r

)
.

Moreover, when r = 6, if d · e7 = ±2, then d · ( f − e7) = ±
(

KFp+1,7 + e7

)
· ( f − e7) = 0 by the

(Case 3) in the proof of Theorem 4. Therefore, for r = 6 we also get{
d ∈ R+

p+1,r+1 | d · er+1 6= 0, d · ( f − er+1) = 0
}
= φ∗v

(
R+

p,r

)
.

(Case 3) ±d · er+1 = 1 and ±d · ( f − er+1) = 1 for r ≤ 6 (By Theorem 4, there are no other cases.)
Here,

d · f = d · ( f − er+1) + d · er+1 = ±2 since d · f 6= 0.

When r ≤ 4, since |d · f | ≤ 1, Ap+1,r+1 = ∅.
When r = 5 or 6, there are possible cases (d · er+1, d · ( f − er+1)) = (1, 1) or (−1,−1). For the case

(d · er+1, d · ( f − er+1)) = (1, 1), the root d can be written as φ∗h(D)− f − er+1 for a divisor class D on
Fp+1,r with φ∗h(D) · ( f − er+1) = 2. Moreover, D satisfies

D2 = φ∗h(D)2 = (d + f + er+1)
2 = 3,

D · KFp+1,r = φ∗h(D) · φ∗h
(

KFp+1,r

)
= (d + f + er+1) ·

(
KFp+1,r+1 − er+1

)
= −3.

If r = 5, such a divisor class D on Fp+1,5 must be −KFp+1,5 . Therefore,

d ≡ φ∗h

(
−KFp+1,5

)
− f − e6 ≡ −KFp+1,6 − f .

If r = 6, such a divisor class D on Fp+1,6 corresponds to a line l on Fp+1,6 via D ≡ −KFp+1,6 +

l satisfying φ∗h(l) · f = φ∗h

(
D + KFp+1,6

)
· f = 0. Thus, we have

d ≡ φ∗h

(
−KFp+1,6 + l

)
− f − e7 ≡ φ∗h(l)− KFp+1,7 − f ,

where φ∗h(l) with l ∈ L0
p+1,6 is a line on Fp+1,7. By applying a similar procedure to the case (d · er+1, d ·

( f − er+1)) = (−1,−1), we conclude

Ap+1,6 =
{
±
(
−KFp+1,6 − f

)}
and Ap+1,7 =

{
±
(

φ∗h(l)− KFp+1,7 − f
) ∣∣∣ l ∈ L0

p+1,6

}
.

Similarly, by applying φv for Ap+1,7 we obtain

Ap+1,7 =
{
±
(

φ∗v(l)− KFp+1,7 − f
) ∣∣∣ l ∈ L0

p,6

}
.

Remark 7. Comparing Tables 1 and 2, we have

66 =
∣∣∣R+

p+1,6

∣∣∣ = ∣∣∣R+
p+1,5

∣∣∣+ ∣∣∣R+
p,5

∣∣∣+ ∣∣Ap+1,6
∣∣ = 32 + 32 + 2,

156 =
∣∣∣R+

p+1,7

∣∣∣ = ∣∣∣R+
p+1,6

∣∣∣+ ∣∣∣R+
p,6

∣∣∣+ ∣∣Ap+1,7
∣∣ = 66 + 66 + 24.
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4.3. Rulings and Monoidal Transformations

4.3.1. Intersection between a Line and A Ruling

For a line l and a ruling m on Fp,r, the possible intersection numbers between lines and rulings are
given by the following lemma.

Lemma 2. The possible intersection numbers between lines and rulings are given as

l ·m =


0, 1 for r ≤ 4

0, 1, 2 for r = 5, 6
0, 1, 2, 3, 4 for r = 7

. (3)

Proof. For a line l and a ruling m on Fp,r, we have

K2
Fp,r

(l ±m)2 ≤ (KFp,r · l ± KFp,r ·m)2

and it impiles
− 1

2(8−r) −
1
2 ≤ l ·m ≤ 9

2(8−r) +
1
2 .

Thus, the possible intersection numbers between lines and rulings are given as

l ·m =


0, 1 for r ≤ 4

0, 1, 2 for r = 5, 6
−1 ≤ l ·m ≤ 5 for r = 7

.

For r = 7, by applying the Hodge inequality to get m · l = 5 (resp. −1), there is a constant
n with m + l ≡ nKFp,7 (resp. m− l ≡ nKFp,7). Since KFp,7 · (m + l) = −3 (resp. KFp,7 · (m− l) = −1 ),
the constant n is equal to −3 (resp. −1). But m2 = (−3KFp,7 − l)2 = 2 (resp. m2 = (−KFp,7 + l)2 = 2)
which is impossible since m2 = 0.

4.3.2. Rulings Via Monoidal Transformations

Now, we consider monoidal transformations for Mp+1,r+1 given by lines f − er+1 and er+1 on
Fp+1,r+1. According to Lemma 2, the case r = 6 (i.e., the case Mp+1,7) involves more nontrivial issues
than the others so that we deal with them after the next theorem for the cases 0 ≤ r ≤ 5.

Theorem 6. For a fixed line er+1 on Fp+1,r+1, 0 ≤ r ≤ 5,

Mp+1,r+1 = φ∗h
(
Mp+1,r

)
∪̇
(
φ∗h
(
Ep+1,r

)
− er+1

)
∪̇ Hp+1,r+1

= φ∗v
(
Mp,r

)
∪̇
(
φ∗v
(
Ep,r
)
− ( f − er+1)

)
∪̇ Vp+1,r+1,

where 

Hp+1,r+1 = Vp+1,r+1 = ∅ for r ≤ 3,

Hp+1,5 =
{
−KFp+1,5 − e5

}
, Vp+1,5 =

{
−KFp+1,5 − ( f − e5)

}
,

Hp+1,6 = φ∗h
(
Lp+1,5

)
− KFp+1,6 − e6,

Vp+1,6 = φ∗v
(
Lp,5

)
− KFp+1,6 − ( f − e6).

Proof. We consider the map φh induced by a line er+1 on Fp+1,r+1.
For each ruling m in the set Mp+1,r+1 on Fp+1,r+1, the intersection number m · er+1 may vary as in

Lemma 2, and we check the following cases.
(Case 1) m · er+1 = 0 for r ≤ 5
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Such ruling m corresponds to a ruling φh∗(m) on Fp+1,r. Thus we have{
m ∈ Mp+1,r+1 | m · er+1 = 0

}
= φ∗h

(
Mp+1,r

)
.

(Case 2) m · er+1 = 1 for r ≤ 5
Such ruling m can be written as φ∗h(D)− er+1 with a divisor class D on Fp+1,r satisfying

D2 = φ∗h(D)2 = (m + er+1)
2 = 1,

D · KFp+1,r = φ∗h(D) · φ∗h
(

KFp+1,r

)
= (m + er+1) ·

(
KFp+1,r+1 − er+1

)
= −3.

Thus the divisor class D on Fp+1,r is an exceptional system on Fp+1,r, and we get{
m ∈ Mp+1,r+1 | m · er+1 = 1

}
= φ∗h

(
Ep+1,r

)
− er+1.

(Case 3) m · er+1 = 2 for r = 4, 5
Such ruling m can be written as φ∗h(D)− 2er+1 with a divisor class D on Fp+1,r satisfying

D2 = φ∗h(D)2 = (m + 2er+1)
2 = 4,

D · KFp+1,r = φ∗h(D) · φ∗h(KFp+1,r )

= (m + 2er+1) · (KFp+1,r+1 − er+1) = −4.

When r = 4, −KFp+1,4 is the only divisor class on Fp+1,4 satisfying the above conditions for D.
Thus we have {

m ∈ Mp+1,5 | m · e5 = 2
}
=
{

φ∗h

(
−KFp+1,4

)
− 2e5

}
=
{
−KFp+1,5 − e5

}
= Hp+1,5.

When r = 5, such D corresponds to a line l̃ on Fp+1,5 via D = l̃ − KFp+1,5 . Therefore

{
m ∈ Mp+1,6 | m · e6 = 2

}
=
{

φ∗h

(
l̃ − KFp+1,5

)
− 2e6

∣∣ l̃ ∈ Lp+1,5

}
= φ∗h

(
Lp+1,5

)
− KFp+1,6 − e6 = Hp+1,6.

Similarly, by considering a line f − er+1 on Fp+1,r+1 and φv we also derive the equality for
φv including

Vp+1,5 =
{
−KFp+1,5 − f + e5

}
,

Vp+1,6 = φ∗v
(
Lp,5

)
− KFp+1,6 − ( f − e6).

Remark 8. Comparing Tables 1 and 2, we get

27 =
∣∣Mp+1,5

∣∣ = ∣∣Mp+1,4
∣∣+ ∣∣E p+1,4

∣∣+ ∣∣Hp+1,5
∣∣ = 10 + 16 + 1,

27 =
∣∣Mp+1,5

∣∣ = ∣∣Mp,4
∣∣+ ∣∣E p,4

∣∣+ ∣∣Vp+1,5
∣∣ = 10 + 16 + 1,

126 =
∣∣Mp+1,6

∣∣ = ∣∣Mp+1,5
∣∣+ ∣∣E p+1,5

∣∣+ ∣∣Hp+1,6
∣∣ = 27 + 72 + 27,

126 =
∣∣Mp+1,6

∣∣ = ∣∣Mp,5
∣∣+ ∣∣E p,5

∣∣+ ∣∣Vp+1,6
∣∣ = 27 + 72 + 27.
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4.3.3. Skew A-Lines on Fp,r

In the following, we need to define skew 2-lines, skew 3-lines, and skew r-lines on Fp,r. A divisor
class D in Pic(Fp,r) is called a skew a-line if it can be written as a sum of disjoint lines on Fp,r, namely,

D ≡ l1 + · · ·+ la where li, i = 1, . . . , a, are lines on Fp,r with li · lj = 0 for i 6= j.

Remark 9. We use a term of a skew a-line on Fp,r even if the disjoint a-lines are not really skew because we
follow the ([4] Section 5) and ([19] Section 2.3).

Note that for each skew a-line, the choice of disjoint lines representing the skew a-line is unique
up to permutation (see [4,19]). We denote the set of skew a-lines on Fp,r as

La
p,r :=

{
D ∈ Pic(Fp,r)

∣∣ D is a skew a-line on Fp,r
}

.

In [4,19], we know that La
p,r is bijectively related to a− 1 simplexes in corresponding a Gosset

polytope (r− 3)21. In particular, skew 2-lines L2
p,6 (resp. skew 3-lines L3

p,6) is bijectively related to edges

(resp. 2-simplexes) of a Gosset polytope 321, and so
∣∣∣L2

p,6

∣∣∣ = 756 (resp.
∣∣∣L3

p,6

∣∣∣ = 4032). We can also get∣∣∣L2
p,5

∣∣∣ = 216. Moreover, each skew a-line D satisfies D2 = −a and D · KFp,r = −a, and the converse is
also true for a = 2, 3 by checking the numbers of divisor classes D satisfying equations in the below
(Table 3).

Table 3. Number of D with D2 = −a and D · KFp,r = −a.

a Fp,2 Fp,3 Fp,4 Fp,5 Fp,6 Fp,7

2 6 30 80 216 756 6720
3 2 30 160 720 4032 60, 480

Thus we obtain the following lemma which is also known to hold true for del Pezzo surfaces ([4]
Theorem 5.2).

Lemma 3. For a = 2, 3, a divisor class D on Fp,r with D2 = −a and D · KFp,r = −a is a skew a-line on Fp,r.

4.3.4. Rulings on Fp+1,7 Via Monoidal Transformations

Now we consider r = 6, i.e. Fp+1,7.

Theorem 7. For a fixed line e7 on Fp+1,7, we have

Mp+1,7 = φ∗h
(
Mp+1,6

)
∪̇
(
φ∗h
(
Ep+1,6

)
− e7

)
∪̇
(

φ∗h

(
L2

p+1,6

)
− KFp+1,7 − e7

)
∪̇
(

φ∗h
(
Ep+1,6

)
− KFp+1,7 − 2e7

)
∪̇
(

φ∗h
(
Mp+1,6

)
− 2KFp+1,7 − 2e7

)
= φ∗v

(
Mp,6

)
∪̇
(
φ∗v
(
Ep,6

)
− ( f − e7)

)
∪̇
(

φ∗v

(
L2

p,6

)
− KFp+1,7 − ( f − e7)

)
∪̇
(

φ∗v
(
Ep,6

)
− KFp+1,7 − 2 ( f − e7)

)
∪̇
(

φ∗v
(
Mp,6

)
− 2KFp+1,7 − 2 ( f − e7)

)
.

Proof. We consider the map φh induced by a line e7 on Fp+1,7.
For each ruling m in the set Mp+1,7 on Fp+1,7, m · er+1 may vary as in Lemma 2, and we check the

following cases.
As in Theorem 6, the cases m · e7 = 0 and m · e7 = 1 are given as{

m ∈ Mp+1,7 | m · e7 = 0
}
= φ∗h(Mp+1,6)
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and {
m ∈ Mp+1,7 | m · e7 = 1

}
= φ∗h(Ep+1,6)− e7

respectively.
(Case m · e7 = 2)
Again as in Theorem 6, such ruling m can be written as φ∗h(D)− 2e7 with D satisfying

D2 = φ∗h(D)2 = (m + 2e7)
2 = 4,

D · KFp+1,6 = φ∗h(D) · φ∗h(KFp+1,6)

= (m + 2e7) · (KFp+1,7 − e7) = −4.

Since (D + KFp+1,6) · KFp+1,6 = −2 and (D + KFp+1,6)
2 = −2, by Lemma 3 the divisor class D +

KFp+1,6 is bijectively related to a skew 2-line on Fp+1,6, namely in L2
p+1,6. Thus we have

{
m ∈ Mp+1,7 | m · e7 = 2

}
=
{

φ∗h

(
l1 + l2 − KFp+1,6

)
− 2e7

∣∣ l1, l2 ∈ Lp+1,6 with l1 · l2 = 0
}

= φ∗h

(
L2

p+1,6

)
− KFp+1,7 − e7.

(Case m · e7 = 3)
As the above, a ruling m with m · e7 = 3 can be written as φ∗h(D)− 3e7 with a divisor class D on

Fp+1,6 satisfying D2 = 9 and D · KFp+1,6 = −5. Since (D + KFp+1,6) · KFp+1,6 = −3 and (D + KFp+1,6)
2 =

1, the divisor class D + KFp+1,6 is bijectively related to an exceptional system on Fp+1,6. Therefore,
we obtain {

m ∈ Mp+1,7 | m · e7 = 3
}

=
{

φ∗h

(
e− KFp+1,6

)
− 3e7

∣∣ e ∈ Ep+1,6

}
= φ∗h

(
Ep+1,6

)
− KFp+1,7 − 2e7.

(Case m · e7 = 4)
A ruling m with m · e7 = 4 can be written as φ∗h(D)− 4e7 with a divisor class D on Fp+1,6 satisfying

D2 = 16 and D · KFp+1,6 = −6. Since (D + 2KFp+1,6) · KFp+1,6 = −2 and (D + 2KFp+1,6)
2 = 0, the divisor

class D + 2KFp+1,6 is bijectively related to a ruling on Fp+1,6 so that we have

{
m ∈ Mp+1,7 | m · e7 = 4

}
=
{

φ∗h

(
m− 2KFp+1,6

)
− 4e7

∣∣ m ∈ Mp+1,6

}
= φ∗h

(
Mp+1,6

)
− 2KFp+1,7 − 2e7.

Similarly, we derive the equality for φv.

Remark 10. Comparing Tables 1 and 2, we obtain

2160 =
∣∣Mp+1,7

∣∣
=
∣∣Mp+1,6

∣∣+ ∣∣Ep+1,6
∣∣+ ∣∣∣L2

p+1,6

∣∣∣+ ∣∣Ep+1,6
∣∣+ ∣∣Mp+1,6

∣∣
=
∣∣Mp,6

∣∣+ ∣∣Ep,6
∣∣+ ∣∣∣L2

p,6

∣∣∣+ ∣∣Ep,6
∣∣+ ∣∣Mp,6

∣∣
= 126 + 576 + 756 + 576 + 126.
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4.4. Exceptional Systems and Monoidal Transformations

We introduce sextic divisor classes to appear on the way to monoidal transformations for
exceptional systems on Fp,r. We also study basic properties of these divisor classes. The properties
are not crucial to understand the monoidal transformations for exceptional systems, but since these
divisor classes were not considered beforehand, we study their properties for the sake of completeness.

4.4.1. Sextic Divisor Classes on Fp,6

To study monoidal transformations for exceptional systems on Fp,7, we need to introduce a sextic
divisor class D via the anti-canonical degree with respect to the canonical divisor class KFp,6 on Fp,6

which is given by D2 = 10, D · KFp,6 = −6 and its set is denoted as

S p,6 :=
{

D ∈ Pic(Fp,6)
∣∣∣ D2 = 10, D · KFp,6 = −6

}
.

Either direct computation or by applying Lattice theory to (D + 3KFp,6) · KFp,6 = 0 and (D +

3KFp,6)
2 = −8, we obtain

∣∣Sp,6
∣∣ = 4158. By considering Weyl action of E7, we know that there are more

than one orbit in Sp,6. To characterize elements of each orbit we introduce

Φ(D) :=
1
2

(
D + KFp,6

)
for each D in Sp,6. In the following, by checking that Φ(D) is in Pic(Fp,6) or not, we identify each orbit
in Sp,6.

Now we prove that Sp,6 consists of two orbits of E7 action.
(1) (Orbit I) We consider a subset of Sp,6 given as

Sp,6(I) :=
{

2m− KFp,6 ∈ Pic(Fp,6)
∣∣ m is a ruling on Fp,6

}
⊂ Sp,6

which consists of 126 elements. The E7-Weyl group preserves KFp,6 and transitively acts on the set Mp,6

of rulings on Fp,6. Thus it forms a single orbit. Note that Φ(2m− KFp,6) =
1
2

((
2m− KFp,6

)
+ KFp,6

)
=

m ∈ Pic(Fp,6). Moreover, we conclude that the set of such divisor classes is bijectively related to the set
of rulings on Fp,6 which contains 126 elements, and we obtain the following lemma.

Lemma 4. For a sextic divisor class D in Sp,6, Φ(D) is in Pic(Fp,6) if and only if Φ(D) is a ruling.

(2) (Orbit II)
As in [4,19], each exceptional system e on Fp,6 corresponds to a 6-simplex consisting of a skew

7-line l1 + l2 + · · ·+ l7 via 3e + KFp,6 ≡ l1 + l2 + · · ·+ l7. For each line li in the skew 7-line, we consider
a divisor class

e + li − KFp,6

which satisfies
(

e + li − KFp,6

)
· KFp,6 = −6 and

(
e + li − KFp,6

)2
= 10. We define a subset of Pic(Fp,6)

S p,6(I I) :=

{
e + li − KFp,6 ∈ Pic(Fp,6)

∣∣∣∣∣ e is an exceptional system on Fp,6,
3e + KFp,6 ≡ l1 + l2 + · · ·+ l7

}
.

Indeed, this is an orbit, since E7-Weyl group acts trivially on KFp,6 and transitively on the set of
exceptional systems, and the isotropy group acts transitively on the skew 7-lines.

Lemma 5. For each e + li − KFp,6 in Sp,6(I I), Φ(e + li − KFp,6) is not in Pic(Fp,6) and e + li − KFp,6 is
uniquely determined.
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Proof. Since Φ(e + li − KFp,6) · li =
(

e+li
2

)
· li = − 1

2 , Φ(e + li − KFp,6) is not in Pic(Fp,6).

To show e + li − KFp,6 is uniquely determined, we consider two pairs, (e, li) and
(
ẽ, l̃i
)
, of an

exceptional system and a line which satisfy e + li ≡ ẽ + l̃i. Without losing the generality, we may
assume e 6≡ ẽ and li 6≡ l̃i.

First of all, we observe li is not related to the exceptional system ẽ via a skew 7-line l̃1 + l̃2 + · · ·+ l̃7
(i.e. li 6≡ l̃j for all j ∈ {1, 2, . . . , 7}). Indeed, suppose that li ≡ l̃j for some j. We have li · l̃i = 0 and
li · ẽ = 0 since li 6≡ l̃i and 3ẽ + KFp,6 ≡ l̃1 + l̃2 + · · ·+ l̃7. It gives a contradiction by −1 = li · (e + li) =
li ·
(
ẽ + l̃i

)
= 0. Thus li is not one of l̃j in l̃1 + l̃2 + · · ·+ l̃7.

Since li is not related to the exceptional system ẽ via a skew 7-line l̃1 + l̃2 + · · ·+ l̃7, we have

li ·
(

3ẽ + KFp,6

)
= li ·

(
l̃1 + l̃2 + · · ·+ l̃7

)
> 0.

Indeed, the possible intersection number among two lines l′, l′′ is ≥ −1, and l′ ≡ l′′ when
l′ · l′′ = −1 (See Section 4.1.1). Observe that a skew 7-line consists of 7-lines whose 7 is the maximum t
for which there exists a t-skew line (See ([4] Table 2 and Theorem 5.1) and [19]). So any line which is
not in the skew 7-line l̃1 + l̃2 + · · ·+ l̃7 must have a positive intersection number with the skew 7-line.

Thus li · ẽ > 0. It implies 0 ≤ li · l̃i = li · (li + e− ẽ) = −1− li · ẽ ≤ −2 which is impossible.
Hence e + li − KFp,6 is uniquely determined.

By applying Lemma 5, we conclude the subset Sp,6(I I) consists of 7× 576 elements. Since 126 +
7 × 576 =

∣∣Sp,6
∣∣, these two forms, Sp,6(I) and Sp,6(I I), are disjoint orbits of the set Sp,6 of

sextic divisors.
In summary we have

Proposition 1.

Sp,6 =
{

2m− KFp,6 ∈ Pic(Fp,6) | m is a ruling
}

⋃̇{
e + li − KFp,6 ∈ Pic(Fp,6)

∣∣∣∣∣ e is an exceptional system on Fp,6,
3e + KFp,6 ≡ l1 + l2 + · · ·+ l7

}
(
i.e. Sp,6 = Sp,6(I) ∪̇ Sp,6(I I)

)
.

Moreover, for each D in Sp,6, D is in Sp,6(I) iff Φ(D) is in Pic(Fp,6), and D is in S p,6(I I) iff Φ(D) is
not in Pic(Fp,6).

4.4.2. Intersection between a Line and an Exceptional System

For a line l and an exceptional system e on Fp,r, the possible intersection numbers between lines
and exceptional systems are given by the following lemma.

Lemma 6. The possible intersection numbers between lines and exceptional systems are given as

l · e =


0, 1 for r = 1, 2, 3
0, 1, 2 for r = 4, 5
0, 1, 2, 3 for r = 6

−1, 0, 1, 2, 3, 4, 5, 6, 7 for r = 7

. (4)

Proof. For a line l and an exceptional system e on Fp,r, we have

K2
Fp,r

(l ± e)2 ≤ (KFp,r · l ± KFp,r · e)2
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and it implies
− 2

8−r ≤ l · e ≤ 8
8−r .

Thus, the possible intersection numbers between lines and exceptional systems are given as

l · e =


0, 1 for r = 1, 2, 3
0, 1, 2 for r = 4, 5

−1 ≤ l · e ≤ 4 for r = 6
−2 ≤ l · e ≤ 8 for r = 7

.

For r = 6, by applying Hodge inequality to get l · e = 4 (resp. −1), there is a constant n with
e + l ≡ nKFp,6 (resp. e− l ≡ nKFp,6). Since KFp,6 · (e + l) = −4 (resp. KFp,6 · (e− l) = −2 ), the constant
n is equal to −2 (resp. −1). But e2 = (−2KFp,6 − l)2 = 3 (resp. e2 = (−KFp,6 + l)2 = 3 ) which is
impossible since e2 = 1.

For r = 7, as the above, to get l · e = 8 (resp. l · e = −2), e + l ≡ nKFp,7 (resp. e − l ≡ nKFp,7)
for some constant n. Since KFp,7 · (e + l) = −4 (resp. KFp,7 · (e− l) = −2 ), the constant n is equal to
−4 (resp. −2). But e2 = (−4KFp,7 − l)2 = 7 (resp. e2 = (−2KFp,7 + l)2 = 7 ) which is impossible since
e2 = 1.

4.4.3. Exceptional Systems Via Monoidal Transformations

Now, we consider monoidal transformations for Ep+1,r+1 given by lines f − er+1 and er+1 on
Fp,r+1. According to Lemma 6, the case r = 6 (i.e., the case Ep+1,7) involves more nontrivial issues than
the others so that we deal with them after the following theorem for the cases 0 ≤ r ≤ 5.

Theorem 8. For a fixed line er+1 on Fp+1,r+1, 0 ≤ r ≤ 5,

Ep+1,r+1 = φ∗h
(
Ep+1,r

)
∪̇
(
φ∗h
(
Qp+1,r

)
− er+1

)
∪̇ Hp+1,r+1

= φ∗v
(
Ep,r
)
∪̇
(
φ∗v
(
Qp,r

)
− ( f − er+1)

)
∪̇ Vp+1,r+1,

where 

Hp+1,r+1 = Vp+1,r+1 = ∅ for r ≤ 2,

Hp+1,4 =
{
−KFp+1,4 − e4

}
, Vp+1,4 =

{
−KFp+1,4 − ( f − e4)

}
,

Hp+1,5 = φ∗h
(
Lp+1,4

)
− KFp+1,5 − e5,

Vp+1,5 = φ∗v
(
Lp,4

)
− KFp+1,5 − ( f − e5),

Hp+1,6 =
(

φ∗h

(
L2

p+1,5

)
− KFp+1,6 − e6

)
∪̇
(

φ∗h
(
Ep+1,5

)
− KFp+1,6 − 2e6

)
,

Vp+1,6 =
(

φ∗v
(

L2
p,5

)
− KFp+1,6 − ( f − e6)

)
∪̇
(

φ∗v
(
Ep,5

)
− KFp+1,6 − 2( f − e6)

)
.

Proof. We consider the map φh induced from a line er+1 on Fp+1,r+1.
For each exceptional system e in the set Ep+1,r+1 on Fp+1,r+1, the intersection number e · er+1 may

vary as in Lemma 6, and we check the following cases according to them.
(Case 1) e · er+1 = 0 for r ≤ 5
An exceptional system e on Fp+1,r+1with e · er+1 = 0 corresponds to an exceptional system

φh∗(e) on Fp+1,r. Thus we have{
e ∈ Ep+1,r+1 | e · er+1 = 0

}
= φ∗h

(
Ep+1,r

)
.

(Case 2) e · er+1 = 1 for r ≤ 5
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Such exceptional system e can be written as φ∗h(D)− er+1 with a divisor class D on Fp+1,r satisfying

D2 = φ∗h(D)2 = (e + er+1)
2 = 2,

D · KFp+1,r = φ∗h(D) · φ∗h
(

KFp+1,r

)
= (e + er+1) ·

(
KFp+1,r+1 − er+1

)
= −4.

Therefore, the divisor class D is a quartic rational divisor class on Fp+1,r, and so{
e ∈ Ep+1,r+1 | e · er+1 = 1

}
= φ∗h

(
Qp+1,r

)
− er+1.

(Case 3) e · er+1 = 2 for r = 3, 4
Such e can be written as φ∗h(D)− 2er+1 with D satisfying

D2 = φ∗h(D)2 = (e + 2er+1)
2 = 5,

D · KFp+1,r = φ∗h(D) · φ∗h
(

KFp+1,r

)
= (e + 2er+1) ·

(
KFp+1,r+1 − er+1

)
= −5.

When r = 3, −KFp+1,3 is the only divisor class on Fp+1,3 satisfying the above conditions for D. Thus

{
e ∈ Ep+1,4 | e · e4 = 2

}
=
{

φ∗h

(
−KFp+1,3

)
− 2e4

}
=
{
−KFp+1,4 − e4

}
= Hp+1,4.

When r = 4, such D corresponds to a line l̃ on Fp+1,4 via D = l̃ − KFp+1,4 . Therefore

{
e ∈ Ep+1,5 | e · e5 = 2

}
=
{

φ∗h

(
l̃ − KFp+1,4

)
− 2e5

∣∣ l̃ ∈ Lp+1,4

}
= φ∗h

(
Lp+1,4

)
− KFp+1,5 − e5 = Hp+1,5.

(Case 4) e · e6 = 2 or 3
(i) An exceptional system e on Fp+1,6 with e · e6 = 2 can be written as φ∗h(D)− 2e6 with a divisor

class D on Fp+1,5 satisfying D2 = 5 and D · KFp+1,5 = −5. Since (D + KFp+1,5) · KFp+1,5 = −2 and
(D + KFp+1,5)

2 = −2, the divisor class D + KFp+1,5 is bijectively related to a skew 2-line L2
p,5 by Lemma 3.

Thus we have {
e ∈ Ep+1,6 | e · e6 = 2

}
=
{

φ∗h

(
l1 + l2 − KFp+1,5

)
− 2e6

∣∣ l1, l2 ∈ Lp+1,5 with l1 · l2 = 0
}

= φ∗h

(
L2

p+1,5

)
− KFp+1,6 − e6.

(ii) An exceptional system e on Fp+1,6 with e · e6 = 3 can be written as φ∗h(D)− 3e6 with a divisor
class D on Fp+1,5 satisfying D2 = 10 and D · KFp+1,5 = −6. Since (D + KFp+1,5) · KFp+1,5 = −3 and
(D + KFp+1,5)

2 = 1, the divisor class D + KFp+1,5 is bijectively related to an exceptional system on Fp+1,5.
Therefore, we obtain {

e ∈ Ep+1,6 | e · e6 = 3
}

=
{

φ∗h

(
e− KFp+1,5

)
− 3e6

∣∣ e ∈ Ep+1,5

}
= φ∗h

(
Ep+1,5

)
− KFp+1,6 − 2e6.
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Similarly, we derive the equality for φv and obtain

Vp+1,4 = {−KFp+1,4 − f + e4},

Vp+1,5 = φ∗v
(
Lp,4

)
− KFp+1,5 − ( f − e5),

Vp+1,6 =
(

φ∗v

(
L2

p,5

)
− KFp+1,6 − ( f − e6)

)
∪̇
(

φ∗v
(
Ep,5

)
− KFp+1,6 − 2( f − e6)

)
.

Remark 11. When we consider skew 2-lines on Fp+1,5 and Fp,5, we have the following data in Tables 1 and 2.

16 =
∣∣E p+1,4

∣∣ = ∣∣E p+1,3
∣∣+ ∣∣Qp+1,3

∣∣+ ∣∣Hp+1,4
∣∣

=
∣∣E p,3

∣∣+ ∣∣Qp,3
∣∣+ ∣∣Vp+1,4

∣∣ = 5 + 10 + 1,

72 =
∣∣E p+1,5

∣∣ = ∣∣E p+1,4
∣∣+ ∣∣Qp+1,4

∣∣+ ∣∣Hp+1,5
∣∣

=
∣∣E p,4

∣∣+ ∣∣Qp,4
∣∣+ ∣∣Vp+1,5

∣∣ = 16 + 40 + 16,

576 =
∣∣E p+1,6

∣∣ = ∣∣E p+1,5
∣∣+ ∣∣Qp+1,5

∣∣+ ∣∣Hp+1,6
∣∣

=
∣∣Ep+1,5

∣∣+ ∣∣Qp+1,5
∣∣+ ∣∣∣L2

p+1,5

∣∣∣+ ∣∣Ep+1,5
∣∣

= 72 + 216 + 216 + 72,

576 =
∣∣E p+1,6

∣∣ = ∣∣E p,5
∣∣+ ∣∣Qp,5

∣∣+ ∣∣Vp+1,6
∣∣

=
∣∣Ep,5

∣∣+ ∣∣Qp,5
∣∣+ ∣∣∣L2

p,5

∣∣∣+ ∣∣Ep,5
∣∣

= 72 + 216 + 216 + 72.

4.4.4. Exceptional Systems of Ep+1,7 Via Monoidal Transformations

We deal with the case r = 6 (i.e., the case Ep+1,7) as follows. In this case we use sextic divisor
classes to describe exceptional systems via monoidal transformations.

Theorem 9. For a fixed line e7 on Fp+1,7,

Ep+1,7 = φ∗h
(
Ep+1,6

)
∪̇
(
φ∗h
(
Qp+1,6

)
− e7

)
∪̇ Hp+1,7

= φ∗v
(
Ep,6

)
∪̇
(
φ∗v
(
Qp,6

)
− ( f − e7)

)
∪̇ Vp+1,7,

where 

Hp+1,7 =
{
−KFp+1,7 + 2e7

}
∪̇
(

φ∗h

(
L3

p+1,6

)
− KFp+1,7 − e7

)
∪̇
(
φ∗h
(
Sp+1,6

)
− 3e7

)
∪̇
(

φ∗h

(
L3

p+1,6

)
− 2KFp+1,7 − 2e7

)
∪̇
(

φ∗h
(
Qp+1,6

)
− 5KFp+1,7

)
∪̇
(

φ∗h
(
Ep+1,6

)
− 5KFp+1,7 − e7

)
∪̇
{
−5KFp+1,7 − 2e7

}
,

Vp+1,7 =
{
−KFp+1,7 + 2 ( f − e7)

}
∪̇
(

φ∗v
(

L3
p,6

)
− KFp+1,7 − ( f − e7)

)
∪̇
(
φ∗v
(
Sp,6

)
− 3 ( f − e7)

)
∪̇
(

φ∗v
(

L3
p,6

)
− 2KFp+1,7 − 2 ( f − e7)

)
∪̇
(

φ∗v
(
Qp,6

)
− 5KFp+1,7

)
∪̇
(

φ∗v
(
Ep,6

)
− 5KFp+1,7 − ( f − e7)

)
∪̇
{
−5KFp+1,7 − 2 ( f − e7)

}
.

Proof. We consider the map φh induced by a line e7 on Fp+1,7.
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For each exceptional system e in the set Ep+1,7 on Fp+1,7, e · er+1 may vary as in Lemma 6, and we
check each case of e · e7 = −1, 0, · · · , 7.

As in Theorem 8, the cases e · e7 = 0 and e · e7 = 1 are given as{
e ∈ Ep+1,7 | e · e7 = 0

}
= φ∗h(Ep+1,6)

and {
e ∈ Ep+1,7 | e · e7 = 1

}
= φ∗h(Qp+1,6)− e7

respectively.
(Case e · e7 = −1)
An exceptional system e on Fp+1,7 with e · e7 = −1 can be written as φ∗h(D) + e7 with a divisor

class D on Fp+1,6 satisfying D2 = 2 and D · KFp+1,6 = −2. The divisor class −KFp+1,6 is the only class
with the given condition for D. Thus, we have{

e ∈ Ep+1,7 | e · e7 = −1
}

=
{

φ∗h

(
−KFp+1,6

)
+ e7

}
=
{
−KFp+1,7 + 2e7

}
.

(Case e · e7 = 2)
An exceptional system e on Fp+1,7 satisfying e · e7 = 2 can be written as φ∗h(D)− 2e7 with a divisor

class D on Fp+1,6 satisfying D2 = 5 and D · KFp+1,6 = −5. By applying Lemma 3 to (D + KFp+1,6) ·
KFp+1,6 = −3 and (D + KFp+1,6)

2 = −3, the divisor class D + KFp+1,6 is bijectively related to a skew 3-line
of L3

p,6 on Fp+1,6. Thus, we obtain

{
e ∈ Ep+1,7 | e · e7 = 2

}
=

{
φ∗h

(
l1 + l2 + l3 − KFp+1,6

)
− 2e7

∣∣∣∣∣ l1, l2, l3 ∈ Lp+1,6

with li · lj = 0, i 6= j

}
= φ∗h

(
L3

p+1,6

)
− KFp+1,7 − e7.

(Case e · e7 = 3)
An exceptional system e on Fp+1,7 satisfying e · e7 = 3 can be written as φ∗h(D)− 3e7 with a divisor

class D on Fp+1,6 satisfying D2 = 10 and D · KFp+1,6 = −6 which is a sextic divisor in Sp+1,6 on Fp+1,6

(See Section 4.4.1). Thus, we obtain{
e ∈ Ep+1,7 | e · e7 = 3

}
= φ∗h

(
Sp+1,6

)
− 3e7.

(Case e · e7 = 4)
An exceptional system e on Fp+1,7 with e · e7 = 4 can be written as φ∗h(D)− 4e7 with a divisor class

D on Fp+1,6 satisfying D2 = 17 and D · KFp+1,6 = −7. By applying Lemma 3 to (D + 2KFp+1,6) · KFp+1,6 =

−3 and (D + 2KFp+1,6)
2 = −3, the divisor class D + 2KFp+1,6 is bijectively related to a skew 3-line of

L3
p,6 on Fp+1,6. Thus, we obtain

{
e ∈ Ep+1,7 | e · e7 = 4

}
=

{
φ∗h

(
l1 + l2 + l3 − 2KFp+1,6

)
− 4e7

∣∣∣∣∣ l1, l2, l3 ∈ Lp+1,6

with li · lj = 0, i 6= j

}
= φ∗h

(
L3

p+1,6

)
− 2KFp+1,7 − 2e7.

(Case e · e7 = 5)
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Such exceptional system e can be written as φ∗h(D)− 5e7 with a divisor class D on Fp+1,6 satisfying
D2 = 26 and D · KFp+1,6 = −8. Since (D + 5KFp+1,6) · KFp+1,6 = 2 and (D + 5KFp+1,6)

2 = −4, the divisor
class D + 5KFp+1,5 is bijectively related to a quartic rational divisor class on Fp+1,6. Therefore, we have

{
e ∈ Ep+1,7 | e · e7 = 5

}
=
{

φ∗h

(
q− 5KFp+1,6

)
− 5e7

∣∣ q ∈ Qp+1,6

}
= φ∗h

(
Qp+1,6

)
− 5KFp+1,7 .

(Case e · e7 = 6)
Such exceptional system e can be written as φ∗h(D)− 6e7 with a divisor class D on Fp+1,6 satisfying

D2 = 37 and D · KFp+1,6 = −9. Since (D + 5KFp+1,6) · KFp+1,6 = 1 and (D + 5KFp+1,6)
2 = −3, the divisor

class D + 5KFp+1,5 corresponds an exceptional system on Fp+1,6. Therefore, we have

{
e ∈ Ep+1,7 | e · e7 = 6

}
=
{

φ∗h

(
e− 5KFp+1,6

)
− 6e7

∣∣ e ∈ Ep+1,6

}
= φ∗h

(
Ep+1,6

)
− 5KFp+1,7 − e7.

(Case e · e7 = 7)
An exceptional system e on Fp+1,7 with e · e7 = 7 can be written as φ∗h(D)− 7e7 with a divisor

class D on Fp+1,6 satisfying D2 = 50 and D · KFp+1,6 = −10. Since (D + 5KFp+1,6) · KFp+1,6 = 0 and
(D + 5KFp+1,6)

2 = 0, the divisor class −5KFp+1,6 is the only class with the given condition. Thus, we
have {

e ∈ Ep+1,7 | e · e7 = 7
}
=
{

φ∗h

(
−5KFp+1,6

)
− 7e7

}
=
{
−5KFp+1,7 − 2e7

}
.

Similarly, we obtain the equality for Vp+1,7.

Remark 12. We use Table 2 with skew 3-lines on Fp+1,6 (resp. Fp,6) and sextic divisor classes on Fp+1,6 (resp.
Fp,6) to obtain the following.∣∣Ep+1,7

∣∣ = 17520,
∣∣Ep+1,6

∣∣ (resp.
∣∣Ep,6

∣∣) = 576,
∣∣Qp+1,6

∣∣ (resp.
∣∣Qp,6

∣∣) = 2072,∣∣∣L3
p+1,6

∣∣∣ (resp.
∣∣∣L3

p,6

∣∣∣) = 4032,
∣∣Sp+1,6

∣∣ (resp.
∣∣Sp,6

∣∣) = 4158.

17520 =
∣∣Ep+1,7

∣∣ = ∣∣∣{−KFp+1,7 + 2e7

}∣∣∣+ ∣∣Ep+1,6
∣∣+ ∣∣Qp+1,6

∣∣+ ∣∣∣L3
p+1,6

∣∣∣+ ∣∣Sp+1,6
∣∣

+
∣∣∣L3

p+1,6

∣∣∣+ ∣∣Qp+1,6
∣∣+ ∣∣Ep+1,6

∣∣+ ∣∣∣{−5KFp+1,7 − 2e7

}∣∣∣
=
∣∣∣{−KFp+1,7 + 2( f − e7)

}∣∣∣+ ∣∣Ep,6
∣∣+ ∣∣Qp,6

∣∣+ ∣∣∣L3
p,6

∣∣∣+ ∣∣Sp,6
∣∣

+
∣∣∣L3

p,6

∣∣∣+ ∣∣Qp,6
∣∣+ ∣∣Ep,6

∣∣+ ∣∣∣{−5KFp+1,7 − 2( f − e7)
}∣∣∣

= 1 + 576 + 2072 + 4032 + 4158 + 4032 + 2072 + 576 + 1.
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