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Abstract: In this paper, we present the mathematical point of view of our research group regarding
the multi-robot systems evolving in a multi-temporal way. We solve the minimum multi-time
volume problem as optimal control problem for a group of planar micro-robots moving in the same
direction at different partial speeds. We are motivated to solve this problem because a similar
minimum-time optimal control problem is now in vogue for micro-scale and nano-scale robotic
systems. Applying the (weak and strong) multi-time maximum principle, we obtain necessary
conditions for optimality and that are used to guess a candidate control policy. The complexity of
finding this policy for arbitrary initial conditions is dominated by the computation of a planar convex
hull. We pointed this idea by applying the technique of multi-time Hamilton-Jacobi-Bellman PDE.
Our results can be extended to consider obstacle avoidance by explicit parameterization of all possible
optimal control policies.

Keywords: multi-time motion planning; multi-time multi-robot systems; multi-time optimal control;
multi-time Hamilton-Jacobi-Bellman PDE
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1. Introduction

Our multi-time model extends the single-time case formulated and solved by T. Bretl [1,2]
(see also, [3–6]). We refer to a microrobotic system consisting of n planar robots which evolve in
multi-temporal sense. The control of this system is hard, at least from an algorithmic point of view.
We solve the problem via a multi-time maximum optimal control problem and via the technique of
multi-time Hamilton-Jacobi-Bellman PDE (see, [7–13]). The problem of multi-temporal evolution
has many pitfalls due to the correlation between the dimension of state variables and that of
evolution variables.

The microrobotic systems are intended for a wide range of applications that include
microfabrication, minimally invasive medical diagnosis and treatment, adaptive optics, regenerative
electronics, and biosensing for environmental monitoring and toxin detection [2].

The term “multi-time” was used for the first time by Dirac (1932) [14] to introduce “multi-time
wave function” as candidate for relativistic many-particle quantum mechanics.

Section 2 formulates a multi-time optimal control problem for a system of many robots that move
at different partial speeds, but that must all move in the same partial direction. Section 3 shows how
we can solve the problem via the weak multi-time maximum principle. Here, the solution of the adjoint
PDEs system is obtained by geometrical techniques. As it is too complicated to continue with this
method, Section 4 solves the problem by the strong multi-time maximum principle. Section 5 gives
a geometrical solution of our problem. Section 6 proves that the multi-time dynamic programming

Mathematics 2020, 8, 1036; doi:10.3390/math8061036 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-7132-6900
https://orcid.org/0000-0001-9160-9185
http://dx.doi.org/10.3390/math8061036
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/6/1036?type=check_update&version=2


Mathematics 2020, 8, 1036 2 of 17

method permits the design of multi-time optimal controls for the problem in Section 3. Section 7 refers
to originality of the subject and to the possibility of further research.

We consistently use mathematical language from multi-temporal dynamical systems and
differential geometry. Particularly the Einstein convention of summation, and a short dictionary
for notations in differential geometry (∧ = exterior product or wedge product of two differential
forms, δαβ, δα

β, δαβ = Kronecker symbols, y = interior product or inner derivative) are used throughout.
The tensor fields are written also via their components etc.

2. Many Robots That Move at Different Partial Speeds

The evolutive multivariate parameter t = (t1, . . . , tm) ∈ Rm
+ is called multi-time. A multi-temporal

evolution is conceived as follows: It is considered a generic hyper-parallelepiped Ω0T ∈ Rm
+ determined

by the diagonal opposite points 0, T ∈ Rm
+. An evolution in Ω0T is determined by the partial order in

Rm
+ and by a positive sense of movement. A C1 curve γ : [0, 1]→ Ω0T, tα = tα(τ), τ ∈ [0, 1], joining the

points γ(0) = 0 and γ(1) = T, is called marker of evolution in Ω0T if dtα

dτ ≥ 0 (increasing curve). The
simplest marker of evolution is the main diagonal tα = Tατ, τ ∈ [0, 1] that joins the points 0 and T.

Now let us consider a C1 function ϕ : Ω0T → R. The evolution in ϕ(Ω0T) means that the image of
the function ϕ runs from the point ϕ(0) to the point ϕ(T). The graph (t, ϕ(t)) can be more suggestive,
being a hypersurface in Ω0T ×R, running from the point (0, ϕ(0)) to the point (T, ϕ(T)). The normal
vector field to this hypersurface is (∇ϕ,−1). The marker of evolution in Ω0T induces a marker of
evolution in the image ϕ(Ω0T), if 〈∇ϕ, dt

dτ 〉 ≥ 0 (acute angle), and more suggestive, a marker of
evolution on the hypersurface (t, ϕ(t)).

To study the multi-temporal evolution of micro-scale and nano-scale robotic systems we must
create a controlled m-flow evolution, an elapsed volume functional and a minimum type problem.
We underline that the initial positions of the robots are given, and the goal is to bring them to the origin,
minimizing the elapsed time volume. The solution (x(t), y(t)) of a controlled completely integrable
system takes the place of evolutionary function ϕ(t).

If we leave the multi-time T free, then for n planar robots the following problem of multi-time
optimal control appears: Let (x, y) = (x1, y1, . . . , xn, yn) ∈ (R2)n be the state variables (one pair (xi, yi)

means one robot) and u ∈ R, v = (vi
α) ∈ Rmn, α = 1, . . . , m; i = 1, . . . , n be the controls (inputs).

The main goal is to find

min
u,v

I(u(·), v(·)) =
∫

Ω0T

dt1 ∧ · · · ∧ dtm

subject to
∂

∂tα

(
x
y

)
(t) = vα(t)

(
cos u(t)
sin u(t)

)
, t ∈ Ω0T , |vi

α(t)| ≤ 1,

x(0) = x0, y(0) = y0, x(T) = 0, y(T) = 0.

The previous controlled PDEs can be written

∂xi

∂tα
(t) = vi

α(t) cos u(t),
∂yi

∂tα
(t) = vi

α(t) sin u(t).

If rank(vi
α(t)) = m ≤ n, then the 2m vector fields Xi

α(t) = vi
α(t) cos u(t), Yi

α(t) = vi
α(t) sin u(t),

α = 1, . . . , m, are linearly independent.
For each robot (xi, yi), it appears the square of speed

δαβ ∂xi

∂tα

∂xi

∂tβ
+ δαβ ∂yi

∂tα

∂yi

∂tβ
= δαβvi

αvi
β, i = 1, . . . , n.

Consequently, the group of n robots move in a planar workspace at different (although bounded)
speeds, but that must all move in the same partial direction fixed by the unit vector (cos u(t), sin u(t)).
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In fact, the speeds
√

δαβvi
αvi

β, i = 1, . . . , n and the direction (cos u(t), sin u(t)) are the only physically
observable measures.

The complete integrability conditions of this PDE system are

∂vi
α

∂tβ
(t)−

∂vi
β

∂tα
(t) = 0, vi

α(t)
∂u
∂tβ

(t)− vi
β(t)

∂u
∂tα

(t) = 0.

It follows the piecewise general solution

vi
α(t) =

∂ϕi

∂tα
(t) = λi(u(t))

∂u
∂tα

(t).

Remark 1. (i) The quadruple (x(t), y(t), u(t), v(t)) constitutes an admissible m-mapping if it has the
following properties: (1) (u(t), v(t)) is a measurable function from Ω0T to U × V; (2) for t ∈ Ω0T ,
xi(t) = xi

0 +
∫

Γ0t
cos u(s) vi

α(s) dsα, yi(t) = yi
0 +

∫
Γ0t

sin u(s) vi
α(s) dsα (path independent curvilinear

integrals), (3) (x(T), y(T)) ∈ XT ×YT (compact set). Please note that the second property implies that
(x(t), y(t)) is differentiable almost everywhere as a function of multi-time t, satisfying the previous PDE
system for almost all t ∈ Ω0T .

(ii) If the previous PDE system is not completely integrable, we can formulate and solve a similar problem
using the nonholonomic evolution dxi = cos u(t) vi

α(t)dtα, dyi = sin u(t) vi
α(t)dtα.

Because of periodicity of sine and cosine, we can take u ∈ [−π, π]. Also, we can restrict u ∈ [0, π)

without loss of generality.
We solve the foregoing problem using the multi-time maximum principle (see, [7–13]).

We introduce the Lagrange multipliers p(t) = (pα
i (t)), q(t) = (qα

i (t)), the Hamiltonian

H(x, y, u, v, p, q) = −1 + (pα
i cos u + qα

i sin u)vi
α

and its anti-trace
Hα

β(x, y, u, v, p, q) = − 1
m

δα
β + (pα

i cos u + qα
i sin u)vi

β,

called the control Hamiltonian tensor field.

3. Solution via Weak Multi-Time Maximum Principle

According the weak multi-time maximum principle [7] (coming from variational calculus
techniques), along any optimal sheet

(x∗, y∗, u∗, v∗, p∗, q∗),

we must have

∂p∗αi
∂tα

= −∂H
∂xi (x∗, y∗, u∗, v∗, p∗, q∗),

∂q∗αi
∂tα

= −∂H
∂yi (x∗, y∗, u∗, v∗, p∗, q∗)

H(x∗, y∗, u∗, v∗, p∗, q∗) = max
u,v

H(x∗, y∗, u, v, p∗, q∗).

Due to the fact that this Hamiltonian is a linear function with respect to v, its extremum point
cannot be interior. Moreover, we have

max
u,v

H(x∗, y∗, u, v, p∗, q∗) = max
u

max
v

H(x∗, y∗, u, v, p∗, q∗)

= max
v

max
u

H(x∗, y∗, u, v, p∗, q∗).



Mathematics 2020, 8, 1036 4 of 17

Solving the Adjoint PDEs System

Since this Hamiltonian has no dependence on the state vector variables (x, y), the adjoint PDEs
are of divergence form

∂p∗αi
∂tα

= 0,
∂q∗αi
∂tα

= 0, i = 1 . . . , n.

To find the general solution of this adjoint divergence PDEs system, we recall some facts from
differential geometry [15] about closed and exact forms.

An r-form ω is called closed if dω = 0. We say that ω is exact if there exists an (r− 1)-form η such
that dη = ω.

To characterize situations in which closed forms are also exact, we call a famous.

Theorem 1 (The Poincaré Lemma). Let U be a contractible domain in Rn. If ω is a closed r-form, then
there exists an (r− 1)-form η such that dη = ω. In other words, all closed differential r-forms on contractible
domains are exact.

In particular, if ω is a closed r-form on Rn, then it is exact.
The m-form (volume form) ω = dt1 ∧ · · · ∧ dtm and the vector fields ∂

∂tα produce (see the inner
derivative) the (m− 1)-forms ωα = ∂

∂tα yω and the (m− 2)-forms ωβα = ∂
∂tβ yωα. These satisfy

dtγ ∧ωα = δ
γ
α ω, dtγ ∧ωαβ = δ

γ
α ωβ − δ

γ
β ωα.

Now, the Lagrange multipliers p, q are the m-forms

p = pα
i ωα ∧ dxi, q = qα

i ωα ∧ dyi.

As solutions of the adjoint PDEs, they are closed, i.e.,

dp =
∂pα

i
∂tγ

dtγ ∧ωα ∧ dxi =
∂pα

i
∂tα

ω ∧ dxi = 0,

dq =
∂qα

i
∂tγ

dtγ ∧ωα ∧ dyi =
∂qα

i
∂tα

ω ∧ dyi = 0.

According the Poincaré Lemma, there exist two (m− 1)-forms

η = Nαβ
i ωαβ ∧ dxi, µ = Mαβ

i ωαβ ∧ dyi

such that

p = dη =
∂Nαβ

i
∂tγ

dtγ ∧ωαβ ∧ dxi =
∂

∂tα

(
Nαβ

i − Nβα
i

)
ωβ ∧ dxi,

q = dµ =
∂Mαβ

i
∂tγ

dtγ ∧ωαβ ∧ dyi =
∂

∂tα

(
Mαβ

i −Mβα
i

)
ωβ ∧ dyi.

It follows that the solution of the adjoint system is

pβ
i (t) =

∂

∂tα

(
Nαβ

i − Nβα
i

)
(t), qβ

i (t) =
∂

∂tα

(
Mαβ

i −Mβα
i

)
(t).

On the other hand, the strong multi-time maximum principle actually shows that the particular
solution pβ

i (t) = const, qβ
i (t) = const is sufficient to obtain the complete solution of our problem.
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4. Solution via Strong Multi-Time Maximum Principle

According the strong multi-time maximum principle [11] (coming from m-needle techniques),
along any optimal sheet

(x∗, y∗, u∗, v∗, p∗, q∗),

we must have

∂p∗αi
∂tβ

= −
∂Hα

β

∂xi (x∗, y∗, u∗, v∗, p∗, q∗),
∂q∗αi
∂tβ

= −
∂Hα

β

∂yi (x∗, y∗, u∗, v∗, p∗, q∗)

H(x∗, y∗, u∗, v∗, p∗, q∗) = max
u,v

H(x∗, y∗, u, v, p∗, q∗).

Also, the function t→ H(x∗(t), y∗(t), u∗(t), v∗(t), p∗(t), q∗(t)) is constant.
Since v → H(x∗, y∗, u, v, p∗, q∗) is a linear function with respect to v, the Hamiltonian

H(x∗, y∗, u, v, p∗, q∗) has no interior extremum point. Also, we have

max
u,v

H(x∗, y∗, u, v, p∗, q∗) = max
u

max
v

H(x∗, y∗, u, v, p∗, q∗)

= max
v

max
u

H(x∗, y∗, u, v, p∗, q∗).

4.1. Solving the Adjoint PDEs System

Since the control Hamiltonian tensor field has no dependence on the state (x, y), the adjoint PDEs
reduce to

∂p∗αi
∂tβ

= 0,
∂q∗αi
∂tβ

= 0,

with the piecewise constant solution

p∗αi (t) = pα
i , q∗αi (t) = qα

i .

4.2. Finding the Maximum with Respect to v

To prove the existence of a bang-bang control v, we use the following steps.

Lemma 1. The maximum of the Hamiltonian H(x, y, u, v, p, q) with respect to the control v is

H(x, y, u, v∗, p, q) = −1 +
m

∑
α=1

n

∑
i=1
|pα

i cos u + qα
i sin u|. (13)

Proof. The inputs vi
α belong to the control set V = [−1, 1]mn ⊂ Rmn. The maximum of the linear

function v → H exists since each control variable vi
α belongs to the interval [−1, 1]; for maximum,

the control must be at a vertex of ∂V (see, linear optimization, simplex method). If Qα
i (t) = pα

i cos u(t)+
qα

i sin u(t) are the switching functions, then each optimal control v∗iα must be the function

v∗iα = sign Qα
i (t) =


1 for Qα

i (t) > 0 : bang-bang control
undetermined for Qα

i (t) = 0 : singular control
−1 for Qα

i (t) < 0 : bang-bang control.

If pα
i = 0, qα

i = 0, then Qα
i (t) = 0, ∀t ∈ Ω0T , and hence vi

α is undetermined. Otherwise,
the function Qα

i (t) vanishes only for one value of u(t). Then, the singular control is ruled out and
the remaining possibilities are bang-bang controls. This optimal control is discontinuous since each
component jumps from a minimum to a maximum and vice versa, in response to each change in the
sign of each switching function. The form of the optimal Hamiltonian follows.
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4.3. Finding the Maximum with Respect to u

Although we follow the path of finding the maximum with respect to v and then those with
respect to u, it is useful to keep in mind the reverse procedure. This facilitates the understanding of
some formulas in the following text.

According Formula (13), along any multi-time optimal sheet v∗, the Hamiltonian is a function
only of the heading angle u. As continuous function it has a maximum on the compact interval [0, π].
Since H(0) = H(π), the same maximum value is on the interval [0, π). We shall show that at least one
and at most mn values of u maximize the Hamiltonian. We conclude that the input u(t) is piecewise
constant and takes on at most mn values along any multi-time optimal sheet.

To simplify, we use the mn functions φα
i (u) = pα

i cos u + qα
i sin u, α = 1, . . . , m; i = 1, . . . , n.

Lemma 2. (i) The equality H(x, y, u, v∗, p, q) = −1 is true if and only if each term of the sum

m

∑
α=1

n

∑
i=1
|φα

i (u)| (14)

is zero.
(ii) A zero u0 ∈ [0, π) of one of the functions φα

i (u), with (pα
i , qα

i ) 6= (0, 0), is not a maximum point of
H(x, y, u, v∗, p, q).

Proof. Let φ1
1(u0) = 0, with (p1

1, q1
1) 6= (0, 0), for example, p1

1 > 0. Then the function
H(x, y, u, v∗, p, q) = h(u),

h(u) =

{
p1

1 cos u + q1
1 sin u + A(u) for 0 < u0 − ε < u ≤ u0

−p1
1 cos u− q1

1 sin u + A(u) for u0 < u < u0 + ε < π

has the derivative

h′(u) =

{
−p1

1 sin u + q1
1 cos u + A′(u) for 0 < u0 − ε < u < u0

p1
1 sin u− q1

1 cos u + A′(u) for u0 < u < u0 + ε < π.

If u0 is a maximum point, then we should have h′(u0−) > 0 and h′(u0+) < 0, i.e.,

−p1
1 sin u0 + q1

1 cos u0 + A′(u0) > 0,

p1
1 sin u0 − q1

1 cos u0 + A′(u0) < 0.

Consequently
p1

1 − q1
1 ctan u0 < 0.

On the other hand, p1
1 cos u0 + q1

1 sin u0 = 0 or ctan u0 = − q1
1

p1
1
, whence (p1

1)
2 + (q1

1)
2 < 0, which is

a contradiction.

Lemma 3. If ϕ(u) 6= 0 in an open interval I, then the first two derivatives of the function |ϕ(u)| : I → R are

d
du
|ϕ(u)| = (sign ϕ(u)) ϕ′(u),

d2

du2 |ϕ(u)| = (sign ϕ(u)) ϕ′′(u).

Each function φα
i (u), which is not identically zero, has exactly one zero in the interval [0, π).

Totally, we have a set A consisting of at most mn zeros in [0, π).

Lemma 4. On an interval fixed by two consecutive zeros in A, the Hamiltonian (13) has the properties: (i) it is
a C∞ function, (ii) it is a concave function, (iii) the derivative dH

du has at most one zero.
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Proof. (i) The function u→ H(u)+ 1 is a sum of absolute values of smooth functions and consequently
it is piecewise smooth. (ii) Since

d2φα
i

du2 (u) = −φα
i (u),

we find
d2H
du2 (u) < 0.

(iii) It is almost obvious.

Lemma 5. The maximum of the Hamiltonian H(x, y, u, v, p, q) with respect to the control u, for an optimal
value v∗, is

H(x, y, u∗, v∗, p, q) = −1 +

√√√√( m

∑
α=1

n

∑
i=1

v∗iα pα
i

)2

+

(
m

∑
α=1

n

∑
i=1

v∗iα qα
i

)2

. (15)

Proof. The maximum of the Hamiltonian H(x, y, u, v, p, q) with respect to the control v is given in
Lemma 1. On the other hand, the maximum of the function

m

∑
α=1

n

∑
i=1

(pα
i v∗iα cos u + qα

i v∗iα sin u),

with respect to u, is √√√√( m

∑
α=1

n

∑
i=1

v∗iα pα
i

)2

+

(
m

∑
α=1

n

∑
i=1

v∗iα qα
i

)2

.

It follows the maximum of the Hamiltonian.

Lemma 6. For any t, the maximum value is H(x, y, u∗, v∗, p, q) = 0.

Proof. Suppose w is a maximum value function and

w1(x, y) = −1
2

Dt2 w(x, y), w2(x, y) = −1
2

Dt1 w(x, y)

is the generating vector field. The multi-time Hamilton-Jacobi-Bellman PDE (feedback law) is [11]

∂wα

∂tα
+ max

u∈U;v∈V

{(
∂wα

∂x
cos u +

∂wα

∂y
sin u

)
vα − 1

}
= 0.

On the other hand, the evolution PDEs and the Lagrangian L = −1 do not depend on the variable
t. Then, the generating vector field is independent on t. The multi-time Hamilton-Jacobi-Bellman
PDE becomes

max
u∈U;v∈V

{(
∂wα

∂x
cos u +

∂wα

∂y
sin u

)
vα − 1

}
= 0,

equivalent to
max

u∈U;v∈V
H(x, y, u, v, p, q) = 0.

Consequently, the statement is true.
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Guess Solution for Maximum with Respect to u

In our target problem, the adjoint variables (co-states p, q) have no conditions on the boundary
and so they may not be initially specified. However, giving extrema points u, we can calculate the
optimal co-states p, q. Indeed, for k ≤ n, and the sequence

uk − π = u0 < u1 < u2 < · · · < uk < π,

we can define

pα
i =

1
m

pi, pi =

{
cos ui−1−cos ui

2 for i = 1, . . . , k
0 for i = k + 1, . . . , n.

qα
i =

1
m

qi, qi =

{
sin ui−1−sin ui

2 for i = 1, . . . , k
0 for i = k + 1, . . . , n,

where α = 1, . . . , m. The function (13) becomes

H(u) = −1 +
n

∑
i=1

(
m

∑
α=1
|pα

i cos u + qα
i sin u|

)

= −1 +
n

∑
i=1
|

m

∑
α=1

(pα
i cos u + qα

i sin u) |

= −1 +
k

∑
i=1
|pi cos u + qi sin u|.

This expression demonstrates the following properties:

(i) sign (pi cos uj + qi sin uj) =

{
−1 for i ≤ j
1 for i > j.

(ii) H(uj) = 0, ∀j = 1, . . . , k.

(iii) The points uj, j = 1, . . . , k, are the only maximum points for the function H(u). Consequently,
maxu H(u) = 0.

4.4. Finding the Optimal Evolution

The optimal control has a piecewise form

v∗iα = sign Qα
i (t), u∗ = u∗(t) = const.

In this way, we have transformed the foregoing problem from an infinite-dimensional one,
in which we are required to specify the functions u : [0, T] → [0, π) and vi

α : [0, T] → [−1, 1],
for α = 1, . . . , m; i = 1, . . . , n, into a finite-dimensional problem, in which we are required only to
specify a double sequence of mn values of v. Then the optimal evolution is a piecewise solution to the
Pfaff equations

dxi(t) = v∗iα dtα cos u∗, dyi(t) = v∗iα dtα sin u∗.

The general solution is

xi(t) = v∗iα tα cos u∗ + ai, yi(t) = v∗iα tα sin u∗ + bi.
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These formulas generate a piecewise general solution, splitting the domain Ω0T into sub-domains
depending on the optimal values u∗. As example, for a single optimal u∗ and the boundary conditions

x(0) = x0, y(0) = y0, x(T) = 0, y(T) = 0,

we obtain the optimal evolution

xi(t) = v∗iα (t
α − Tα) cos u∗, yi(t) = v∗iα (t

α − Tα) sin u∗,

xi
0 = −v∗iα Tα cos u∗, yi

0 = −v∗iα Tα sin u∗.

5. Geometrical Solution

Suppose the set of robots {z1, . . . , zn;−z1, . . . ,−zn} determine, in this order, a convex polygon in
R2. We select the point zj. Applying the Bretl theory [1], the point zj can attend the origin in n steps
P1, . . . , Pn defined by

Pi = along
1
2
−→
zizi+1 with velocity

{
vi = −1, i < j
vi = +1, j ≤ i ≤ n,

with the convention zn+1 = −z1. The spend time for each step Pi is ti =
1
2 ||zi+1 − zi||, i = 1, . . . , n.

For the point zj, the connection between our point of view and the theory of Bretl [1] is

vi1t1
i + vi2t2

i = viti, |vi1| = 1, |vi2| = 1, i = 1, . . . , n.

If T1 = ∑n
i=1 t1

i and T2 = ∑n
j=1 t2

j , we must solve the first problem:

min
(t1,t2)

[(T1)
2 + (T2)

2], subject to (19).

To solve this problem, we use the Lagrange function

L =

(
n

∑
i=1

t1
i

)2

+

(
n

∑
j=1

t2
j

)2

+
n

∑
i=1

2λi(vi1t1
i + vi2t2

i − viti).

From the equations of critical points, we find

∑
i

t1
i = −λkvk2, ∑

j
t2

j = −λkvk1, for each k = 1, . . . , n.

Since |vkα| = 1, it follows

∑
i

t1
i = ∑

j
t2

j = |λk| =
1
2 ∑

i
ti,

and hence T1 = T2 (square). On the other hand, the product T1T2 depends on t. According Bretl,
for min (T1T2), we have

min ∑
i
|viti| = ∑

i
ti =

1
4

perim {z1, . . . , zn;−z1, . . . ,−zn}.

Hence
min ∑

i
|vi1t1

i + vi2t2
i | =

1
4

perim {z1, . . . , zn;−z1, . . . ,−zn}.
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But,

Q = perim {z1, . . . , zn;−z1, . . . ,−zn} =
1
2

(
||z1 + zn||+

n−1

∑
i=1
||zi+1 − zi||

)
.

Running the point zj, the relations (19) are changed into

vj
i1t1

i + vj
i2t2

i = vj
i ti, j = 1, . . . , n.

Fixing the index i, we obtain a system of n linear equations with two unknowns t1
i , t2

i . If the
rank of the system is two, one obtains the uni-temporal case of Bretl, i.e., either t1

i = 0 or t2
i = 0.

For significant two-time case, the rank must be one, and we can take the repartition t1
i = t2

i = ti
2 ,

vj
i1 = vj

i2 = vj
i . It follows (square)

T1 = T2 =
Q
2

, T1T2 =
Q2

4
.

6. Multi-Time Hamilton-Jacobi-Bellman PDE

To solve the problem formulated in Section 2, let us use the idea that the multi-time dynamic
programming method permits the design of multi-time optimal controls.

To simplify, let us accept α = 1, 2. Also, to use the multi-time maximum principle, we replace the
initial multiple integral functional I(u(·), v(·)) by

J(u(·), v(·)) = −
∫

Ω0T

dt1 ∧ dt2 = max

(equivalent minimum area). Let us consider the set Ω(t1,t2)(T1,T2), where t = (t1, t2). Since

Jt,(x1,y1),(x2,y2)(u(·), v(·)) = −
∫ T1

t1

∫ T2

t2
ds1ds2,

we transform the maximum problem in Section 1 into similar problems: find

max
u(·),v(·)

Jt,(x1,y1),(x2,y2)(u(·), v(·)) = (t1 − T1)(T2 − t2) (16)

subject to
∂Xi

∂sα
(s1, s2) = vi

α(s
1, s2) cos u(s1, s2),

∂Yi

∂sα
(s1, s2) = vi

α(s
1, s2) sin u(s1, s2),

X(t1, t2) = x, Y(t1, t2) = y, (s1, s2) ∈ Ω(t1,t2)(T1,T2)

X(T1, T2) = 0, Y(T1, T2) = 0,

were (T1 − t1, T2 − t2) is selected to have a minimum norm.

Remark 2. For m-volume multi-time optimal problems, the maximum value function w does not depend on the
multi-time t.

6.1. One Optimal Value of the Control u

6.1.1. Case α = 1, 2, i = 1

Omitting the index “star”, the constraints (boundary value problem) rewrite in the form

x = vα(tα − Tα) cos u, y = vα(tα − Tα) sin u, α = 1, 2. (17)
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Generally, y
x = tan u and the relation x = vα(tα − Tα) cos u connects linearly the differences

t1 − T1 and t2 − T2. We need to find

min
[
(T1 − t1)2 + (T2 − t2)2

]
subject to x = vα(tα − Tα) cos u.

Denoting
L = (T1 − t1)2 + (T2 − t2)2 + `(vα(tα − Tα) cos u− x) ,

we find the critical point condition

T1 − t1 = −1
2
`v2 cos u, T2 − t2 = −1

2
`v1 cos u,

Because |v1| = |v2| = 1, it follows

T1 − t1 = T2 − t2 =
x

2| cos u| =
OM

2

and
max

u(·),v(·)
Jt,(x1,y1),(x2,y2)(u(·), v(·)) = − x2

4 cos2 u
= −OM2

4
= − x2 + y2

4
.

Let us correlate this result with the Hamilton-Jacobi-Bellman PDE. Since w((x, y)) does not
depend on t, the generating vector (w1((x, y)), w2((x, y))) does not depend on t.

Suppose w is a maximum value function and

w1(x, y) = −1
2

Dt2 w(x, y), w2(x, y) = −1
2

Dt1 w(x, y)

is the generating vector field. The two-time Hamilton-Jacobi-Bellman PDE (feedback law) is [11]

∂wα

∂tα
+ max

u∈U;v∈V

{(
∂wα

∂x
cos u +

∂wα

∂y
sin u

)
vα − 1

}
= 0

The maximum with respect v is obtained for

vα = sign
(

∂w1

∂x
cos u +

∂w1

∂y
sin u

)
.

It follows the PDE

max
u

(∣∣∣∣∂w1

∂x
cos u +

∂w1

∂y
sin u

∣∣∣∣ + ∣∣∣∣∂w2

∂x
cos u +

∂w2

∂y
sin u

∣∣∣∣)− 1 = 0.

Taking
∂w1

∂x
=

∂w2

∂x
=

x
2
√

x2 + y2
,

∂w1

∂y
=

∂w2

∂y
=

y
2
√

x2 + y2
,

the value maxu is 1 for tan u = y
x . Consequently,

w1((x, y)) = w2((x, y)) =
√

x2 + y2

2
is a generating vector field.

In this case, using the total derivative operator D, we have

−2w1 = Dt2 w =
∂w
∂x

∂x
∂t2 +

∂w
∂y

∂y
∂t2 , −2w2 = Dt1 w =

∂w
∂x

∂x
∂t1 +

∂w
∂y

∂y
∂t1 .
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For v1 = v2 = −1, one obtains a single PDE

x
∂w
∂x

+ y
∂w
∂y

= − x2 + y2

2
, w(0, 0) = 0,

whose solution is

w(x, y) = − x2 + y2

2
.

On the other hand, according [11],

max
u(·),v(·)

J(u(·), v(·)) = w(x(t1 − T1, t2 − T2), y(t1 − T1, t2 − T2))

−w(x(t1, t2 − T2), y(t1, t2 − T2))− w(x(t1 − T1, t2), y(t1 − T1, t2)).

From the evolution (17), it follows

x(t1 − T1, t2) = x(t1, t2 − T2) =
x
2

, y(t1 − T1, t2) = y(t1, t2 − T2) =
y
2

.

The equality

− x2 + y2

4
= − x2 + y2

2
+

x2 + y2

8
+

x2 + y2

8
confirms the previous results.

6.1.2. Case α = 1, 2, i = 1, 2

Omitting the index “star”, the constraints (boundary value problem) rewrite in the form

xi = vi
α(t

α − Tα) cos u, yi = vi
α(t

α − Tα) sin u, i = 1, 2; α = 1, 2. (18)

Since yi = (tan u)xi, i = 1, 2, to find the maximum value maxu(·),v(·) J, we need to solve
the problem:

min
[
(T1 − t1)2 + (T2 − t2)2

]
subject to x = vα(tα − Tα) cos u.

Case det v 6= 0 If det v = det(vi
α) = ±2, then we find

t1 − T1 =
1

det v cos u
(v2

2x1 − v1
2x2), T2 − t2 =

1
det v cos u

(v1
1x2 − v2

1x1),

It follows

max
u,v

J((x1,y1),(x2,y2)) =
−1

(det v cos u)2

(
v1

2x2 − v2
2x1
) (

v1
1x2 − v2

1x1
)

or

max
u,v

J((x1,y1),(x2,y2)) = −
1
4

∣∣∣∣∣
(

x1

cos u

)2

−
(

x2

cos u

)2
∣∣∣∣∣

= −1
4
|OM2

1 −OM2
2|,

where M1 = (x1, y1), M2 = (x2, y2).
The two-time Hamilton-Jacobi-Bellman PDE (feedback law) is [11]

max
u∈U;v∈V

{(
∂wα

∂xi cos u +
∂wα

∂yi sin u
)

vi
α − 1

}
= 0.
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This PDE can be rewritten in the form

−1 + max
u∈U

{
2

∑
α,i=1

∣∣∣∣∂wα

∂xi cos u +
∂wα

∂yi sin u
∣∣∣∣
}

= 0,

since each optimal control v∗iα is

v∗iα (t) = sign
(

∂wα

∂xi cos u +
∂wα

∂yi sin u
)

.

Using a single optimal control u∗(t) = const, the previous two-time Hamilton-Jacobi-Bellman
PDE reduces to

−1 +

√√√√( 2

∑
α,i=1

v∗iα
∂wα

∂xi

)2

+

(
2

∑
α,i=1

v∗iα
∂wα

∂yi

)2

= 0.

We obtain an eikonal PDE(
2

∑
α,i=1

v∗iα
∂wα

∂xi

)2

+

(
2

∑
α,i=1

v∗iα
∂wα

∂yi

)2

= 1,

with the unknown functions w1(x, y), w2(x, y). This PDE is equivalent to the system

2

∑
α,i=1

v∗iα
∂wα

∂xi = cos χ,
2

∑
α,i=1

v∗iα
∂wα

∂yi = sin χ. (19)

Consequently, for ∑2
α,i=1 v∗iα = 2, a solution (w1, w2) of the Hamilton-Jacobi-Bellman PDE is

obtained from
w1((x1, y1), (x2, y2)) =

1
2
(x1 + x2) cos χ +

1
2
(y1 + y2) sin χ

+φ1(v∗21 x1 − v∗11 x2, v∗21 y1 − v∗11 y2),

w2((x1, y1), (x2, y2)) =
1
2
(x1 + x2) cos χ +

1
2
(y1 + y2) sin χ

+φ2(v∗22 x1 − v∗11 x2, v∗22 y1 − v∗11 y2),

for (x1, y1) ∈ R2, (x2, y2) ∈ R2. The solution obtained via the strong multi-time maximum principle is
recovered by the conditions

φ1(v∗21 x1 − v∗11 x2, v∗21 y1 − v∗11 y2) = a1(v∗21 x1 − v∗11 x2) + b1(v∗21 y1 − v∗11 y2)

φ2(v∗22 x1 − v∗11 x2, v∗22 y1 − v∗11 y2) = a2(v∗22 x1 − v∗11 x2) + b2(v∗22 y1 − v∗11 y2).

In this case, the complexity of finding an optimal policy (for arbitrary initial conditions) is
dominated by the computation of a planar convex hull.

Case det v = 0. In this case, we need to solve the problem

min
[
(T1 − t1)2 + (T2 − t2)2

]
subject to x1 = v1

α(t
α − Tα) cos u.

The result is similar to those when α = 1, 2, i = 1.

Remark 3. Consider the eikonal PDE

||Du(x)|| = 1, x ∈ Ω ⊂ Rn; u(x)|∂Ω = 0.
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Show that:
(i) ||Du(x)|| = 1⇔ sup||q||≤1(Du(x) · q− 1) = 0, ∀x ∈ Ω;
(ii) the function u(x) = dist(x; ∂Ω) solves the eikonal PDE in the viscosity sense.

6.2. Two Optimal Values of the Control u

Let us consider the partitions t1 = t1
0 < t1

1 < · · · < t1
k = T1, t2 = t2

0 < t2
1 < · · · < t2

k = T2, and the
rectangles Ωj = Ω(t1,t2)(t1

j ,t2
j )

, j = 1, . . . , k. We order the optimal values u∗αi in an increasing sequence

u1, . . . , uk and we set uj for the multi-time set Ωj \Ωj−1. For finding the optimal evolution it is enough
to consider the diagonal rectangles Ω(t1

j−1,t2
j−1)(t

1
j ,t2

j )
, j = 1, . . . , k. The points tj = (t1

j , t2
j ) are determined

by uj and are connected to (T1, T2).
To simplify, in Ω(t1,t2)(T1,T2), let us consider two diagonal rectangles

Ω1 = Ω(t1,t2)( 1
2 (t

1+T1), 1
2 (t

2+T2)), Ω2 = Ω( 1
2 (t

1+T1), 1
2 (t

2+T2))(T1,T2)

the first corresponding to the optimal value u1, and the second to u2. Denoting

t = (t1, t2), t∗ =
(

1
2
(t1 + T1),

1
2
(t2 + T2

)
, T = (T1, T2),

and imposing
x(t) = x, y(t) = y; x(t∗) = x∗, y(t∗) = y∗; x(T) = 0, y(T) = 0,

the optimal evolution splits as:

xi = xi
∗ +

1
2

vi
α(t

α − Tα) cos u1, yi = yi
∗ +

1
2

vi
α(t

α − Tα) sin u1, on Ω1;

xi = vi
α(t

α − Tα) cos u2, yi = vi
α(t

α − Tα) sin u2, on Ω2.

We need to solve the problem of finding the maximum cost on Ω1, then on Ω2 and to add them.
Maximum on Ω1. Using the Lagrangian function

L1 = (t1 − t∗1)(t∗2 − t2) + λi(xi
∗ +

1
2

vi
α(t

α − Tα) cos u1 − xi), det v = det(vi
α) = ±2,

we find
t1 − t∗1 =

1
2

λivi
2 cos u1, t∗2 − t2 = −1

2
λivi

1 cos u1,

where
λ1 = − 2

det v cos2 u1
(x2 − x2

∗), λ2 =
2

det v cos2 u1
(x1 − x1

∗).

Denoting

A =
(
−v1

2(x2 − x2
∗) + v2

2(x1 − x1
∗)
) (

v1
1(x2 − x2

∗)− v2
1(x1 − x1

∗)
)

,

it follows
w1(t, (x1, y1), (x2, y2)) =

A
(det v cos u1)2

or

w1(t, (x1, y1), (x2, y2)) = −1
4

∣∣∣∣∣
(

x1 − x1
∗

cos u1

)2

−
(

x2 − x2
∗

cos u1

)2
∣∣∣∣∣

= −1
4
|M1M∗1

2 −M2M∗2
2|,
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on Ω1, where
M1 = (x1, y1), M2 = (x2, y2), M∗1 = (x1

∗, y1
∗), M∗2 = (x2

∗, y2
∗).

Maximum on Ω2. Since the constraints have the form xi = vi
α(t∗α − Tα) cos u2, the result is similar

to those in “Case: One optimal value of the control”. Hence

w2(t, (x1
∗, y1
∗), (x2

∗, y2
∗)) = −

1
4
|OM∗1

2 −OM∗2
2|,

on Ω2. It follows

w(t, (x1, y1), (x2, y2)) = w1(t, (x1, y1), (x2, y2)) + w2(t, (x1
∗, y1
∗), (x2

∗, y2
∗)).

6.3. Viscosity Solution

The Hamilton-Jacobi-Bellman PDE has smooth solution on Ω1, respectively on Ω2. Since at the
point t∗ we have a discontinuity of the partial derivatives, we must refer to the PDE system (18) and to
its viscosity solutions. The basic idea is to replace the differentials D(x1,y1;x2,y2)ϕα(t, (x1, y1), (x2, y2))

at a point (t, (x1, y1), (x2, y2)) where it does not exist (for example because of a kink in ϕ) with
the differentials D(x1,y1;x2,y2)ψ

α(t, (x1, y1), (x2, y2)) of a smooth function ψ touching the graph of ϕ,
from above for the subsolution condition and from below for the supersolution one, at the point
(t, (x1, y1), (x2, y2)).

Definition 1. (i) A continuous function ϕ = (ϕ1, ϕ2) is said to be a viscosity subsolution of the PDE
system (18) if, for any point (t, (x1, y1), (x2, y2)) and for any smooth function ψ = (ψ1, ψ2) such that each
function ϕα − ψα, α = 1, 2, has a maximum point at (t, (x1, y1), (x2, y2)), we have

2

∑
α,i=1

∂ψα

∂xi (t, (x1, y1), (x2, y2)) ≤ cos χ,
2

∑
α,i=1

∂ψα

∂yi (t, (x1, y1), (x2, y2)) ≤ sin χ.

(ii) A continuous function ϕ = (ϕ1, ϕ2) is said to be a viscosity supersolution of (16) if, for any point
(t, (x1, y1), (x2, y2)) and for any smooth function ψ such that each function ϕα − ψα, α = 1, 2, has a minimum
point at (t, (x1, y1), (x2, y2)), we have

2

∑
α,i=1

∂ψα

∂xi (t, (x1, y1), (x2, y2)) ≥ cos χ,
2

∑
α,i=1

∂ψα

∂yi (t, (x1, y1), (x2, y2)) ≥ sin χ.

(iii) A continuous function ϕ = (ϕ1, ϕ2) is said to be a viscosity solution of the PDE system (16) if it is a
viscosity subsolution and supersolution.

The viscosity solution of the PDE system is ϕ = (ϕ1, ϕ2) = (Q, Q), where Q is a quarter of the
perimeter of the parallelogram (x1, y1), (x2, y2), (−x1,−y1), (−x2,−y2), i.e.,

2Q((x1, y1), (x2, y2)) =
√
(x1 − x2)2 + (y1 − y2)2 +

√
(x1 + x2)2 + (y1 + y2)2.

7. Conclusions

Our work is the first which introduces and studies the theory of minirobots moving at different
partial speeds (in a multi-temporal sense), but that must all move in the same partial direction. We are
motivated to solve this problem because constraints of previous sort must be common in micro-scale
and nano-scale robotic systems appearing in applied fields mentioned above. To understand a
multi-temporal evolution we must think the dependence on multi-time either as an immersion, or as a
diffeomorphism, or as a submersion, and that the partial order in Rm

+ induces a partial order on the
image of such a function.
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The phenomenon described by us takes place in spaces with at least four dimensions. That is why
graphic representations lose their meaning.

By application of the (weak and strong) multi-time maximum principle, we obtain necessary
conditions for optimality and use them to guess a candidate control policy. By the multi-time
Hamilton-Jacobi-Bellman PDE, we verify that our guess is optimal. The complexity of finding
this policy for arbitrary initial conditions is only quasilinear in the number of robots, and in fact
is dominated by the computation of a planar convex hull.

In our minds the previous theory can be extended to the situation of three-dimensional
robots, using the versor of unit sphere, which we will do in a future paper. We tested the theory
of multi-time optimal control in relevant applications: multi-time control strategies for skilled
movements [13], optimal control of electromagnetic energy [16], multi-time optimal control for
quantum systems [10] etc.
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