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Abstract: Inventory models must consider the probability of sub-optimal manufacturing and 

careless shipping to prevent the delivery of defective products to retailers. Retailers seeking to 

preserve a reputation of quality must also perform inspections of all items prior to sale. Inventory 

models that include sub-lot sampling inspections provide reasonable conditions by which to 

establish a lower bound and a pair of upper bounds in terms of order quantity. This should make it 

possible to determine the conditions of an optimal solution, which includes a unique interior 

solution to the problem of an order quantity satisfying the first partial derivative. The approach 

proposed in this paper can be used to solve the boundary. These study findings provide the 

analytical foundation for an inventory model that accounts for defective items and sub-lot sampling 

inspections. The numerical examples presented in a previous paper are used to demonstrate the 

derivation of an optimal solution. A counter-example is constructed to illustrate how existing 

iterative methods do not necessarily converge to the optimal solution. 

Keywords: distribution-free inventory model; defective items; sub-lot sampling inspection; 

backordered rate; crashable lead time 

 

1. Introduction 

An effective inventory management policy is meant to enhance the efficiency of inventory 

control and minimize inventory costs. Conventional economic order quantity (EOQ) models assume 

that the items provided by suppliers are in perfect condition; however, variability in manufacturing 

and accidents during shipping can result in retailers receiving defective items. The subsequent sale 

of defective products can lead to complaints, returns, and damage to the retailer’s reputation. 

Retailers should perform careful inspections of all items prior to sale; however, rigorous assessments 

are not always possible. Thus, inventory models must account for sub-lot inspections and the 

possibility that defective units could end up in the inventory. 

Inventory models have been developed to meet the ever-evolving challenges of real-world 

applications. There has been considerable research into the issue of defective units and sub-lot 

inspection in inventory models. Paknejad et al. [1] proposed a modified EOQ model in which the 

number of defective goods is treated as a random variable. Wu and Ouyang [2] presented a 

continuous review inventory model combining backorders and lost sales, under the assumption that 

each lot contained a random number of defective units. Ouyang et al. [3] presented an iterative 

algorithm aimed at deriving the optimal vendor–buyer strategy for three situations involving 

defective items, respectively using the crisp defect rate approach, a triangular fuzzy number 

approach, and a statistical fuzzy approach. Sarkar et al. [4] proposed an integrated inventory model 

that deals with defective items using an inspection policy such as those decision variables that are 

the lead time and the ordering quantity. Sarkar et al. [5] provided a distribution-free approach to 
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generalize inventory systems where the quality improvement and setup cost reduction are examined. 

Khan et al. [6] studied a vendor-managed inventory of consignment stock for a supply chain with 

defective items. An economic production quantity (EPQ) inventory system with a reworking of all 

defective items and multiple shipments was developed by Taleizadeh et al. [7]. Kang et al. [8] 

incorporated the effects of random defects on lot size and expected total cost function to assess a 

work-in-process-based inventory assuming that manufacturing defects follow a random distribution. 

Manna et al. [9] presented an imperfect production inventory model in which the defect follows the 

production rate as dependent. An EOQ system with a returned policy of deteriorated products and 

sample quantity inspection was constructed by Cheikhrouhou et al. [10]. An integrated inventory 

system to consider ordering quantity, lead time, number of shipments, and safety factor was 

provided by Kim et al. [11]. A continuously reviewed inventory system with multiple items was 

provided by Malik and Sarkar [12] to consider limited storage space, fuzzy demand, and stochastic 

lead time demand. A coordinated supply chain with a reliable seller and an unreliable seller was 

constructed by Malik and Sarkar [13] to reduce the transportation lead time. A continuously reviewed 

inventory system was examined by Bhuiya et al. [14] for a partially known distribution of lead time 

demand where backlogs and the lead time-dependent lost sales are considered as decision variables. 

A supply chain to minimize the total cost by setup cost investment and crashable lead time was 

developed by Ganguly et al. [15]. A traditional EPQ model with one vendor and one buyer was 

examined by Malik and Kim [16] to obtain the optimal solution. A sustainable EPQ system with cap-

based production and the carbon tax was considered by Mishra et al. [17] to control the carbon 

emission rate under several shortage environments to invest in green technology. A transportation 

model was developed by Hota et al. [18] to show that unequal lot size is the best policy to transfer 

items from the manufacturer to the retailer. 

Wu and Ouyang [2] tried to show the existence and uniqueness of the interior optimal solution; 

the minimum boundary for this solution is the goal of the proposed approach. Wu et al. [19] tried to 

generalize Wu and Ouyang [2] by considering such that their first model has a mixed normal 

probability density function and their second model has a mixed cumulative distribution where the 

first moment and the second moment for two distributions are known. Wu et al. [19] claimed that the 

optimal solution can be derived by an iterative method for the system of first partial derivatives. 

Hence, Wu et al. [19] claimed that their optimal solution must be an interior solution. If we assume 

their two distributions are identical, then the second model of Wu et al. [19] will degenerate to the 

distribution-free model of Wu and Ouyang [2]. In this study, we will show that sometimes the 

optimal solution will occur on the boundary such that the iterative method of Wu et al. [19] will 

contain questionable results. In the current study, this proposed model questions the assertion 

provided by Wu and Ouyang [2]. A detailed derivation is provided to obtain the criteria to decide 

the location of the optimal solution. This study then develops a theorem to show the condition for 

the boundary minimum solution. There are two numerical examples such that the first one is 

demonstrated for the interior optimal solution, in which our result is superior to that of Wu and 

Ouyang [2]. The second one is a boundary optimal solution to indicate the questionable assertion 

proposed by Wu and Ouyang [2]. In the past, for inventory models under the distribution-free 

approach, researchers always believed that the two decision variables: ordering quantity and the 

safety factor are both interior solutions and they can be derived by the iterative method through the 

first partial derivative system of the objective function. In this study, conditions are provided to help 

decision-makers to search the optimal solution on the boundary. 

This study compared with other inventory models from the above-mentioned literature review 

have been summarized as Table 1. 
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Table 1. A comparison for the inventory models by the literature review. 

 
Inspecting 

Cost 

The Uninspected 

Defective Penalty 

Cost 

The Lead Time 

Crashing Cost 

EOQ 

Model 

Numerical 

Approach 

Analytical 

Derivation 

Paknejad et al. [1]       

Wu and Ouyang [2]       

Ouyang et al. [3]       

Sarkar et al. [4]       

Sarkar et al. [5]       

Khan et al. [6]       

Taleizadeh et al. [7]       

Kang et al. [8]       

Manna et al. [9]       

Cheikhrouhou et al. 

[10] 
      

Kim et al. [11]       

Malik and Sarkar 

[12] 
      

Malik and Sarkar 

[13] 
      

Bhuiya et al. [14]       

Ganguly et al. [15]       

Malik and Kim [16]       

Mishra et al. [17]       

Hota et al. [18]       

Wu et al. [19]       

This study       

2. Notation and Assumptions 

For convenience, this study uses the same notation and assumptions of Wu and Ouyang [2]. The 

relative definitions have been used as follows: 

D : It denotes the expected demand per year. 

A : It denotes setup cost per setup. 

h : It denotes non-defective (including uninspected defective items) holding cost per unit per 

year. 

 : It denotes a shortage cost per unit short. 

0 : It denotes a marginal profit per unit. 

 : It denotes unit inspection costs. 

w : It denotes unit penalty costs for uninspected defective items. 

 : It denotes the backorder rate of the demand during the stockout period, 0 1  . 

p : It denotes the defective rate in an order lot (independent of lot size), 0 1p   and it is a 

random variable. 

( )g p : It denotes the probability density function (p.d.f.) of p . 

f : It denotes the proportion of order quantity inspected. 

Q : It denotes lot size (order quantity), a decision variable. 

L : It denotes the length of the lead time, a decision variable. 

X : It denotes the lead time demand with finite mean L  and standard deviation L  for 

lead time L , where   is the mean for the unit time, and is the standard derivation for 

the unit time. 

r : It denotes the reorder point, r L k L   , where k  is the safety factor that is a 

decision variable. 
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The lead time L  has n  mutually independent components. The i-th component has a 

minimum duration ia , normal duration ib , and a crashing cost per unit time ic . Moreover, for 

convenience, the researchers rearrange ic  such that nccc  21 . The components of lead time 

are crashed one at a time starting with component 1 (because it has the minimum unit crashing cost), 

and then component 2, etc. 

If researchers let 0

1

n

j

j

L b


  and 
1 1

n i

i j j

i j

L b a
 

   , the lead time crashing cost ( )R L  per cycle 

for a given  1,i iL L L   is given by      
1

1

1

i

i i j j j

j

R L c L L c b a






    . 

3. Review of Distribution-Free Model 

For the distribution-free model, this study recalls the minimum problem that is proposed by Wu 

and Ouyang [2], for 0Q , 0k  and  1,  ii LLL , the expected total annual cost (EAC) is 

denoted as 

 
 

 
   

 

2 2 2

u
Qf h E p E pAD h

EAC Q,k,L Q 1 fE p
2Q 1 fE p 2 1 fE p

              
  

    
  pfE
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




12

11  








 kkkLh 21

2

1 


 pfE

Dvf




1
  

  
   kk

pfEQ

LD



 2

0 11
12


    

 pfE

pEfDw






1

1  
  pfEQ

DLR




1
 (1) 

where A is the ordering cost for one replenishment. 

   
22 1

2
pfEQ

D

h     
D

pEpEhfQ

2

2222      
D

ppQhEff

2

11 


    

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






 kkk

D

pfEQLh 21
2

11 
. 

is the holding cost for one replenishment.    kk
L

 2
0 11

2




 
is the stockout cost 

for one replenishment. Qvf  is the inspecting cost for one replenishment.    pEfwQ 1
 

is the 

uninspected defective penalty cost for one replenishment.  LR
 

is the lead time crashing cost for 

one replenishment. The duration time for one replenishment is 
  

D

pfEQ 1
. 

Wu and Ouyang [2] took the sum of (a) the ordering cost, (b) the holding cost, (c) the stockout 

cost, (d) the inspecting cost, (e) the uninspected defective penalty cost, and (f) the lead time crashing 

cost for one replenishment to find the total cost for one replenishment. Wu and Ouyang [2] divided 

the total cost for one replenishment by the duration time to derive the average cost per unit of time, 

denoted as  LkQEAC u ,, . 

They proved that  LkQEAC u ,,  is concave up with respect to L  and then they implied that 

the objective function will reduce to iLL 
 

or 1 iLL . To simplify the expression, this study still 

uses L  to represent for iL  or 1iL . 

The system of the first partial derivative is derived by Wu and Ouyang [2] as follows 
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     








 LRkkLA
h

D
Q 2

0 11
2

2





 (2) 

with    2221 pEfpfE  , and 

    
  pfEhQ

D

kk

k










1

1
1

1

12 0

2

2 
  (3) 

Wu and Ouyang [2] mentioned that explicit general solutions for Q and k  are not possible 

because the evaluation of Equations (2) and (3) requires knowledge of the value of the other. Thus, 

an iterative algorithm is established to find the optimal value of Q and k . Hence, Wu and Ouyang 

[2] assumed that 01 k  
and inserted it into Equation (2) to find a value of Q, denoted as 1Q , the 

value of 1Q  
is then used in Equation (3) to obtain a value of k , denoted as 2k . Iteratively, ik  is 

plugged into Equation (2) to derive iQ , iQ is then plugged into Equation (3) to find the next one, 

1ik . They derive two sequences:  ik  
and  iQ , until no change occurs in the values of iQ  

and 

ik . 

The procedure of Wu and Ouyang [2] contains three questionable results. First, why will the two 

sequences  ik  and  iQ  converge? Second, given two different initial values of 1k  as 11k and 

12k , if the results of the two sequences, (a) based on 11k ,  1ik  and  1iQ , and (b) based on 12k , 

 2ik  and  2iQ , do indeed converge then they may have different limit points. That is, the limits 

may be dependent on the initial point. Third, if the two sequences converge, why are the limit points 

the optimal solution? Sometimes the iterative sequence approach may not derive the desired result, 

an example is provided in the following to illustrate this point. To solve 2 12 20 0x x    for positive 

solutions, there are two solutions 2x  and 10x  . Our goal is to illustrate that by using the iterative 

method, it is almost impossible to construct a sequence that converges to 10. If the researchers try to 

find x  by the iterative method, implicitly motivated by 
2 20

12

x
x


 , the researchers use the 

following iterative formula 

2

1

20

12
n

n

x
x 


  (4) 

From Equation (4), the researchers know that 1n nx x   if and only if 2nx   or 10nx  , 

which means that for the starting point, say 0x , there are the following five cases: 

(a) 00 2x  , the generated sequence  nx  will increase and converge to its limit, 2. For example, 

0 0x  , 1 1.667x  , 2 1.899x  , 3 1.967x  , 4 1.989x  , and 5 1.996x  , which indicates that 

lim 2n
n

x


 ; 

(b) 0 2x  , the researchers have    2nx  , a constant sequence. It converges to 2; 

(c) 02 10x  , owing to 1n nx x  ,
 
the generated sequence will decrease and converge to its limit, 

2. For example, if researchers select 90 x , then 417.81 x , 570.72 x , 125.54 x , 905.26 x

, 135.28 x , 016.210 x , and 002.212 x , which indicates that the derived sequence will 

converge to its limit, lim 2n
n

x


 ; 

(d) 0 10x  , the researchers have    10nx  , a constant sequence. It converges to 10; 
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(e) 0 10x  , according to 1n nx x  , the generated sequence will increase and diverge to  . For 

example, if the researchers select 110 x , then 75.111 x , 172.132 x , 125.163 x , 

334.234 x , 041.475 x , 068.1866 x , and 783.28867 x ,
 
which indicates that the derived 

sequence will diverge to . 

Based on the above example, the starting point will influence the result. Moreover, most of the 

time 100 x
 

will not be selected. Therefore, there is little chance to construct a convergent sequence 

which will converge to our goal, with its limit of lim 10n
n

x


 . Our example demonstrates that 

sometimes the iterative approach may not be as robust as previously thought. The result of the above 

discussion provides us with enough motivation to apply an analytical approach to prove the 

existence and uniqueness of the interior optimal solution and find the conditions for the boundary 

minimum. 

In the next section, this study provides an analytical approach to prove that with three 

reasonable conditions, there exists a unique pair of Q  and k  that is the optimal solution. This 

study will show that the three reasonable conditions for the optimal order quantity are as one lower 

bound, Equation (10) and two upper bounds, and Equations (6) and (14). The first partial derivative 

system of Wu and Ouyang [2] consists of Equations (2) and (3). This study combines them into one 

equation by deleting the variable k  such that in our findings, Equation (15) only contains one 

variable, Q. Owing to that, the order quantity must be positive and the safety factor must be non-

negative, so during our derivation (Equations (5)–(14)), this proposed model derived that there are 

three necessary conditions to ensure the existence of the optimal solution. 

4. Improved Mathematical Analysis 

This study rewrites Equation (3) as 

21

2
1

k

k





  (5) 

where  
Q

a
 1  with 

  
  pfEh

D
a






1

10 
. Owing to 

210 kk  , this study finds 

1
2

0 


  so that 
Q

a
 12  to derive an upper bound of Q

 
as 

  aQ 1  (6) 

This study rewrites Equation (5) as 

 
 Qa

Qa

k

k










 1

1

1 2
 (7) 

This study squares Equation (7) and cross multiplies to derive k  in a function of Q, then 

 
 QaQ

Qa
k










2

1
 (8) 

This study rewrites Equation (2) as 

kk
c

bQ


 2
2

1  (9) 

where  





 )(

2
LRA

h

D
b


, and   





 




10L

h

D
c . 
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From Equation (9), owing to kk  21 , it yields a lower bound for Q such that 

bQ   (10) 

From Equation (9), it yields that 

2

2 2

1
1

1

c
k k

Q b k k
   

  
 (11) 

If the researchers take the sum and the difference of Equations (9) and (11), then it implies that 

2
21

2

Q b
k

c


  

 22

c

Q b
, (12) 

and 

 22

c
k

Q b
 



2

2

Q b

c


. (13) 

Based on Equation (13) with 0k   and Equation (10), this study obtains an upper of Q as 

Q b c  .  (14) 

If this study plugs Equations (12) and (13) into Equation (7), then it yields a fifth-degree 

polynomial as 

  
2

2 2 0a Q Q b Qc    .  (15) 

The goal is to find the condition that guarantees Equation (15) will have a unique positive 

solution. From Equation (6), it follows that 

a Q  (16) 

to assure the well-defined of Equation (15). 

However, the restriction in Equation (16) is unnecessary, owing to Equation (6), as this study 

already has   aQ 1 . Based on Equations (6) and(14), this study knows that 

   1,min acbQ .  (17) 

In the following, this study will prove that under the conditions of Equations (10) and (17), 

   1,min acbQb , there is a unique solution for Equation (15). This study assumes 

an auxiliary function, say  QF , where 

     QcbQQaQF 222   .  (18) 

This study knows that 

      bQQbQQaQF  22 834   (19) 

From Equation (6), it yields that QQa  . On the other hand, owing to 10   , this 

study knows that 

         04234 222  bQQbQbQQQF  (20) 

such that  QF  is a convex function. According to   02  cbbF , 
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             cbacbaaaF 
22

1111  .  (21) 

and 

     01 2  ccbacbF  .  (22) 

From Equation (21), depending on the sign of   1aF , this study will divide the solution 

procedure into the following three cases: (i)    cba 
2

1  , (ii)    cba 
2

1   and 

   bac 
2

1  , and (iii)    cba 
2

1   and    bac 
2

1  . 

For case (i), this study knows that    01 aF  and then 

    01,min  acbF .  (23) 

Due to the convexity of  QF , there is therefore a unique point, say *Q , with 

   1,min* acbQb  that satisfies Equation (15). Using Equation (13), it implies that 

     cbQbQck 22 2*2**   (24) 

such that *Q  and 
*k  are the interior optimal solution for the distribution-free inventory 

model. 

 

For case (ii), owing to    cba 
2

1   and    bac 
2

1  , this study still has 

   01 aF . Hence, the rest of the derivation is the same for case (i). 

For case (iii), owing to    cba 
2

1   and    bac 
2

1  , this study implies that 

   01 aF . From the convexity property of  QF , this study derives that there is no point 

with    1,min* acbQb  which satisfies Equation (15). Consequently, the interior 

minimum solution does not exist. Though subsequently, by using our approach, this study finds the 

conditions 

   cbacb 
2

1   (25) 

to locate the boundary minimum. 

Next, this study considers the minimums that are located on the boundary with 0Q  or 

0k . Though in the paper of Wu and Ouyang [2], there is no discussion about the domain for their 

distribution free inventory model. This study knows that k  is the safety factor with 0k  and Q 

is the order quantity with 0Q . 

During their derivation, Wu and Ouyang [2] adopted   11 QQ  to simplify their inventory 

model. That means that they assumed that Q would be a very large number. The assumption of 

  11 QQ  is supported from their numerical examples, the range of Q is derived to be from 

145 to 184. Based on the above discussion, this study will first prove that the local minimum will not 

happen along the line with 0Q . This study derives that 
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(27) 

From Equation (27),   0,,
2

2





LkQEAC

Q

u
, this study knows that  LkQEAC u ,,  is 

convex in Q when k  and L  are fixed, where iLL   or 1 iLL . 

Moreover,   0,,lim
0
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Q

u

Q
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there is a point, say  LkQ ,  satisfying    0,,, 



LkLkQEAC

Q
u , such that  LkQ ,  is the 

minimum along the ray   QLkQ 0:,, . Hence, there is no need to discuss the boundary 

along the line of 0Q . 

On the other hand, along the boundary of 0k , the objective function of Equation (1) is 

reduced to 
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Based on Equation (29), this study assumes that. 
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and 

3
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, (32) 

with 1 , 2 , and 3  being positive. 

Hence, based on the expression of Equations (30)–(32), this study can simplify Equation (29) as 

    321,0,  QQLkQEACu . (33) 

From Equation (33), this study derives that 
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    321

2

21 2,0,  QQLkQEACu  (34) 

to the boundary minimum point 21 Q  and minimum value 3212  . 

In the next theorem, the results will be summarized as follows. 

Theorem 1. If    cba 
2

1   or    cba 
2

1  , there is an interior *Q  that satisfies 

Equation (15) and 
*k which satisfies Equation (13). 

If    cbacb 
2

1  , then the boundary minimum will happen at 21
* Q  and 

0* k . 

Lead time is an important factor for inventory models. This study presents a detailed 

examination between the crashable lead time and annual total cost. Hence, the decision-makers can 

decide how many investments should be provided to balance the cost and efficiency. 

5. Numerical Examples 

In order to demonstrate our approach, this study considers the same numerical examples that 

are proposed by Wu and Ouyang [2], with the following data: 600D  units/year, 200$A  per 

order, 20$h , 12$w , 6.1$v , 50$ , $ 0 150 , 1.0f , 7  units/week, the lead 

time has three components such that 80 L , 61 L , L2 = 4, and 33 L  with the crashing cost, 

  00 LR ,   6.51 LR ,   4.222 LR , and   4.573 LR , the defective rate p  has a Beta 

distribution with parameters 1s  and 4t  to imply the probability density function is 

   314 ppg   for 10  p  to imply that  
5

1





ts

s
pE  and    

   15

1

1

12 





tsts

ss
pE , the 

backordered rate,  , is assumed as 0, 0.5, 0.8, and 1. This study derives Q  from Equation (15) and 

then uses Equation (13) to find k , to plug them into Equation (1) to find the minimum value. This 

study lists our findings in Table 2. 

Table 2. Our solution for the example in Wu and Ouyang [2]. 

  iL  *
iQ  

*
ik   * *, ,i i iEAC Q k L    iL  *

iQ  
*
ik   * *, ,i i iEAC Q k L  

0.0 8 184.234 2.796 6173.397 0.8 8 159.560 1.776 5262.014 

 6 176.074 2.864 5883.168  6 154.546 1.811 5079.805 

 4 168.514 2.931 5567.743  4 150.988 1.836 4901.551 

 3 169.320 2.923 5468.756  3 154.548 1.811 4895.407 

0.5 8 170.225 2.237 5664.529 1.0 8 150.689 1.348 4908.181 

 6 163.823 2.286 5433.926  6 146.842 1.372 4769.548 

 4 158.527 2.328 5194.376  4 144.760 1.385 4646.160 

 3 160.887 2.309 5146.848  3 149.335 1.356 4376.801 

In Table 3 shown below, this study compares our findings with that of Wu and Ouyang [2]. 

Table 3. Comparison of ours and that of Wu and Ouyang [2]. 

 Wu and Ouyang Our Findings 

  *L  
*Q  *r  

*EAC  *L  
*Q  *k  

*EAC  

0.0 3 169 70 5469.20 3 169.320 2.923 5468.756 

0.5 3 161 62 5147.27 3 160.887 2.309 5146.848 

0.8 3 155 56 4895.82 3 154.548 1.811 4895.407 

1.0 3 149 51 4377.20 3 149.335 1.356 4376.801 
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Based on the comparison of the minimum solution and the minimum value, both approaches 

are comparatively very similar, under the parameters set in Wu and Ouyang [2]. In the following, 

this study constructed a counter-example to demonstrate that sometimes the iterative method cannot 

work. This study assumes that 60D , 200h  with 1 , 80 L  and   00 LR  to imply 

that 

   058.434569.581231.184
2

 cbacb   (35) 

which satisfies the condition of Equation (25). By our approach, according to the derivation of 

Equation (34), this study finds that 834.20* Q  and 0* k  with 

  894.44226,, 0
** LkQEACu

. On the other hand, by using the iterative method proposed by 

Wu and Ouyang [2] with 01 k , by Equation (2), it yields that .834.201 Q  If the researchers 

follow the suggestion of Wu and Ouyang [2], this study then faces the following problem 

722.1
367335.0

1
1

1 2


 k

k
 (36) 

such that this study cannot derive a non-negative 2k  from Equation (36). The above counter-

example demonstrates that in our Theorem 1, if the condition    cbacb 
2

1   is 

satisfied, then the iterative approach proposed by Wu and Ouyang [2] can not generate two 

sequences that converge to the optimal solution. 

6. Managerial Insights and Real-Life Implication 

In real life situations, the distribution of demand sometimes is unknown. The decision-makers 

can observe the historical data to find the mean and variance, and then based on the distribution-free 

approach, this study shows how to derive the optimal solutions under crashable lead time 

environments. Based on this study, investments in reducing the lead time are considered for any 

concerned decision-makers to minimize the total annual cost. On the other hand, this study provides 

information for extra costs that will be spent to accelerate the delivery and then compress the lead 

time to its minimum. Therefore, the decision-makers can decide his best policy under practical 

implications. There are so many real-life examples of this field for practical applications. In the 

following, a practical example of this study is presented below. After an earthquake, a company 

decides to order a necessary pipeline for future construction from a nearby country. The transport 

contains three components: sea, railroad, and bus. The transportation period for the pipeline can be 

crashed if extra investments are spent. The decision-maker can decide his best policy depending on 

the trade-off between cost and the delivery time. For example, if there is much competition, then the 

decision-maker should cut the delivery time to the minimum to earn the market such that the profit 

owing to the annual cost is increased. Hence, this study can provide help to the decision-maker to 

handle a real-life issue. 

7. Conclusions 

Retailers incur a variety of additional costs when dealing with defective products. Thus 

manufacturers must constantly seek to improve product quality and minimize inspection errors. This 

study identifies the criteria by which to determine whether the optimal solution to a production 

inventory with defective items is an interior minimum or a boundary minimum. This study also 

constructed a counter-example to illustrate the fact that iterative methods are sometimes unable to 

derive the boundary minimum. This study provides an analytical foundation for the optimal solution 

to the inventory problem with defective units and sub-lot inspection. Moreover, this model can be 

extended to a fuzzy environment under various conditions by considering the fuzzy setup and 
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inventory holding cost. This model can also be extendable to consider quality-dependent demand 

and imperfect production environments. 

Author Contributions: Conceptualization, G.K.Y., K.-C.H.; methodology, H.-W.T., K.-C.H.; software, H.-W.T., 

K.-C.H.; validation, H.-W.T., G.K.Y., and K.-C.H.; formal analysis, H.-W.T., G.K.Y., and K.-C.H.; investigation, 

H.-W.T., G.K.Y.; resources, H.-W.T., K.-C.H.; data curation, H.-W.T., G.K.Y., and K.-C.H.; writing—original draft 

preparation, H.-W.T., K.-C.H.; writing—review and editing, G.K.Y., K.-C.H.; visualization, H.-W.T., K.-C.H.; 

supervision, H.-W.T., K.-C.H.; project administration, G.K.Y., K.-C.H.; funding acquisition, H.-W.T., K.-C.H. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded supporting by the Ministry of Science and Technology, R.O.C. grant number 

MOST108-2410-H-241-005. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Paknejad, M.J.; Nasri,F.; Affisco, J.F. Defective units in a continuous review (s,Q) system. Int. J. Prod. Res. 

1995, 33, 2767–2777. https://doi.org/10.1080/00207549508904844 

2. Wu, K.S.; Ouyang, L.Y. Defective units in (Q, r, L) inventory model with sub-lot sampling inspection. Prod. 

Plan. Control. 2000, 11, 179–186. https://doi.org/10.1080/095372800232388 

3. Ouyang, L.Y.; Wu, K.S.; Ho, C.H. Analysis of optimal vendor-buyer integrated inventory policyinvolving 

defective items. Int. J. Adv. Manuf. Tech. 2006, 29, 1232–1245. https://doi.org/10.1007/s00170-005-0008-y 

4. Sarkar, B.; Gupta, H.; Chaudhuri, K.; Goyal, S.K. An integrated inventory model with variable lead time, 

defective units and delay in payments. Appl. Math. Comput. Model. 2014, 237, 650–658. 

https://doi.org/10.1016/j.amc.2014.03.061 

5. Sarkar, B.; Chaudhuri, K.; Moon, I. Manufacturing setup cost reduction and quality improvement for the 

distribution free continuous-review inventory model with a service level constraint. J. Manuf. Syst. 2015, 

34, 74–82. https://doi.org/10.1016/j.jmsy.2014.11.003 

6. Khan, M.; Jaber, M.Y.; Zanoni, S.; Zavanella, L. Vendor managed inventory with consignment stock 

agreement for a supply chain with defective items. Appl. Math. Model. 2016, 40, 7102–7144. 

https://doi.org/10.1016/j.apm.2016.02.035 

7. Taleizadeh, A.A.;  Kalantari, S.S.; Cardenas-Barron, L.E. Pricing and lot sizing for an EPQ inventory model 

with rework and multiple shipments. TOP 2016, 24, 143–155. https://doi.org/10.1007/s11750-015-0377-9 

8. Kang, C.W.; Ullah, M.; Sarkar, B.; Hussain, I.; Akhtar, R. Impact of random defective rate on lot size 

focusing work-in-process inventory in manufacturing system. Inter. J. Prod. Res. 2017, 55, 1748–1766. 

https://doi.org/10.1080/00207543.2016.1235295 

9. Manna, A.K.; Kumar Dey, J.K.; Mondal, S.K. Imperfect production inventory model with production rate 

dependent defective rate and advertisement dependent demand. Comput. Ind. Eng. 2017, 104, 9–22. 

https://doi.org/10.1016/j.cie.2016.11.027 

10. Cheikhrouhou, N.; Sarkar, B.; Ganguly, B.; Malik, A.I.; Batista, R.; Lee, Y.H. Optimization of sample size 

and order size in an inventory model with quality inspection and return of defective items. Ann. Oper. Res. 

2018, 271, 445–467. https://doi.org/10.1007/s10479-017-2511-6 

11. Kim, M.-S.; Kim, J.-S.; Sarkar, B.; Sarkar, M.; Iqbal,M.W. An improved way to calculate imperfect items 

during long-run production in an integrated inventory model with backorders. J. Manuf. Syst. 2018, 47, 

153–167. https://doi.org/10.1016/j.jmsy.2018.04.016 

12. Malik, A.I.; Sarkar, B. Optimizing a multi-product continuous-review inventory model with uncertain 

demand, quality improvement, setup cost reduction, and variation control in lead time. IEEE Access 2018, 

6, 36176–36187. https://doi.org/10.1109/ACCESS.2018.2849694 

13. Malik, A.I.; Sarkar, B. Coordinating supply-chain management under stochastic fuzzy environment and 

lead-time reduction. Mathematics 2019, 7, 480. https://doi.org/10.3390/math7050480 

14. Bhuiya, S.K.; Ghosh, D.; Chakraborty, D. On the distribution-free continuous review (Q, r, L) inventory 

model with lead-time-dependent partial backlogging. Int. J. Manag. Sci. Eng. Manag. 2019, 14, 273–283. 

https://doi.org/10.1080/17509653.2018.1563873 

15. Ganguly, B.; Sarkar, B.; Sarkar, M.; Pareek, S.; Omair, M. Influence of controllable lead time, premium price, 

and unequal shipments under environmental effects in a supply chain management. RAIRO Oper. Res. 

2019, 53, 1427–1451. https://doi.org/10.1051/ro/2018041 



Mathematics 2020, 8, 1038 13 of 13 

 

16. Malik, A.I.; Kim, B.S. A constrained production system involving production flexibility and carbon 

emissions. Mathematics 2020, 8, 275. https://doi.org/10.3390/math8020275 

17. Mishra, U.; Wu, J.-Z.; Sarkar, B. A sustainable production-inventory model for a controllable carbon 

emissions rate under shortages. J. Clean. Prod. 2020, 256, 120268. 

https://doi.org/10.1016/j.jclepro.2020.120268 

18. Hota, S.K.; Sarkar, B.; Ghosh, S.K. Effects of unequal lot size and variable transportation in unreliable 

supply chain management. Mathematics 2020, 8, 357. https://doi.org/10.3390/math8030357 

19. Wu, J.W.; Lee, W.C.; Tsai, H.Y. A note on defective units in an inventory model with sub-lot sampling 

inspection for variable lead-time demand with the mixture of free distributions. Int. Trans. Oper. Res. 2003, 

10, 341–359. https://doi.org/10.1111/j.1475-3995.2004.00462.x 

 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


