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Abstract: In this paper, a new stable finite-difference (FD) method for solving elastodynamic
equations is presented and applied on the Biot and Biot/squirt (BISQ) models. This method is
based on the operator splitting theory and makes use of the characteristic boundary conditions to
confirm the overall stability which is demonstrated with the energy method. Through the stability
analysis, it is showed that the stability conditions are more generous than that of the traditional
algorithms. It allows us to use the larger time step τ in the procedures for the elastic wave field
solutions. This context also provides and compares the computational results from the stable Biot
and unstable BISQ models. The comparisons show that this FD method can apply a new numerical
technique to detect the stability of the seismic wave propagation theories. The rigorous theoretical
stability analysis with the energy method is presented and the stable/unstable performance with
the numerical solutions is also revealed. The truncation errors and the detailed stability conditions
of the FD methods with different characteristic boundary conditions have also been evaluated.
Several applications of the constructed FD methods are presented. When the stable FD methods to
the elastic wave models are applied, an initial stability test can be established. Further work is still
necessary to improve the accuracy of the method.

Keywords: elastic wave model; finite-different method; stability analysis; energy method;
relaxation structure

1. Introduction

The propagation dynamics of seismic waves in fluid saturated porous media are of great
importance for reservoir rock characterization and attract many geoscientists. The elastic waves
travel through the underground material with attenuation and dispersion which is closely related to
the heterogeneities of the porous continuum properties [1,2]. Attenuation is the exponential decay of
the wave amplitude with distance and dispersion means the variation of wave velocity with frequency.
It is commonly accepted that the wave propagation phenomenon can be described by the partial
differential equations as functions of time t and space position x [1,3]. Various theories [4–8] focus
on the dissipation mechanism of wave energy. Among the various theories, the Biot and squirt-flow
mechanisms are believed to be the most important ones [6,9]. They have served as the rigorous and
formal foundations to study acoustic wave propagation in saturated porous media. Numerous efforts
are made to discuss the different form and numerical implementation of these two mechanisms [10].
Based on these theories, recently much attention has been paid in the literature on investigating the
seismic wave propagation theories by various numerical methods, such as finite-difference (FD) and
finite-element (FE) methods. When considering the simulation of wave propagation in saturated
media, FD methods are well received and applied with success to numerous physical problems [11].
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On the elastic wave numerical simulation or reverse-time migration, the FD method with a
suitable grid is widely applied, such as the staggered grid and the rotated staggered grid. In the
first-order velocity-stress hyperbolic system, the FD staggered-grid method applied with the Yee
scheme is popular, but the stability of the numerical solution has been shown only in some cases [12].
Virieux provides the stability condition of the 2-order difference scheme based on a staggered grid [13].
However, when applying the FD staggered grid method on the anisotropic media, it is found that the
global error significantly increases [14]. For this, Saenger et al. [15] proposed the FD rotated staggered
grid method by which the accuracy is increased. Subsequently, it was discovered that this method is
unstable on the boundary [16].

The construction of the algorithm usually focuses only on the accuracy. However, the stability
condition is also a key factor during the elastic wave numerical simulation. The condition remands
that the time step length of discrete differential should be small enough to ensure that the computation
in stable. Thus far, extensive efforts have been made to overcome the limitations in calculations.
Even though these conventional methods have offered great success in many applications, there can be
some uncertainties and extra discrepancies owing to the lack of stable difference method and suitable
boundary conditions. Thus, a stable and accurate FD method is needed to address such problems.
In addition, geophysicists normally use the Fourier method to discuss the stability of the difference
scheme and get some criteria, such as Von Neumann conditions [17]. This method is simple but limited
to the linear differential equations with constant coefficients. For this, an energy method that can be
directly applied to the nonlinear systems is considered in this work.

Some interesting combinations of difference scheme and boundary condition might overcome
these limits. The idea is to use the difference scheme on the basis of the time-splitting method and to
consider the adjusted characteristic boundary conditions to assure the overall stability and accuracy
of the system, which is shown in Section 2. Its validity, accuracy, and applicability are systematically
and theoretically investigated in Section 3. We also test the new stable finite-difference methods by
applying it to the stable Biot model and unstable BISQ model with some experimental data-parameters
from the paper by Yang et al. [18]. All numerical results encountered in Section 4 show that the
finite difference methods and characteristic boundary conditions are suitable to simulate the wave
propagation in a long time period. Therefore, for the stability analysis of different wave propagation
models, the schemes are appropriate choices.

2. Related Work

This section presents the governing equations and the related solutions of the elastic wave
modeling. The one-dimensional medium of the Biot/squirt (BISQ) elastic-wave equations can be
represented as [6]:

vt = Rρ22τx + Rρ2φPx + Rρ2
ηφ2

κ
(w− v),

wt = −Rρ12τx − Rρ1φPx − Rρ1
ηφ2

κ
(w− v),

τt =

[
M +

αFS(α− φ)

φ

]
vx + αFSwx,

Pt = −FS
α− φ

φ
vx − FSwx.

(1)

Here, v = v(x, t) and w = w(x, t) are the respective solid’s and fluid’s velocities at the position-time
point (x, t) ∈ R× [0, T], τ is the total stress of the bulk material, P = P(x, t) is the total fluid pressure;
φ ∈ (0, 1) is the porosity of the solid, M is the uniaxial modulus of the skeleton in drained conditions,
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α is the poroelastic coefficient, η is the viscosity of the fluid, κ is the permeability of the skeleton, F and
S are the Biot-flow and characteristic squirt-flow coefficients, R = (ρ1ρ22 − ρ2ρ12)

−1, and

ρ22 = φρ f − ρ12, ρ12 = −ρa, ρ1 = (1− φ)ρs, ρ2 = φρ f ,

ρs, ρ f , and ρa are the respective solid’s, fluid’s, and additional coupling densities. Subscripts x and t

indicate partial derivatives (e.g., Px = ∂P
∂x , utt =

∂2u
∂t2 ).

Set
U = (τ, P, v, W)T .

The linear system (1) can be written in the vector form:

Ut = A1Ux +A2U, (2)

with coefficient matrices

A1 =


0 0 M + αFS(α−φ)

φ αFS

0 0 −FS α−φ
φ −FS

Rρ22 Rρ2φ 0 0
−Rρ12 −Rρ1φ 0 0

 , A2 =
Rηφ2

κ


0 0 0 0
0 0 0 0
0 0 −ρ2 ρ2

0 0 ρ1 −ρ1

 ,

and initial conditions U(x, t = 0) = U0(x).
The previous research [19] proved that, if S > 0, there exists a symmetric positive matrix A0

such that the matrix A0A1 symmetric and A0A2 is symmetric non-positive definite. Additionally,
the expression of matrix A1 shows that

detA1 =
MFSφ

ρ1ρ22 − ρ2ρ12
> 0,

and the sum of its eigenvalues is zero. In this way, the matrix A1 has two positive and negative
eigenvalues. Yong [20] shows that we can diagonalize the coefficient matrix A1 with a transformation
L ∈ R4×4 such that

LA1L−1 = Λ, Λ =

(
Λ+ 0
0 Λ−

)
.

Here, Λ+ = diag(λ1, λ2), Λ− = diag(λ3, λ4) and λi(i = 1, 2, 3, 4 ) are the eigenvalues of the matrix
A1. With the above result of the matrix A1, we assume that

λ1, λ2 > 0, λ3, λ4 < 0.

Lemma 3.3 in the paper [20] proves that there exist symmetric positive definite matrices M1,
M2 ∈ R2×2 such that

A0 = LTML = LT

(
M1 0
0 M2

)
L.

With these preparations, (2) can be rewritten as

LT

(
M1 0
0 M2

)
LUt = LT

(
M1Λ+ 0

0 M2Λ−

)
LUx +A0A2U.

Setting V = LU, this can be further rewritten as(
M1 0
0 M2

)
Vt =

(
M1Λ+ 0

0 0

)
Vx +

(
0 0
0 M2Λ−

)
Vx + B2V. (3)
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where B2 = (LT)−1A0A2L−1. Additionally, the congruent transformation of the matrix does
not change the numbers of positive and negative eigenvalues, and then B2 is symmetric
non-positive definite.

Corresponding to a control law [20], the characteristic boundary conditions can be prescribed as(
V+(t, 1)
V−(t, 0)

)
= K

(
V−(t, 1)
V+(t, 0)

)
, (4)

where V =

(
V+

V−

)
, V+, V− ∈ R2×1 are separated for the block matrix Λ and K is a constant 4× 4

diagonal matrix, which is defined in Section 3.

3. Methodology and Formulation

For the numerical integration of the system (3), the time-splitting method described in the
following is considered. It means that Equation (3) are split into two separated homogeneous partial
differential equations

LT

(
M1 0
0 M2

)
LUt = LT

(
M1Λ+ 0

0 M2Λ−

)
LUx, (5a)

LT

(
M1 0
0 M2

)
LUt = A0A2U. (5b)

It can be assumed that a rectilinear grid with sides parallel to the coordinate axes is superimposed
on {0 ≤ x ≤ 1} × {t ≥ 0} with grid spacing ∆x > 0 and ∆t > 0 in the space and time coordinate
directions respectively, where J = 1

∆x is positive integer. Let Un
j = U(xj, tn) at the grid point (xj, tn) =

(j∆x, n∆t).

3.1. First-Order Scheme

The differential Equation (5a) can be rewritten as

LUt =

[
LT

(
M1 0
0 M2

)]−1

LT

(
M1Λ+ 0

0 M2Λ−

)
LUx

=

(
M1 0
0 M2

)−1

(LT)−1LT

(
M1 0
0 M2

)(
Λ+ 0
0 Λ−

)
LUx

=

(
Λ+ 0
0 0

)
LUx +

(
0 0
0 Λ−

)
LUx.

For the interior points, it means that j ∈ [1, J − 1], the above differential equation can be discretized by

[Ut]nj =
Ûn

j −Un
j

∆t , [Ux]nj+ =
Un

j+1−Un
j

∆x for Λ+, [Ux]nj− =
Un

j −Un
j−1

∆x for Λ− and then

L(Ûn
j −Un

j ) =
∆t
∆x

(
Λ+ 0
0 0

)
L(Un

j+1 −Un
j ) +

∆t
∆x

(
0 0
0 Λ−

)
L(Un

j −Un
j−1). (6)

Set V̂ = LÛ = (V̂+, V̂−), V̂+, V̂− ∈ R2×1, the boundary value V̂n
0,+ and V̂n

J,− can be obtained from (6)
and the others can be determined by the character boundary condition (4).

The next step is approximating (5b) by implicit treatment of the source term, and then

Un+1
j = Ûn

j + ∆tA2Un+1
j =⇒ Un+1

j = (I − ∆tA2)
−1Ûn

j , j ∈ [0, J], (7)
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where I represents the identity matrix and then the matrix I − ∆tA2 is invertible for the negative
semidefinite matrix A2. The scheme (4)/(6)/(7) is a first-order finite difference schemes and the proof
is given in Appendix A.1.

3.2. Second-Order Scheme

In this section, some approaches are applied to establish a second-order scheme using some
thoughts guided by the research [21] and making some changes to solve (5a). Referring to V̂± marked
in Section 3.1, (5a) can be rewritten as

Vt(m) = λmVx(m), m = 1, 2, 3, 4, (8)

where V(m) and λm represent the m-th element in the vector V and the diagonal of the matrix Λ
respectively. Obviously, λm > 0, m = 1, 2 and λm < 0, m = 3, 4.

In the first step of solving (8) at each time step, and, for the sake of simplicity, we set u = V(m)

and obtain 
un+ 1

2
j = λm

∆t
2∆x

un
j+1 +

(
1− λm

∆t
2∆x

)
un

j , m = 1, 2,

un+ 1
2

j =

(
1− λm

∆t
2∆x

)
un

j − λm
∆t

2∆x
un

j−1, m = 3, 4.

(9)

In the second step of the procedure,

ûn
j =

J − 1− j
J − 1

[
un

j+1 −
(

1− ∆t
∆x

λm

)(
un+ 1

2
j+1 − un+ 1

2
j

)]

+
j

J − 1

[
un

j−1 +

(
1 +

∆t
∆x

λm

)(
un+ 1

2
j − un+ 1

2
j−1

)]
, m = 1, 2, j ∈ [0, J − 1],

ûn
j =

J − j
J − 1

[
un

j+1 −
(

1− ∆t
∆x

λm

)(
un+ 1

2
j+1 − un+ 1

2
j

)]

+
j− 1
J − 1

[
un

j−1 +

(
1 +

∆t
∆x

λm

)(
un+ 1

2
j − un+ 1

2
j−1

)]
, m = 3, 4, j ∈ [1, J].

(10)

is taken to maintain the consistence of the scheme at the interior points(j ∈ [1, J − 1]) and boundary
points(j = 0, J), which can be observed in calculating the truncation errors of the scheme (9)/(10)/(11)
(see Appendix A.2).

Adding to V̂n
J,+ and V̂n

0,− calculated by the characteristic boundary conditions (4), the solutions
V̂n

j of (5a) at each time step can be obtained. To maintain the difference scheme accuracy in the
next step, (5b) is considered with

Vn+1
j =

(
M− ∆t

2
B̂
)−1
MV̂n

j +
∆t
2

(
M− ∆t

2
B̂
)−1

(B̂Vn
j + B̂n

j ), (11)
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where B̂ = L−TA0A2L−1, B̂n
j =

(
B̂n

j,+
B̂n

j,−

)
,



B̂n
j =

∆t
∆x

(
Λ+ 0
0 0

)
B̂
[

J − 1− j
J − 1

(Vn
j+1 −Vn

j ) +
j

J − 1
(Vn

j −Vn
j−1)

]

+
∆t
∆x

(
0 0
0 Λ−

)
B̂
[

J − j
J − 1

(Vn
j+1 −Vn

j ) +
j− 1
J − 1

(Vn
j −Vn

j−1)

]
, (j ∈ [1, J − 1]),

B̂n
0,+ =

∆t
∆x

(
Λ+ 0
0 0

)
B̂(Vn

j+1 −Vn
j ), B̂n

J,− =
∆t
∆x

(
0 0
0 Λ−

)
B̂(Vn

j −Vn
j−1),

(
B̂n

J,+
B̂n

0,−

)
= K

(
B̂n

J,−
B̂n

0,+

)
.

,

and the matrixM− ∆t
2 B̂ is invertible for the negative semidefinite matrix B̂ and the positive definite

matrixM.
The scheme (9)/(10)/(11) is a second-order finite difference scheme and the proof is given in

Appendix A.2. Significantly, from the calculations of the truncation errors, it can be observed that
the accuracy of the scheme will be destroyed if the other schemes (such as high-order Rung-Kutta
difference scheme and the likes) are applied instead of the complex scheme (11) as above. In the next
section, we turn to considering the stability of these schemes.

3.3. The Stability Criterion

With the energy method, we study the stability of scheme (6)/(7), and obtain the following theorem.

Theorem 1. If the time-step size ∆t, spatial increment ∆x, and the eigenvalues λm of the matrix A1 satisfy the
Courant–Friedrichs–Lewy (CFL) condition

∆t
∆x

Max [|λk|] ≤ 1,

then the solutions Un
j of the scheme (6)/(7) satisfy

||Un+1||2A ≤ ||Un||2A,

with ||Un||2A =
∞
∑

j=−∞
Un

j
TA0Un

j .

Proof of Theorem 1. By multiplying both sides of (6) with (LÛn
j )

TM, it can be rewritten as

(V̂n
j )

TMV̂n
j =(V̂n

j )
T

 M1

(
I − ∆t

∆x Λ+

)
0

0 M2

(
I + ∆t

∆x Λ−
) Vn

j

+
∆t
∆x

(V̂n
j )

T

(
M1Λ+ 0

0 0

)
Vn

j+1 +
∆t
∆x

(V̂n
j )

T

(
0 0
0 −M2Λ−

)
Vn

j−1,

(12)
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where V̂n
j = LÛn

j , Vn
j = LUn

j . Observe that the matrices M1

(
I − ∆t

∆x Λ+

)
, M2

(
I + ∆t

∆x Λ−
)

are
positive semi-definite if and only if

∆t
∆x

Max [|λm|] ≤ 1,

where λm are eigenvalues of the matrix A1. This inequality is the CFL condition of the scheme (6)/(7).
Note that M1Λ+ and −M1Λ− are symmetric positive definite matrices, sum (12) over j from −∞ to ∞,
and then

||Ûn||A − ||Un||A ≤
∆t
∆x

(
−

∞

∑
−∞

Vn
j,+

T M1Λ+Vn
j,+ +

∞

∑
−∞

Vn
j+1,+

T M1Λ+Vn
j+1,+

)

+
∆t
∆x

(
∞

∑
−∞

Vn
j,−

T M2Λ−Vn
j,− −

∞

∑
−∞

Vn
j−1,−

T M2Λ−Vn
j−1,−

)
= 0.

On the other hand, by multiplying both sides of (7) with (Un+1
j )TA0, it is obvious that

||Un+1||A =
∞

∑
−∞

(Un+1
j )TA0Ûn

j + ∆t
∞

∑
−∞

(Un+1
j )TA0A2Un+1

j ≤ ||Ûn||A

for A0A2 ≤ 0. As above, it is proved that

||Un+1||A ≤ ||Un||A.

This completes the proof.

The above theorem indicates the stability of the scheme (6)/(7). This method is applicable to the
3D BISQ model with the same stable accuracy. Additionally, the scheme which approximates (5b) by
explicit treatment of the source term remains stable with the corresponding CFL condition

∆t
∆x

Max [|λk|] ≤ 1 and A0 + ∆tA0A2 ≥ 0.

The proof is similar to Theorem 1.
For the scheme (6)/(7) with the characteristic boundary conditions (4), Theorem 1 can be

strengthened as follows.

Theorem 2. If the time-step size ∆t, spatial increment ∆x, and the eigenvalues λk of the matrix A1 satisfy the
CFL condition

∆t
∆x

Max [|λk|] ≤ 1

and the boundary matrix K satisfies(
M2Λ− 0

0 −M1Λ+

)
+ KT

(
M1(2Λ+ + Λ−) 0

0 −M2(2Λ− + Λ+)

)
K ≤ 0,

(
M2Λ− 0

0 −M1Λ+

)
+ KT

(
−M1Λ− 0

0 M2Λ+

)
K ≤ 0,

then the solutions Un
j of the scheme (4)/(6)/(7) satisfy

||Un+1||A ≤ ||Un||A,

with ||Un||2A =
J

∑
j=0

Un
j

TA0Un
j +

J−1
∑

j=1
Un

j
TA0Un

j .
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The above theorem indicates the stability of the scheme (4)/(6)/(7) and the proof is given in
Appendix B.1. This method is also applicable to the 3D BISQ model with the characteristic boundary
conditions and keeps the same stable accuracy. The proof is similar to Theorem 2. Referring to the
paper [20], the constant diagonal matrix K in (4) can be set as

K =

(
κ+ I2 0

0 κ− I2

)
,

where I2 is 2× 2 identity matrix and κ± are constants which follow from the inequality in Theorem 2 ,
such as K = 0. Additionally, for the characteristic boundary conditions(

V+(t, 1)
V−(t, 0)

)
= K

(
V+(t, 0)
V−(t, 1)

)
, (13)

the stability conditions can rewritten as follows.

Theorem 3. If the time-step size ∆t, spatial increment ∆x, and the eigenvalues λk of the matrix A1 satisfy the
CFL condition

∆t
∆x

Max [|λk|] ≤ 1

and the boundary matrix K satisfies(
−M1Λ+ 0

0 M2Λ−

)
+ KT

(
M1Λ+ 0

0 −M2Λ−

)
K ≤ 0,

then the solutions Un
j of the scheme (6)/(7)/(13) satisfy

||Un+1||A ≤ ||Un||A,

with ||Un||2A =
J

∑
j=0

Un
j

TA0Un
j +

J−1
∑

j=1
Un

j
TA0Un

j .

The proof is given in Appendix B.2. The above two theorems indicate that the two-step operator
splitting method (4)/(6)/(7) and (6)/(7)/(13) are stable for the appropriate boundary matrix K.

4. Numerical Procedure and Results

In order to clarify the utility of the proposed method, the numerical simulations of the stable
Biot model and the unstable BISQ model under reasonable and realistic conditions are solved and
discussed (see Table 1). It is considered that the domain x ∈ [−500, 500], the spatial increment ∆x = 10,
time-step size ∆t = 0.001, and the source term is a vertical point force with a Ricker wavelet

w(t) = (1− 2π2 f 2
0 t2)exp(−π2 f 2

0 t2)

with peak frequency f0 = 35 Hz and π = 3.14. The source is set at the center of the calculation domain
(x = 0). Here, length is in meters and time in seconds. T represents the calculated length in time.
The symbols and acroyms are listed with Tables A1 and A2 in Appendix C.
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Table 1. Experimental parameters [18].

Parameter Value Parameter Value Parameter Value

M (GPa) 29 φ (%) 15 α 0.5702
ρs (kg/m3) 2600 ρ f (kg/m3) 1000 ρa (kg/m3) 450

η/κ (kg/m4·s) 100 f (KHz) 50 R (m) 0.001

The results using the schemes (4)/(6)/(7) and (9)/(10)/(11) are shown in Figure 1. Tables 2 and 3
show the L1, L2 and L∞ relative errors of these schemes (4)/(6)/(7) and (9)/(10)/(11). The domain
x ∈ [−10, 10], the arbitrary positive integer N, the spatial increment ∆x = 20/N, and time-step size
∆t = 0.0002∆x are considered in Tables 2 and 3.

(a) Biot (b) BISQ (c) Biot (d) BISQ

Figure 1. Results of numerical simulations. (a,b): the scheme (4)/(6)/(7); (c,d): the scheme
(9)/(10)/(11).

Table 2. Relative errors of the scheme (4)/(6)/(7).

N L1 Order L2 Order L∞ Order

80 3.48 × 10−1 − 1.36 × 10−1 − 7.08 × 10−2 −
160 1.86 × 10−1 0.90 7.93 × 10−2 0.77 3.86 × 10−2 0.88
320 9.71 × 10−2 0.94 4.23 × 10−2 0.91 2.16 × 10−2 0.83
640 4.43 × 10−2 1.13 2.08 × 10−2 1.02 1.13 × 10−2 0.93

1280 2.0 3× 10−2 1.12 1.02 × 10−2 1.03 5.80 × 10−3 0.97
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Table 3. Relative errors of the scheme (9)/(10)/(11).

N L1 Order L2 Order L∞ Order

80 5.74 × 10−1 − 1.58 × 10−1 − 5.49 × 10−1 −
160 1.69 × 10−1 1.77 5.18 × 10−2 1.61 2.02 × 10−1 1.44
320 4.71 × 10−2 1.84 1.70 × 10−2 1.61 7.06 × 10−2 1.52
640 1.08 × 10−2 2.13 4.0 × 10−3 2.09 1.84 × 10−2 1.94

1280 1.08 × 10−2 2.08 4.0 × 10−3 2.07 1.84 × 10−2 1.94

This test has all the numerical simulations with the different model solved by the stable
finite-difference methods: the stable Biot model and the unstable BISQ model. The propagation
of the seismic wave for a long time period can be observed: for T = 0.05 s the quick P-wave goes
ahead, in T = 0.2 s, the quick P-wave reached and was absorbed by the boundary, the slow P-wave
occurs, in T = 1.5 s, the slow P-wave reached, and was absorbed by the boundary. In the front of
this procedure, the seismic waves calculated by different model and finite difference method are all
propagating smoothly and entirely absorbed. However, the difference occurs from T = 0.2 s.

Figure 2 offers the amplitude (noted as Am) which changes as time (noted as T). By comparing (a)
and (c) in Figure 1, it can be observed that the slow P-wave occurs only in the second-order scheme.
The unstable phenomena only occur in the cases with the unstable BISQ model (see Figure 1b,d),
in other words, the velocity occurs exponentially increasing phenomenon during the wave propagation.
In the past numerical simulations, the little unstable phenomena such as those occurred in Figure 1d
were often met and always attributed to the accuracy of the scheme and the boundary conditions.
However, by observing Figure 1, it can be found that the instability of the numerical simulations due
to the instability of the BISQ model. In addition, only for the cases in which time is large enough (such
as T = 1.5 s), the unstable phenomenon which represented as the exponentially increasing amplitude
as time can be significantly observed. Otherwise, the results calculated by the schemes (4)/(6)/(7)
and (9)/(10)/(11) will be stable for the stable model (see (a) and (c) in Figures 1 and 2). Even though
there maybe some non-smooth solutions for the accuancy of the scheme, the amplitude also decreases
to zero as time (see Figure 1a).

(a) Biot (b) BISQ (c) Biot (d) BISQ

Figure 2. Changes of amplitude. (a,b): the scheme (4)/(6)/(7); (c,d): the scheme (9)/(10)/(11).

Above all, it is pointed out that the schemes (4)/(6)/(7) and (9)/(10)/(11) are applicable for the
stable model. The schemes can be used to describe the wave propagation in a long time period.
The characteristic boundary condition (4) can entirely absorb the waves. It is a convenient and effective
boundary condition which can be easily combined with other models for wave propagation.

5. Conclusions

In this work, the stable theories in mathematics are introduced into the solutions of the wave
propagation theories in geology and try to reconsider the calculated results from the point of view
of stability instead of accuracy. The FD method with characteristic boundary conditions that confirm
the overall-stability of the schemes is proposed. The stable conditions of this scheme obtained with
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the energy method in the context is important. Instead of the CFL conditions by the Fourier analysis
method, it can be directly generated to the nonlinear elastic wave equations. The time-splitting method
and characteristic boundary conditions are utilized in this approach. The time-splitting method reduces
the computational complexity and the characteristic boundary conditions which are adjusted as the
interior-points schemes can confirm the overall stability. Moreover, the schemes are applied to the
Biot and BISQ models, and hence the numerical simulations show that the stable Biot model or the
BISQ model in stable conditions can simulate wave propagations for a long time. This fact verifies
the effectiveness of the FD method as a tool to detect the stability of arbitrary elastic wave modeling.
In addition, the newly introduced characteristic boundary condition can vary to fit the FD method,
and then it is feasible to combine it with other schemes in future.
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Appendix A

This appendix is for calculating the truncation errors of the schemes (4)/(6)/(7) and (9)/(10)/(11).

Appendix A.1. The Truncation Errors of the Scheme (4)/(6)/(7)

By eliminating the intermediate values Ûn
j , the scheme (4)/(6)/(7) can be represented as

Un+1
j −Un

j

=
∆t
∆x

L−1

(
Λ+ 0
0 0

)
L(Un

j+1 −Un
j ) +

∆t
∆x

L−1

(
0 0
0 M2Λ−

)
L(Un

j −Un
j−1) + ∆tA2Un+1

j .

By using the Taylor series expansions of U(xj, tn+1), U(xj+1, tn), and U(xj−1, tn) about the point (xj, tn)

U(xj, tn+1) = U(xj, tn) + ∆tUt
∣∣n

j +
(∆t)2

2
Utt
∣∣n

j + O(∆t3),

U(xj+1, tn) = U(xj, tn) + ∆xUx
∣∣n

j +
(∆x)2

2
Uxx

∣∣n
j + O(∆x3),

U(xj−1, tn) = U(xj, tn)− ∆xUx
∣∣n

j +
(∆x)2

2
Uxx

∣∣n
j + O(∆x3),
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the truncation error can be represented as

T(x, t) = Ut
∣∣n

j + O(∆t)− L−1

(
M1Λ+ 0

0 0

)
LUx

∣∣n
j + O(∆x)

−L−1

(
0 0
0 M2Λ−

)
LUx

∣∣n
j + O(∆x)−A2U

∣∣n
j + O(∆t)

=
(

Ut − L−1ΛLUx −A2U
) ∣∣n

j + O(∆t) + O(∆x)

= (Ut −A1Ux −A2U)
∣∣n

j + O(∆t) + O(∆x) = O(∆t) + O(∆x),

where f
∣∣n

j is the exact solution value of f at the grid point (xj, tn).

Appendix A.2. The Truncation Errors of the Scheme (9)/(10)/(11)

By eliminating the intermediate values V̂n
j , the scheme (9)/(10)/(11) can be represented as

J − 1− j
J − 1

(
S1,+ 0

0 0

)
+

j
J − 1

(
S2,+ 0

0 0

)
+

J − j
J − 1

(
0 0
0 S1,−

)
+

j− 1
J − 1

(
0 0
0 S2,−

)

=
∆t
2

B̂(Vn+1
j + Vn

j ) +
∆t
2

B̂n
j .

with

S1,+ = M1(Vn+1
j,+ −Vn

j+1,+) +

(
I − ∆t

∆x
Λ+

)
M1

(
Vn+ 1

2
j+1,+ −Vn+ 1

2
j,+

)
,

S1,− = M1(Vn+1
j,+ −Vn

j−1,+)−
(

I +
∆t
∆x

Λ+

)
M1

(
Vn+ 1

2
j,+ −Vn+ 1

2
j−1,+

)
,

S2,+ = M2(Vn+1
j,− −Vn

j+1,−) +

(
I − ∆t

∆x
Λ−

)
M2

(
Vn+ 1

2
j+1,− −Vn+ 1

2
j,−

)
,

S2,− = M2(Vn+1
j,− −Vn

j−1,−)−
(

I +
∆t
∆x

Λ−

)
M2

(
Vn+ 1

2
j,− −Vn+ 1

2
j−1,−

)
,

Vn+ 1
2

j,+ =
∆t

2∆x
Λ+Vn

j+1,+ +

(
I − ∆t

2∆x
Λ+

)
Vn

j,+, Vn+ 1
2

j,− =

(
I − ∆t

2∆x
Λ−

)
Vn

j,− −
∆t

2∆x
Λ−Vn

j−1,−.

For S1,+, by using the Taylor series expansions of V(xj, tn+1), V(xj+1, tn) about the point (xj+ 1
2
, tn+ 1

2
),

it is obtained that

M1(Vn+1
j,+ −Vn

j+1,+) = (∆tM1Vt,+ − ∆xM1Vx,+)
∣∣n+ 1

2
j+ 1

2
+ O(∆t3) + O(∆x3).

For Vn+ 1
2

j in the time layer, n + 1
2 has the truncation error

Gj = −
∆t
2
(B̂Vn

j )+ +
∆t2

8
M1Vtt,+|nj −

∆t∆x
4

M1Λ+Vxx,+|nj + O(∆t∆x2)
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where B̂Vn
j = (B̂Vn

j )+, (B̂Vn
j )− and (B̂Vn

j )+, (B̂Vn
j )− ∈ R2×1, and then

M1(V
n+ 1

2
j+1,+ −Vn+ 1

2
j,+ )

∆x

= M1Vx,+|
n+ 1

2
j+ 1

2
− ∆t

2∆x
(B̂Vn

j+1)+ +
∆t

2∆x
(B̂Vn

j )+ + O(∆t2) + O(∆t∆x) + O(∆x2).

Note that, in the numerical calculations about hyperbolic equations, normally the grid ratio is set as
constant, and, for the sake of simplicity, we set ∆t = O(∆x) and obtain

S1,+ = ∆t(M1Vt,+ −Λ+M1Vx,+)|
n+ 1

2
j+ 1

2
− ∆t

2

(
I − ∆t

∆x
Λ+

)
(B̂Vn

j+1 − B̂Vn
j )+ + O(∆t3).

Similarly, we can get

S2,+ = ∆t(M1Vt,+ −M1Vx,+)|
n+ 1

2
j− 1

2
+

∆t
2

(
I +

∆t
∆x

Λ+

)
(B̂Vn

j − B̂Vn
j−1)+ + O(∆t3),

S1,− = ∆t(M2Vt,− −Λ−M2Vx,−)|
n+ 1

2
j+ 1

2
− ∆t

2

(
I − ∆t

∆x
Λ−

)
(B̂Vn

j+1 − B̂Vn
j )− + O(∆t3),

S2,− = ∆t(M2Vt,− −Λ−M2Vx,−)|
n+ 1

2
j+ 1

2
+

∆t
2

(
I +

∆t
∆x

Λ−

)
(B̂Vn

j+1 − B̂Vn
j )− + O(∆t3).

Then, by using the Taylor series expansions of V(xj+1, tn+1), V(xj, tn) and V(xj−1, tn+1) about the
points (xj+ 1

2
, tn+ 1

2
) and (xj− 1

2
, tn+ 1

2
), it is deduced that

∆t
2

B̂(Vn+1
j+1 + Vn

j ) = ∆tB̂V|n+
1
2

j+ 1
2
+ O(∆t3),

∆t
2

B̂(Vn+1
j + Vn

j11) = ∆tB̂V|n+
1
2

j− 1
2
+ O(∆t3).

Above all, the truncation error of the scheme (9)/(10)/(11) can be represented as

T(x, t) =
J − 1− j

J − 1

 ∆t[M1Vt,+ −Λ+M1Vx,+ − (B̂V)+]|
n+ 1

2
j+ 1

2
0

0 0


+

j
J − 1

 ∆t[M1Vt,+ −Λ+M1Vx,+ − (B̂V)+]|
n+ 1

2
j− 1

2
0

0 0



+
J − j
J − 1

 0 0

0 ∆t[M2Vt,− −Λ−M2Vx,− − (B̂V)−]|
n+ 1

2
j+ 1

2



+
j− 1
J − 1

 0 0

0 ∆t[M2Vt,− −Λ−M2Vx,− − (B̂V)−]|
n+ 1

2
j− 1

2

+ O(∆t2) = O(∆t2).

Appendix B

This appendix shows the proof of Theorems 2 and 3.
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Appendix B.1. The Proof of Theorem 2

Proof of Theorem 2. The determination about the CFL condition and the proof about the interier
points(j ∈ [1, J − 1]) are the same as Theroem 1. It means that the interior points satisfy

J−1

∑
j=1

(V̂n
j )

TMV̂n
j −

J−1

∑
j=1

Vn
j

TMVn
j ≤

∆t
∆x

(
−Vn

1,+
T M1Λ+Vn

1,+ + Vn
J−1,−

T M2Λ−Vn
J−1,−

)

+
∆t
∆x

(
Vn

J,+
T M1Λ+Vn

J,+ −Vn
0,−

T M2Λ−Vn
0,−

)
.

Then, the boundary points V̂n
0,+, V̂n

J,− are discussed and satisfy the following inequalities:

(V̂n
0,+)

T M1V̂n
0,+ −Vn

0,+
T M1Vn

0,+ ≤
∆t
∆x

(
Vn

1,+
T M1Λ+Vn

1,+ −Vn
0,+

T M1Λ+Vn
0,+

)
,

(V̂n
J,−)

T M2V̂n
J,− −Vn

J,−
T M2Vn

J,− ≤
∆t
∆x

(
Vn

J,−
T M2Λ−Vn

J,− −Vn
J−1,−

T M2Λ−Vn
J−1,−

)
.

By combining the inequalities of the interior and boundary points with the characteristic
boundary conditions (

Vn
J,+

Vn
0,−

)
= K

(
Vn

J,−
Vn

0,+

)
,

it is obtained that

J

∑
j=0

(V̂n
j )

TMV̂n
j −

J

∑
j=0

Vn
j

TMVn
j ≤

∆t
∆x

(
Vn

J,−
Vn

0,+

)T

KT

(
M1Λ+ 0

0 −M2Λ−

)
K

(
Vn

J,−
Vn

0,+

)

+
∆t
∆x

(
Vn

0,+
Vn

J,−

)T (
−M1Λ+ 0

0 M2Λ−

)(
Vn

0,+
Vn

J,−

)

+

(
V̂n

J,−
V̂n

0,+

)T

KTMK

(
V̂n

J,−
V̂n

0,+

)
−
(

Vn
J,−

Vn
0,+

)T

KTMK

(
Vn

J,−
Vn

0,+

)

≤ ∆t
∆x

(
Vn

J,−
Vn

0,+

)T

KT

(
M1Λ+ 0

0 −M2Λ−

)
K

(
Vn

J,−
Vn

0,+

)

+
∆t
∆x

(
Vn

0,+
Vn

J,−

)T (
−M1Λ+ 0

0 M2Λ−

)(
Vn

0,+
Vn

J,−

)

+
∆t
∆x

(
Vn

J,−
Vn

0,+

)T

KT MK

(
Λ− 0
0 −Λ+

)(
Vn

J,−
Vn

0,+

)

+
∆t
∆x

(
Vn

J−1,−
Vn

1,+

)T

KT MK

(
−Λ− 0

0 Λ+

)(
Vn

J−1,−
Vn

1,+

)
.

By combining the above inequality with the inequality of the interior points, it is deduced that

||Ûn||2A − ||Un||2A ≤
∆t
∆x

(
Vn

J,−
Vn

0,+

)T

H1

(
Vn

J,−
Vn

0,+

)
+

∆t
∆x

(
Vn

J−1,−
Vn

1,+

)T

H2

(
Vn

J−1,−
Vn

1,+

)
,
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where

H1 =

(
M2Λ− 0

0 −M1Λ+

)
+ KT

(
M1(2Λ+ + Λ−) 0

0 −M2(2Λ− + Λ+)

)
K,

H2 =

(
M2Λ− 0

0 −M1Λ+

)
+ KT

(
−M1Λ− 0

0 M2Λ+

)
K.

Because −M1Λ+ and M2Λ− are negative definite matrices, there exists a diagonal matrix K such that
H1 ≤ 0 and H2 ≤ 0, such as K = 0. In this way, we have

||Ûn||A ≤ ||Un||A.

Similarly to the proof in Theorem 1,

J−1

∑
j=1

(Un+1
j )TA0Un+1

j ≤
J−1

∑
j=1

(Ûn
j )

TA0Ûn
j ,

J

∑
j=0

(Un+1
j )TA0Un+1

j ≤
J

∑
j=0

(Ûn
j )

TA0Ûn
j ,

can be deduced and then ||Un+1||A ≤ ||Ûn||A. As above, it is proved that

||Un+1||A ≤ ||Un||A.

This complete the proof.

Appendix B.2. The Proof of Theorem 3

Theorem 3 is the same as Theorem 2 except the characteristic boundary conditions. In this way,
there only offers the proof of the inequalities about the boundary points.

Proof of Theorem 3. The inequality which contains the boundary condition(
Vn

J,+
Vn

0,−

)
= K

(
Vn

0,+
Vn

J,−

)
.

can be rewritten as

J

∑
j=0

(V̂n
j )

TMV̂n
j −

J

∑
j=0

Vn
j

TMVn
j ≤

∆t
∆x

(
Vn

0,+
Vn

J,−

)T (
−M1Λ+ 0

0 M2Λ−

)(
Vn

0,+
Vn

J,−

)

+
∆t
∆x

(
Vn

0,+
Vn

J,−

)T

KT

(
M1Λ+ 0

0 −M2Λ−

)
K

(
Vn

0,+
Vn

J,−

)

+

(
V̂n

0,+
V̂n

J,−

)T

KTMK

(
V̂n

0,+
V̂n

J,−

)
−
(

Vn
0,+

Vn
J,−

)T

KTMK

(
Vn

0,+
Vn

J,−

)
.

Similarly, with the expressions of V̂n
0,+, V̂n

J,− and the symmetric positive definitenesses of the matrices

KTMK

(
I − ∆t

∆x Λ+ 0
0 I + ∆t

∆x Λ−

)
, KTMK

(
Λ+ 0
0 −Λ−

)
,
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it is deduced that (
V̂n

0,+
V̂n

J,−

)T

KT MK

(
V̂n

0,+
V̂n

J,−

)
−
(

Vn
0,+

Vn
J,−

)T

KT MK

(
Vn

0,+
Vn

J,−

)

≤ ∆t
∆x

(
Vn

0,+
Vn

J,−

)T

KT MK

(
−Λ+ 0

0 Λ−

)(
Vn

0,+
Vn

J,−

)

+
∆t
∆x

(
Vn

1,+
Vn

J−1,−

)T

KT MK

(
Λ+ 0
0 −Λ−

)(
Vn

1,+
Vn

J−1,−

)
,

and then

J

∑
j=0

(V̂n
j )

TMV̂n
j −

J

∑
j=0

Vn
j

TMVn
j ≤

∆t
∆x

(
Vn

0,+
Vn

J,−

)T (
−M1Λ+ 0

0 M2Λ−

)(
Vn

0,+
Vn

J,−

)

+
∆t
∆x

(
Vn

1,+
Vn

J−1,−

)T

KT MK

(
Λ+ 0
0 −Λ−

)(
Vn

1,+
Vn

J−1,−

)
.

Above all, it is proved that

||Ûn||2A − ||Un||2A ≤
∆t
∆x

(
Vn

0,+
Vn

J,−

)T

H

(
Vn

0,+
Vn

J,−

)
+

∆t
∆x

(
Vn

1,+
Vn

J−1,−

)T

H

(
Vn

1,+
Vn

J−1,−

)
,

where

H =

(
−M1Λ+ 0

0 M2Λ−

)
+ KT

(
M1Λ+ 0

0 −M2Λ−

)
K ≤ 0.

The others are same as the proof of Theorem 2. This completes the proof.

Appendix C

This appendix is for explaining the symbols and acronyms used in this article with
Tables A1 and A2.

Table A1. Symbols of the parameters.

Symbol Parameter Symbol Parameter

v solid’s velocity w fluid’s velocity
τ the total stress of the bulk material P the total fluid pressure
φ porosity M the uniaxial modulus of the skeleton
α poroelastic coefficient η viscosity
κ permeability F the Biot-flow coefficient
S the characteristic squirt-flow coefficient ρs solid’s density
ρ f fluid’s density ρa the additional coupling density
f frequency λm the eigenvalue of the matrix A1

∆t the time-step size ∆x the spatial increment

Table A2. Full-form of the acronyms.

Acronym Full-Form Acronym Full-Form

FD method finite-difference method BISQ model Biot/squirt model
FE method finite-element method CFL condition Courant–Friedrichs–Lewy condition

3D three-dimension
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