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Abstract: The stability problem of the stationary rotation of N identical point vortices is considered.
The vortices are located on a circle of radius R0 at the vertices of a regular N-gon outside a circle
of radius R. The circulation Γ around the circle is arbitrary. The problem has three parameters N,
q, Γ, where q = R2/R2

0. This old problem of vortex dynamics is posed by Havelock (1931) and is a
generalization of the Kelvin problem (1878) on the stability of a regular vortex polygon (Thomson
N-gon) on the plane. In the case of Γ = 0, the problem has already been solved: in the linear
setting by Havelock, and in the nonlinear setting in the series of our papers. The contribution of
this work to the solution of the problem consists in the analysis of the case of non-zero circulation
Γ 6= 0. The linearization matrix and the quadratic part of the Hamiltonian are studied for all possible
parameter values. Conditions for orbital stability and instability in the nonlinear setting are found.
The parameter areas are specified where linear stability occurs and nonlinear analysis is required.
The nonlinear stability theory of equilibria of Hamiltonian systems in resonant cases is applied.
Two resonances that lead to instability in the nonlinear setting are found and investigated, although
stability occurs in the linear approximation. All the results obtained are consistent with those known
for Γ = 0. This research is a necessary step in solving similar problems for the case of a moving
circular cylinder, a model of vortices inside an annulus, and others.

Keywords: N-vortex problem; Thomson vortex N-gon; point vortices; stability; Hamiltonian equation

MSC: 76B47; 34D20; 70K30

1. Introduction

The classical hydrodynamics of an ideal fluid uses a model of point vortices (or parallel vortex
threads) that goes back to H. Helmholtz. Let’s list the reviews that contain various tasks that use this
model [1–7]. G. Kirchhoff obtained the Hamiltonian form of the motion equations of point vortices
on the plane and indicated possible first integrals. These integrals were sufficient for the complete
integrability of the problem in the case of two and three vortices.

The point vortices model was used by Kelvin (1878) in the construction of his theory of the atom.
Although this theory was rejected the mathematical model survived. Now it took on new urgency in
connection with the theory of vortices in superfluid [8] and the electronic columns [9]. Kelvin posed
the stability problem for the stationary rotation of the system of N equal vortices located in the vertices
of regular N-gon (Thomson N-gon). A long history of research on this problem is described in [10],
where a review of the experimental and theoretical work is given. The stability analysis in linear
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approximation was done by J. Thomson (1883) and T. Havelock (1931). Nonlinear stability analysis
was performed much later [10].

From the general papers on the movement of point vortices in a fluid bounded by absolutely
smooth walls, it should be noted the Lin’s paper [11], in which, in particular, it is shown that the
motion equations of vortices inside and outside the circle are Hamiltonian. The model of vortices
outside the circle takes into account that the circulation Γ around the circle can be arbitrary one [11,12].
The case of Γ = 0 is of particular interest because when the radius of the circle tends to zero, we come
to the Kirchhoff’s model on the plane.

Havelock investigated the stability problem of a regular vortex polygon inside and outside the
circle in the case of Γ = 0 in a linear setting [13]. He obtained conditions under which the corresponding
linearized system has exponentially growing solutions. Thus, after this paper, the question of
stability in the case of Γ = 0 remained open when all the eigenvalues of the linearization matrix
are purely imaginary or null. Nonlinear analysis, in this case, is performed for the problem inside the
circle in the papers [14,15] and for the problem outside the circle in the series of the papers [16–19].
The general theory of nonlinear stability analysis of solutions of Hamiltonian systems by methods of
Kolmogorov–Arnold–Moser theory (KAM-theory) was used [20–23]. In particular, the quadratic part
of the Hamiltonian was studied. Resonant cases requiring analysis of the third and fourth-order terms
of the Taylor series expansion of the Hamiltonian were considered separately. It turned out that two of
them lead to instability, although in the linear setting there is stability.

The purpose of this paper is to study the stability of a regular vortex N-gon in the case of an
arbitrary circulation Γ 6= 0. The linearized system and the quadratic part of the Hamiltonian are
investigated. This allowed us to divide the parameter space of the problem into three areas: the areas
of orbital stability and instability in the nonlinear setting, and the area where linear stability takes
place and nonlinear analysis is required.

In this paper, the stability theory of Hamiltonian systems in resonant cases has been used [23,24].
We applied it to study the influence of circulation Γ on stability in two resonant cases, the instability of
which was found at Γ = 0 in [17,18]. These are critical case of the double-zero resonance at N = 3 and
the case of resonance 1:2 at N = 5.

The model of point vortices outside the circular domain considered by us is a limiting case of
more complex models, for example, the movement of discrete vortices in an annular, in a deformation
flow [25], the model of moving cylinder interacting with the configuration of N point vortices [26].
Therefore, our research is a necessary step in the analysis of similar problems in all these models.

2. Problem Formulation

The motion of the system N identical point vortices of intensity κ outside the circle of radius R is
described by the system (see, for example [12])

˙̄zk =
κ

2πi

N

∑
j=1
j 6=k

1
zk − zj

− κ
2πi

N

∑
j=1

1
zk − ẑj

+
1

2πi
1
zk

(Γ + Nκ) , k = 1, . . . , N. (1)

Here zk = xk + iyk, k = 1, . . . , N are complex variables, xk, yk are Cartesian coordinates of kth

vortex, ẑk =
R2

zk
is the reflection of the kth vortex from the boundary of the circle, parameter Γ is

circulation around circle.
Let us assume that κ = 1.
The system (1) can be written as

˙̄zk = 2i
∂H(z, z)

∂zk
, żk = −2i

∂H(z, z)
∂z̄k

, k = 1, . . . , N, (2)
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where z = (z1, . . . , zN), H = H(z, z) is a Hamiltonian:

H =− 1
4π ∑

16j<k6N
ln
∣∣zj − zk

∣∣2 + 1
8π

N

∑
j,k=1

ln
∣∣R2 − zj z̄k

∣∣2 (3)

− 1
4π

(Γ + N)
N

∑
k=1

ln
∣∣zk
∣∣2.

In the case, Γ = 0 and R→ 0 the system of Equation (1) transforms to the Kirchhoff equations of
motion of point vortices on the plane.

The system (2) and (3) has an exact solution

zk = eiΩN tuk, uk = R0e2πi(k−1)/N , k = 1, . . . , N, (4)

ΩN =
1

4πR2
0

(
3N − 1− 2N

1− qN + 2Γ
)

, q =
R2

R2
0
< 1. (5)

Thus, a system of N identical vortices located on a circle of radius R0 at the vertices of a regular
N-gon rotates with a constant angular velocity ΩN(q, Γ) (see Figure 1).

Figure 1. Thomson vortex N-gon outside a circle.

The angular velocity ΩN(q, Γ) decreases monotonously over q ∈ (0, 1) at fixed values Γ.
The vortex N-gon changes the rotation direction at a fixed Γ > − 3N−1

2 with the growth of parameter q
on the curve

ΓN(q) = −
1
2

(
3N − 1− 2N

1− qN

)
. (6)

In the case, Γ < − 3N−1
2 the rotation direction with the growth of q does not change. The graphs

of ΓN(q) are shown in Figure 2.
The problem of stability of stationary rotation (4) is studied in the following sections.
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Figure 2. The graphs of the curves ΓN(q) in the interval 0 < q < 1 such that the angular velocity
ΩN(q, ΓN(q)) ≡ 0. The graphs are shown from top to bottom in order of increasing N = 2, . . . , 10.

3. Stability of a Regular Vortex N-gon for Γ = 0

We consider the case when circulation around the boundary is zero: Γ = 0.
In this case, the stability problem of the stationary rotation of the Thomson vortex N-gon was

solved in the linear setting by Havelock [13]. He found that the corresponding linearized system
has exponentially growing solutions for N = 2, . . . , 6, if the parameter q = R2/R2

0 is greater than the
critical value q1N : q1N < q < 1, and for N ≥ 7 the instability occurs for all q ∈ (0, 1).

In the papers [17,18] for odd N = 3, 5 and in [16] for even N = 2, 4, 6, it is shown with the help of
analysis of the quadratic part of the Hamiltonian that for q ∈ (0, q0N) there is orbital stability in the
exact nonlinear setting. In the case of even N the value q0N = q1N . The critical values of q0N and q1N
are shown in the Table 1.

Table 1. The critical values q0N and q1N for N = 2, . . . , 6 in the case Γ = 0.

N q0N q1N q1N − q0N

2 q02 = q12 q12 = 0.148536 0
3 q03 = 0.262542 q13 = 0.273695 0.011152
4 q04 = q14 q14 = 0.308125 0
5 q05 = 0.330399 q15 = 0.334596 0.004197
6 q06 = q16 q16 = 0.295985 0

Nonlinear analysis was performed using KAM-theory methods (see, for example [23,24]). It was
held at a point q = q1N in the case of even N = 2, 4, 6 [16] and on the segment q ∈ [q0N , q1N ] for odd
N = 3, 5 [17,18]. In particular, all resonances encountered in the problem were found and studied.
It turned out that only two of them lead to instability. These are the resonance of the double zero at
N = 3, if q = q03, and the resonance 1:2 at N = 5 in the point q = q1:2 = 0.333377.

4. Linear Analysis of Stability of the Vortex N-gon in the Case of Arbitrary Γ

4.1. The Perturbations Equation

The change of variables

zk(t) = eiΩN tvk(t), vk = R0
√

1 + 2rk ei( 2π
N (k−1)+θk), k = 1, 2, . . . , N (7)
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and scaling of time t 7→ t/R2
0 transforms the system (2) and (3) to the perturbations equations

ṙk =
∂E
∂θk

(ρ), θ̇k = −
∂E
∂rk

(ρ), ρ = (r1, . . . , rN , θ1, . . . , θN) ∈ R2N , (8)

with the Hamiltonian

E(ρ) = H(z(ρ), z(ρ)) +
ΩN R2

0
2

N

∑
k=1

(1 + 2rk). (9)

The Taylor series expansion of the Hamiltonian E(ρ) in powers of ρ in the neighborhood of the
zero solution is

E(ρ) =
1

4π
(E0 + E2(ρ) + E3(ρ) + . . . ). (10)

The terms of degree higher than three are omitted. The linear terms is zero: E1 = 0. The quadratic
form E2 can be represented as

E2 = 〈Sρ, ρ〉, S =

 F1
1
2

G0

−1
2

G0 F2

 , (11)

where 〈·, ·〉 is the scalar product of two vectors.
The linearization matrix of the system (8) in the neighborhood of the zero solution has the form

L =

(
−G0 2F2

−2F1 −G0

)
. (12)

The matrices F1, F2, G0 are circulants of size N × N, moreover F1, F2 are symmetric matrices,
and G0 is a skew-symmetric one. They are polynomials of the cyclic matrix C (see, for example
Appendix A of [10]):

Fm
de f
= fm0I +

N−1

∑
j=1

fmjCj, m = 1, 2, G0
de f
=

N−1

∑
j=1

g0jCj, (13)

C =


0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1
1 0 0 0 . . . 0

 , (14)

where I is unit matrix.
Only the coefficient f10 depends on the parameter Γ:

f10(q, Γ) = f 0
10(q) + 2Γ, (15)

where

f 0
10(q) = −

N2 − 1
12

+ (N − 1)− 2NqN

1− qN −
N2qN

(1− qN)2 −
q

(1− q)2 . (16)
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The coefficients f 0
10, f1j, f20, f2j and g0j, j = 1, . . . , N − 1 do not depend on Γ, and therefore,

they match the corresponding coefficients written out in the papers [13] for the case of Γ = 0:

f1j(q) =
1
2

1

1− cos 2π j
N

−
q((1 + q2) cos 2π j

N − 2 q)

(1− 2 q cos 2π j
N + q2)2

,

f20(q) =
N2 − 1

12
+

N2qN

(1− qN)2 −
q

(1− q)2 ,

f2j(q) = −
1
2

1

1− cos 2π j
N

−
q((1 + q2) cos 2π j

N − 2q)

(1− 2q cos 2π j
N + q2)2

,

g0j(q) = −
2q(1− q2) sin 2π j

N

(1− 2q cos 2π j
N + q2)2

.

The eigenvalues λmk, m = 1, 2 and iλ0k of matrices F1, F2 and G0 are calculated with the help of
the formulas

λmk =
N−1

∑
j=0

fmjei 2π jk
N , m = 1, 2, iλ0k =

N−1

∑
j=1

g0jei 2π jk
N , k = 1, . . . , N. (17)

The value λ1k has the form
λ1k(q, Γ) = λ0

1k(q) + 2Γ, (18)

where

λ0
1k(q) = −

k(N − k)
2

+ (N − 1)− 2NqN

1− qN −
N2qN−k(1 + qk)2

2(1− qN)2 −Nk(qk − qN−k)

2(1− qN)
. (19)

The values λ0
1k and the eigenvalues λ2k, iλ0k are the same as in the papers [13]:

λ2k(q) =
1
2

k(N − k)− Nk(qk − qN−k)

2(1− qN)
− N2qN−k(1− qk)2

2(1− qN)2 ,

λ0k(q) =−
Nk(qk + qN−k)

1− qN +
N2qN−k(1− q2k)

(1− qN)2 .

(20)

The matrices F1, F2 have the same eigenvectors

h` = (1, cos(`α), . . . , cos((N − 1)`α))T ,

hN−` = (0, sin(`α), . . . , sin((N − 1)`α))T ,

hN = (1, 1, . . . , 1)T , α =
2π

N
, ` = 1, . . . , bN − 1

2
c.

(21)

In the case of even N = 2n, there is another eigenvector

h N
2
= (1,−1, . . . , 1,−1)T . (22)

For the matrices F1, F2 and G0, the relations are performed:

Fmhk = λmkhk, m = 1, 2, k = 1, . . . , N,

G0hk = −λ0khN−k, G0hN−k = λ0`hk, G0hN = 0.

The eigenvalues of matrix S are the roots of the polynomials (see [14], Section 3.1 of [27]):

P(N, k, Λ) = Λ2 − (λ1k + λ2k)Λ + λ1kλ2k −
1
4

λ2
0k, k = 1, . . . , N. (23)
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The eigenvalues of the linearization matrix (12) are calculated with the help of the formulas [13]

σ±k = −iλ0k ± 2
√
−λ1kλ2k, k = 1, . . . , N. (24)

4.2. Orbital Stability and Instability of Two-Dimension Invariant Set: General Definitions and Theorems

The stationary rotation regime (4) is Lyapunov unstable for any N > 2. Indeed, the angular speed
of rotation ΩN depends on the radius R0. Therefore, for an arbitrarily small perturbation of the radius
R0, the perturbed Thomson N-gon will move away from the undisturbed one by an order of diameter
2R0. Thus, we need to clarify our definitions of stability and instability.

In this paper, as in [27], stability of a stationary solution (4) is understood as orbital stability or
stability of the continuous family of equilibria

C = {ρ ∈ R2N : r1 = · · · = rN = 0, θ1 = · · · = θN}. (25)

of the perturbations Equations (8) and (9).
The instability is instability of the invariant set C2 of the system (8) and (9):

C2 = {ρ ∈ R2N : r1 = . . . = rN , θ1 = · · · = θN}, (26)

formed by all the orbits of a continuous family (4) depending on the parameter R0 > R (For more
information, see Section 3 of [27]).

The matrices S and L have the same structure as in [27]. Therefore, repeating verbatim the
arguments about the orbital stability of the equilibrium family C and the instability of the invariant set
C2, given in Sections 3.2 and 3.3 of [27], we obtain the following statements.

Proposition 1 (Section 3.2 of [27]). Let roots of the polynomials P(N, k, Λ), k = 1, . . . , bN
2
c and the value

λ1N , given by Formulas (23) and (18)–(20), have identical sign. Then,

– the eigenvalues of the matrix S, given by (23), have identical sign except the simple zero;
– the quadratic form E2 = 〈Sρ, ρ〉 and the Hamiltonian (9) reach an extremum on the equilibria family (25);
– the stationary rotation (4) and (5) N-gon of the system (2) with the Hamiltonian (3) is orbitally stable.

Proposition 2 (Section 3.3 of [27]). Let the inequality

λ1kλ2k < 0, (27)

be satisfied for at least one k = 1, . . . , bN
2
c. The values λ1k and λ2k are given by Formulas (18)–(20).

Then the linearization matrix L has at least one eigenvalue (24) with a positive real part and the invariant
set C2 is unstable.

Proposition 3 (Section 3.3 of [27]). Let inequalities

λ1kλ2k > 0 (28)

are valid for all k = 1, . . . , bN
2
c, then all eigenvalues of the matrix L lie on the imaginary axis, and stability by

linear approximation takes place.
If, in addition, the conditions of Proposition 1 are violated, then the linear approximation is not enough to

analyze the stability.
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According to the properties 1◦ and 3◦ of the Proposition A1 of Appendix A, the value λ2k is
positive for any N and k = 1, . . . , N − 1:

λ2k(q) > 0, 0 < q < 1 (29)

and the value
λ0

1N(q) > λ0
1b N

2 c
(q), 0 < q < 1. (30)

Taking into account these inequalities, we reformulate the Propositions 1–3 as follows.

Theorem 1. The stationary rotation (4) of the Thomson vortex N-gon is

1◦ orbitally stable in an exact nonlinear setting if the inequalities

λ1kλ2k −
λ2

0k
4

= (λ0
1k + 2Γ)λ2k −

λ2
0k
4

> 0, k = 1, . . . , bN
2
c; (31)

are valid;
2◦ unstable if there is at least one value k = 1, . . . , bN

2 c such that

λ1k = λ0
1k + 2Γ < 0. (32)

3◦ If conditions 1◦ and 2◦ are not valid, then the solution (4) is stable in a linear setting, and nonlinear
analysis is required to solve the stability problem.

4.3. Stability Diagram of a Regular Vortex N-gon

Let’s introduce the following notation

Γ̃0k
de f
= −1

2
λ0

1k +
λ2

0k
8λ2k

.

It is numerically established at N ≤ 100 that the following conditions

min
1≤k≤b N

2 c
λ0

1k = λ0
1b N

2 c
, 0 < q < 1, (33)

max
1≤k≤b N

2 c
Γ̃0k(q) = Γ̃0b N

2 c
(34)

are valid.
Conditions (33) and (34) have been checked for a number of values N > 100 and no violations of

them have been found anywhere. It is possible that these conditions are also true for arbitrary N.
In similar stability problems for other models of vortex dynamics the conditions (29), (33) and

(34) may not be valid, for example, for a two-fluid plasma model [28].
Let the values Γ0N and Γ1N be given by the formulas:

Γ1N(q) = −
1
2

λ0
1b N

2 c
,

Γ0N(q) =

 − 1
2 λ0

1` +
λ2

0`
8λ2`

, in the odd case N = 2`+ 1;

Γ1N(q), in the even case N = 2n.

(35)

If the relations (33) and (34) are fulfilled, then the condition (31) is

Γ > Γ0N , (36)
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and the condition (32) has the form
Γ < Γ1N . (37)

Applying the Theorem 1 leads to results on the stability of stationary rotation of a Thomson vortex
N-gon, schematically shown in Figure 3. The curves Γ0N and Γ1N divide the parameter space of the
problem into the areas with different types of stability. Gray color indicates the area where condition
1◦ of the Theorem 1 is valid, the vertical shading is area, where the condition 2◦ is valid, and white
color is one, where both conditions 1◦ and 2◦ are not valid.

(a) (b)

Figure 3. Schematic stability diagram of the Thomson vortex N-gon: (a) The case of odd N = 2`+ 1;
(b) The case of even N = 2n. Gray is the area of orbital stability in an exact nonlinear setting, the vertical
shading is the area of instability, white color and neutral curves Γ0N , Γ1N are the area of linear stability,
where is required nonlinear analysis. The diagram is true for N 6 100 and for N > 100 if the
conditions (33) and (34) are valid.

The value Γ∗N is

Γ∗N = Γ0N(0) = Γ1N(0) =

{
N2−8N+7

16 , in the case of odd N = 2`+ 1;
N2−8N+8

16 , in the case of even N = 2n.
(38)

The values of Γ∗N for N = 2, . . . , 10 are shown in the Table 2. For N < 7 the values Γ∗N < 0.

Table 2. The critical values of Γ∗N for N = 2, . . . , 11.

N 2 3 4 5 6 7 8 9 10 11

Γ∗N −0.25 −0.5 −0.5 −0.5 −0.25 0 0.5 1 1.75 2.5

In the case of odd N = 2` + 1, a linear stability domain, which requires nonlinear analysis,
exists for all q ∈ (0, 1), since according to the property 5◦ of the Proposition A1, the inequality
Γ1N(q) < Γ0N(q) is valid.

Note that instability occurs for all values of 0 < q < 1, if Γ < Γ∗N . If Γ > Γ∗N , all three areas
always exist. In the case of even N, the domain, where nonlinear analysis is required, consists only
of a curve Γ1N . If Γ = 0, the stability interval exists only for N < 7 [13]. In the case N = 7 the linear
stability domain consists of one point q = 0, that corresponds the problem of stability of a Thomson
heptagon on a plane [10].
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According to the general theory (see, for example [23,24]) in the white domain in the Figure 3
and in the neutral curves Γ0N and Γ1N instability is possible when the eigenvalues of the linearization
matrix (12) are in resonant relations. Nonlinear terms of the Taylor series of the Hamiltonian (9),
starting from the third degree, must satisfy some additional conditions. In [17,18] for Γ = 0 in the
segment q0N ≤ q ≤ q1N two resonances leading to instability were found in the case N = 3, 5: in the
point q = q03 = 0.262542 in the case N = 3 and in the point q = q∗5 = 0.333377 in the case N = 5.
These are the double-zero resonance (diagonalizable case) and the 1:2 resonance, respectively. In the
following sections, they are studied for arbitrary values Γ.

5. The Double-Zero Resonance in the Stability Problem of the Thomson Vortex Triangle

Let N = 3 and a point (q, Γ) lies on the resonance curve Γ = Γ03(q) given by Equation (35). There is
a four-fold zero eigenvalue among the eigenvalues (24) of the linearization matrix L. In addition to
σ±3 = 0, two other null eigenvalues appear: σ+

2 and σ−1 . In this section, it will be shown that in this
case the invariant set C2 given by the Formula (26) is unstable. To prove it, we construct a reduced
system following the paper [17].

We introduce the change of variables [17,23]

ρ = A3

(
ξ

ζ

)
, ξ = (ξ1, ξ2, ξ3)

T , ζ = (ζ1, ζ2, ζ3)
T , (39)

where A3 is a symplectic matrix [29]:

A3 =
1√
3

 −νh2 −νh2
h3√
2λ13

νh1 −νh1 h0

−h1

ν

h1

ν
h0 −h2

ν
−h2

ν

√
2λ13h3

 (40)

or

A3 = [A31, A32, A33, A34, A35, A36] . (41)

Here, A3k ∈ R6 is k-th column of matrix A3, hk, k = 1, 2, 3 are basis vectors defined by
equalities (21) for N = 3:

h1 = (1,−1
2

,−1
2
)T , h2 = (0,

√
3

2
,−
√

3
2

)T , h3 = (1, 1, 1)T , (42)

h0 is zero vector, ν = 4
√
|λ21/λ11|. According to the Formula (35) and the Proposition A1,

values λ11(q, Γ03(q)) and λ13(q, Γ03(q)) are positive since Γ03 > Γ13.
In new variables (ξ, ζ) the Hamiltonian E(ρ(ξ, ζ)) given by the Formula (9) has a cyclic variable

ζ3, since the Hamiltonian (9) is invariant with respect to change of variables θk → θk + η, η ∈ R,
which in the vector form is written as

ρ = ρ +

√
3

2λ13
ηA36.

The vectors A36 and A33 are the eigenvector and adjoined vector of a linearization matrix L.
They correspond to the double zero eigenvalue σ±3 = 0:

LA36 = 0, LA33 = A36.

The cyclic variable ζ3 and the variable ξ3 correspond to the vectors A36 and A33, respectively.
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Methods for investigating equilibrium stability for systems with cyclic variables were developed
by Routh [30]. Assuming ξ3 = 0, we obtain a reduced system with the reduced Hamiltonian

W(ξ1, ξ2, ζ1, ζ2) = E(ρ(ξ1, ξ2, 0, ζ1, ζ2, 0)). (43)

The invariant set C2 is the subspace formed by the vectors A36 and A33. A reduced system with
the Hamiltonian (43) is defined in a subspace orthogonal to the invariant set C2. Hence, the instability
of the zero equilibrium of a reduced system is the instability of the invariant set (26).

The Taylor series expansion of Hamiltonian (43) in the resonant curve Γ = Γ03(q) has the form

W(ξ1, ξ2, ζ1, ζ2) =
1

4π
(W0 + W2 + W3 + . . . ), (44)

W2 = ω1(q)(ξ2
1 + ζ2

1), ω1 =
1
2

σ+
1 (q, Γ03(q)). (45)

The terms of degree higher than three are omitted.
According to [31], the zero equilibrium is unstable if ω1(q) 6= 0 and the third-degree form W3 is

different from the identity zero on the set of zeros of the quadratic part W2.
In the Figure 4 it is shown that coefficient ω1(q) is positive for all 0 < q < 1. The quadratic form

W2 vanishes on the set
{(ξ1, ξ2, ζ1, ζ2) ∈ R4 | ξ1 = ζ1 = 0}.

The calculations showed that the third-degree form W3 on this set has the form

W3(0, ξ2, 0, ζ2) = a∗3(q)(ζ3
2 − 3ζ2ξ2

2) (46)

As you can see from Figure 5 the coefficient a∗3(q) is not zero.
Thus, the stationary rotation (4) of the Thomson vortex triangle is unstable at all points of the

resonance curve Γ03(q) at the interval 0 < q < 1 .
The function Γ03(q) turns to zero at the point q = q03 = 0.262542, that is consistent with the result

of [17].

Figure 4. The graph of the coefficient ω1(q) given by equality (45) in the interval 0 < q < 1.
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Figure 5. The graph of the coefficient a∗3(q) given by Formula (46) in the interval 0 < q < 1.

6. The Resonance 1:2 in the Stability Problem of the Thomson Vortex Pentagon

Let N = 5 and the condition

Γ15(q) < Γ < Γ05(q), 0 < q < 1 (47)

is valid. Here functions Γ05 and Γ15 are given by Formula (35). Then the points (q, Γ) lie in the
white domain in the Figure 3, where linear stability takes place and the stability problem requires
nonlinear analysis.

Following the paper [18], we introduce change of variables

ρ = A5

(
ξ

ζ

)
, ξ = (ξ1, . . . , ξ5)

T , ζ = (ζ1, . . . , ζ5)
T , (48)

where A5 is symplectic matrix

A5 = [A51; A52], (49)

A51 =
1√
5

 −ν1h4 −ν2 h3 −ν2h3 −ν1 h4
h5√
2λ15

−h1

ν1
−h2

ν2

h2

ν2

h1

ν1
h0

 ,

A52 =
1√
5

 ν1 h1 ν2 h2 −ν2 h2 −ν1 h1 h0

−h4

ν1
−h3

ν2
−h3

ν2
−h4

ν1

√
2λ15 h5

 .

Here hk ∈ R5, k = 1, . . . , 5 are basis vectors given by equalities (21) for N = 5, h0 is zero vector,

νm = 4

√∣∣∣∣λ2m

λ1m

∣∣∣∣, m = 1, 2.

In the considered condition (47) the statement 3◦ of the Theorem 1 is performed and the inequality
λ1k(q, Γ) > 0 is valid for any k = 1, . . . , 5.

In the new variables (ξ, ζ), the Hamiltonian E(ρ(ξ, ζ)) defined by Formula (9) has cyclic variable
ζ5. Assuming ξ5 = 0, we obtain reduced system.

We introduce the complex variables Z1, . . . , Z4:

ξk =
1
2
(Zk + Z̄k), ζk = −

1
2

i(Zk − Z̄k), k = 1, . . . , 4, (50)

and obtain reduced system with the Hamiltonian W. The calculations showed that the Taylor series
expansion of this Hamiltonian in a neighborhood of the zero equilibrium has the form
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W =
1

4π
(W0 + W2 + Im(a∗5 Z3

2 Z4) + . . . ). (51)

The terms of the third degree and higher except for the written one are omitted. The quadratic
part W2 of Hamiltonian W has a normal form:

W2 = ω1|Z1|2 + ω2|Z2|2 −ω3|Z3|2 + ω4|Z4|2. (52)

Values ωj (j = 1, . . . , 4) are calculated with the help of the formulas

ω3
de f
= −1

2
Im σ+

3 , ωk
de f
=

1
2

Im σ+
k , k = 1, 2, 4, (53)

where σ±k defined by equality (24).
According to the paper [18] in the case Γ = 0 the resonance ω4 = 2ω3 leads to instability for

q = q1:2 = 0.333377.
We study the resonance

ω4(q, Γ) = 2ω3(q, Γ) (54)

in the case of the arbitrary Γ. The Equation (54) gives the curve Γ = Γ1:2(q) where the resonance
1:2 occurs:

Γ1:2(q) =
−B +

√
B2 − AC

A
, (55)

A = 64
(

16λ24λ23 − λ2
24 − 16λ2

23

)
,

B = 8(2λ03 + λ04)
2(λ24 + 4λ23) + 256λ23λ24(λ

0
14 + λ0

13),

C = 256λ0
14λ24λ0

13λ23 −
(
(2λ03 + λ04)

2 − 4λ0
14λ24 − 16λ0

13λ23

)2
.

Here the values λ0
1k, λ2k and λ0k are given by Formulas (19) and (20). The curve Γ1:2(q) is defined

on the interval q∗1:2 6 q < 1, q∗1:2 = 0.2576828. Its schematic image is shown in the Figure 6. The graphs
of coefficient ωk(q, Γ1:2(q)) are shown in Figure 7 for q∗1:2 6 q < 1.

Figure 6. Schematic stability diagram of the Thomson vortex pentagon. Grey color is the domain
of orbital stability in an exact nonlinear setting, the vertical shading and the curve Γ1:2 are
instability domain, white color and neutral curves Γ05, Γ15 are linear stability domains, which need
nonlinear analysis.



Mathematics 2020, 8, 1033 14 of 19

Figure 7. The graphs of coefficients ωj(q, Γ), j = 1, . . . , 4 on the resonance curve Γ = Γ1:2(q) for
q∗1:2 < q < 1, ω4 = 2ω3.

According to [23,32], in the absence of other resonances of the form

ωj = ω3, ωj = 2ω3, 2ωj = ω3, ωj + ωk = ω3, j, k = 1, 2, 4, (56)

the zero equlibrium of the system with Hamiltonian (51)–(54) is unstable, if the inequality

a∗5(q, Γ1:2(q)) 6= 0 (57)

is valid, that is shown in the Figure 8.
As seen in Figure 7, in addition to the equality (54) on the curve Γ1:2, other resonant relations

of the form (56) take place only at two points. The equality ω2 = ω3 is performed at the point
(q∗1:2, Γ∗1:2), Γ∗1:2 = Γ1:2(q∗1:2) = −0.2490584, and the equality ω2 = 2ω3 is valid at the point (q∗2:3, Γ∗2:3).
Here q∗2:3 = 0.2956825, Γ∗2:3 = Γ1:2(q∗2:3) = −0.1410773. The stability problem at these points requires
additional nonlinear analysis.

Thus, the invariant set C2 is unstable on the curve Γ1:2(q) when q∗1:2 < q < 1 and q 6= q∗2:3.
The domain 0 < q < q∗1:2 and Γ15 < Γ < Γ05 does not contain the points of resonance 1:2 (ω4 = 2ω3).

Figure 8. The resonance 1:2. The graph of coefficient a∗5(q, Γ1:2(q)) in the interval q∗1:2 < q < 1.

7. Conclusions

This paper is a natural continuation of the series of articles [13,16–19]. The novelty of the result
is that the stability problem of the Thomson vortex N-gon outside circular domain is considered in
the case of an arbitrary circulation Γ around the boundary. Previously in the papers [13,16–19] it was
assumed that Γ = 0.
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The stability analysis was based on the Routh theory for the study of Hamiltonian systems with
cyclic variables [30] and on a generalization of the approach developed in Section 3 of [27] for the
study of a Thomson vortex N-gon in the case of an arbitrary Hamiltonian that depends only on the
distances between point vortices.

The results of the study of the linearization matrix and the quadratic part of the Hamiltonian
are presented as stability diagrams in Figure 3 if the conditions (33) and (34) are valid. For N 6 100
and in some cases N > 100, we checked their execution numerically. For N = 3 a nonlinear stability
analysis has been performed in the critical case of two-fold zero on the corresponding resonant curve
Γ03(q), q ∈ (0, 1). It is shown that the stationary rotation of the vortex triangle is unstable. For a vortex
pentagon N = 5, a nonlinear analysis has been performed in the critical case of the resonance 1:2 on
the curve Γ1:2(q), q ∈ (q∗1:2, 1)\{q∗2:3}, shown schematically in Figure 6. Instability has been proved.
The resonance curves Γ1:2 and Γ15 intersect in the point (q∗1:2, Γ∗1:2). There are no points of resonance
1:2 in domain 0 < q < q∗1:2 and Γ15(q) < Γ < Γ∗1:2, although it requires nonlinear analysis.

Possible directions of development of this paper are related to the nonlinear analysis of the
stability problem in the white domain in Figure 3 at Γ1N ≤ Γ ≤ Γ0N and on its boundaries. To do
this, we need to apply the KAM-theory methods (see, for example [23]), in particular, list and study
all resonances encountered in this problem. Among them we will consider the points found in the
Section 6. These are the point (q∗1:2, Γ∗1:2) where two resonances ω4 = 2ω3 and ω2 = ω3 intersect,
and the point (q∗2:3, Γ∗2:3), where the resonances are ω4 = 2ω3 and ω2 = 2ω3.

The method of nonlinear analysis was previously tested for a model of vortices inside a circular
domain in [14,15] and outside the circle in the case of zero circulation Γ = 0 in [16–19].

Of particular interest is the study of the boundary Γ1N of the instability domain. The answer to
this question is important in order to find out what this border is: “dangerous” or “safe” according to
Bautin [24,33]? In other words, there is a hard or soft loss of stability of the Thomson polygon when
the parameter q increases and passes through the critical value q1N at a fixed Γ?

The results of the study can also be generalized to the case of a moving cylinder interacting with
the configuration of N point vortices [26], the model of Thomson N-gon in two-layer fluid [27,34]
and others.
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All authors have read and agreed to the published version of the manuscript.
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Appendix A. Properties of Eigenvalues λ1k, λ2k and iλ0k of Matrices F1, F2 and G0

The following proposition sets the properties of quantities λ1k, λ2k and λ0k given by
equalities (18)–(20).

Proposition A1. The following statements are valid.

1◦ The function λ2k(q) is positive in the interval 0 < q < 1:

λ2k(q) > 0, 0 < q < 1, k = 1, . . . , N − 1. (A1)

2◦ The function λ0k(q) does not have zeros in the interval 0 < q < 1:

λ0k(q) 6= 0, 0 < q < 1, k = 1, . . . , N − 1, k 6= N
2

. (A2)

3◦ The function λ0
1N(q) given by Formula (19) satisfies inequality
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λ0
1N(q) > λ0

1b N
2 c
(q) (A3)

in the interval 0 < q < 1.
4◦ In the case Γ > Γ1N(q) the value λ1N is positive:

λ1N(q, Γ) > 0, (A4)

Γ1N is defined by Formula (35).
5◦ In the case of odd N = 2`+ 1 for any q ∈ (0, 1) the inequality

Γ1N(q) < Γ0N(q) (A5)

is valid.

Proof. From the equalities (18)–(20), it follows that

λmk = λm,N−k, m = 1, 2, λ0k = −λ0,N−k, k = 1, . . . , N − 1.

Thus, it is sufficient to consider the cases 1 ≤ k ≤ bN
2 c.

To prove the statement 1◦, we write the value λ2k as

λ2k =
Q2(q)

2(1− qN)2 ,

where

Q2(q) = k(N − k)q2 N − kNq2 N−k − N(N − k)qN+k + 2(N2 + k2 − kN)qN−
− N(N − k)qN−k − kNqk + k(N − k).

According to Descartes’ rule of signs [35], the number of positive roots of the polynomial Q2(k, N)

is at most the number of sign changes in the sequence of its coefficients, and that the difference between
these two numbers is always even. Zero coefficients are not taken into account when calculating
sign changes.

The series of the polynomial Q2(q) coefficients has four sign changes, and the polynomial Q2(q)
has a four-fold root q = 1. Indeed, the polynomial Q2(q) and its first three derivatives Q(s)

2 (q),
s = 1, 2, 3 are

Q′2(q) = 2Nk(N − k)q2 N−1 − kN(2 N − k)q2 N−k−1 − N(N2 − k2)qk+N−1+

+ 2N(N2 + k2 − kN)qN−1 − N(N − k)2qN−k−1 − Nk2qk−1

Q′′2 (q) = 2Nk(N − k)(2 N − 1)q2 N−2 − Nk(2 N − k)(2 N − k− 1)q2 N−k−2−
− N(N2 − k2)(k + N − 1)qN+k−2 + 2N(N − 1)(N2 + k2 − kN)qN−2−
− N(N − k)2(N − k− 1)qN−k−2 − Nk2(k− 1)qk−2

Q′′′2 (q) = 2Nk(N − k)(2 N − 1)(2 N − 2)q2 N−3−
− Nk(2 N − k)(2 N − k− 1)(2 N − k− 2)q2 N−k−3−
− N(N2 − k2)(k + N − 1)(N + k− 2)qN+k−3+

+ 2N(N − 1)(N − 2)(N2 + k2 − kN)qN−3−
− N(N − k)2(N − k− 1)(N − k− 2)qN−k−3 − Nk2(k− 1)(k− 2)qk−3.
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They vanish in the point q = 1. The four derivative at this point is different from zero:

Q(4)
2 (1) = 6 k2N2 (N − k)2 6= 0.

Therefore, the polynomial Q2(q) does not have roots in the interval 0 < q < 1. Since the value
Q2(0) = k(N − k) > 0, then Q2(q) > 0 for all q ∈ (0, 1). The statement 1◦ is proved.

Similarly, the statement 2◦ is proved. The function λ0k is rewritten as

λ0k =
Q0(q)

(1− qN)2 , (A6)

where
Q0(q) = Nkq2 N−k − N(N − k)qk+N + N(N − k)qN−k − Nkqk.

The series of the polynomial Q0(q) coefficients has three sign changes, and the polynomial itself
has a three-fold root q = 1. According to Descartes’ rule of signs, there are no other positive roots of
the polynomial Q0(q) and, accordingly, the function λ0k.

To prove the inequality (A3) in the statement 3◦, we present the difference λ0
1N − λ0

1b N
2 c

as:

λ0
1N − λ0

1b N
2 c

=
Q1(q)

2(1− qN)2 , (A7)

Q1(q) = k (N − k) q2N + kNq2N−k + N (N − k) qN+k − 2
(

kN + N2 − k2
)

qN+

+ N (N − k) qN−k + kNqk + k (N − k) , k = bN
2
c.

The polynomial Q1(q) has double root q = 1 and two sign changes in the series of coefficients.
Therefore, there are no other positive roots. Since the value Q1(0) > 0 is positive, the inequalities
Q1(q) > 0 and (A3) are valid for all q ∈ (0, 1) and any N.

The property 4◦ follows from the statement 3◦ and the equality (35). In the case of Γ > Γ1N(q)
we have:

λ1N(q, Γ) = λ0
1N(q) + 2Γ > λ0

1b N
2 c
(q) + 2Γ1N(q) ≡ 0.

The validity of the property 5◦ follows from the equality (35) and the statements 1◦ and 2◦. Indeed,
for N = 2`+ 1

Γ0N(q) = −
1
2

λ0
1`(q) +

λ0`(q)2

λ2`(q)
> −1

2
λ0

1`(q) = Γ1N(q).

The Proposition A1 is proved.

References

1. Aref, H. Point vortex dynamics: A classical mathematics playground. J. Math. Phys. 2007, 48, 065401.
[CrossRef]

2. Aref, H.; Newton, P.K.; Stremler, M.A.; Tokieda, T.; Vainchtein, D.L. Vortex Crystals. Adv. Appl. Mech. 2003,
39, 1–79 .

3. Newton, P. K. The n-Vortex Problem: Analytical Techniques; Appl. Math. Sci.; Springer: New York, NY, USA,
2001; Volume 145.

4. Borisov, A.V.; Mamaev, I.S. Mathematical Methods in the Dynamics of Vortex Structures; Institute of Computer
Sciences: Moscow/Izhevsk, Russia, 2005.

5. Kilin, A.A.; Borisov, A.V.; Mamaev, I.S. Dynamics of point vortices inside and outside of a circular domain.
In Fundamental and Applied Problems in Vortex Theory; Institute of Computer Sciences: Moscow/Izhevsk,
Russia, 2003; pp. 414–440.

http://dx.doi.org/10.1063/1.2425103


Mathematics 2020, 8, 1033 18 of 19

6. Saffman, P.G. Vortex Dynamics; Series Cambridge Monogr. Mech. and Appl. Math.; Cambridge University
Press: Cambridge, UK, 1992.

7. Kozlov, V.V. General Theory of Vortices; Dynamical systems X., Encyclopaedia Math. Sci., 67; Springer: Berlin,
Germany, 2003.

8. Yarmchuk, E.; Gordon, M.; Packard, R. Observation of stationary vortex array in rotating superfluid helium.
Phys. Rev. Lett. 1979, 43, 214–217. [CrossRef]

9. Fine, K.; Cass, A.; Flynn, W.; Dryscoll, C. Relaxation of 2D Turbulence to Vortex Crystal. Phys. Rev. Lett. 1995,
75, 3277–3280. [CrossRef] [PubMed]

10. Kurakin, L.G.; Yudovich, V.I. The stability of stationary rotation of a regular vortex polygon. Chaos 2002,
12, 574–595. [CrossRef] [PubMed]

11. Lin, C.C. On the motion of vortices in two dimensions. I, II. Proc. Natl. Acad. Sci. USA 1941, 27, 575–577.
[CrossRef]

12. Milne-Thomson, L.M. Theoretical Hydrodynamics; Macmillan: London, UK, 1968.
13. Havelock, T.H. The stability of motion of rectilinear vortices in ring formation. Lond. Edinb. Dublin Philos.

Mag. J. Sci. 1931, 11, 617–633. [CrossRef]
14. Kurakin, L.G. Stability, resonances, and instability of the regular vortex polygons in the circular domain.

Dokl. Phys. 2004, 49, 658–661.[CrossRef]
15. Kurakin, L.G. On the Stability of Thomson’s Vortex Pentagon Inside a Circular Domain. Regul. Chaotic Dyn.

2012, 17, 150–169. [CrossRef]
16. Kurakin, L.G.; Ostrovskaya, I.V. Stability of the Thomson Vortex Polygon with Evenly Many Vortices outside

a Circular Domain. Sib. Math. J. 2010, 51, 463–474. [CrossRef]
17. Kurakin, L.G. The stability of the steady rotation of a system of three equidistant vortices outside a circle.

J. Appl. Math. Mech. 2011, 75, 227–234. [CrossRef]
18. Kurakin, L.G.; Ostrovskaya, I.V. Nonlinear stability analysis of a regular vortex pentagon outside a circle.

Regul. Chaotic Dyn. 2012, 17, 385–396. [CrossRef]
19. Kurakin, L.G.; Melekhov, A.P.; Ostrovskaya, I.V. A survey of the stability criteria of Thomson’s vortex

polygons outside a circular domain. Bol. Soc. Mat. Mex. 2016, 22, 733–744. [CrossRef]
20. Kolmogorov, A.N. On conservation of conditionally periodic motions for a small change in hamilton’s

function. Dokl. Akad. Nauk SSSR 1954, 98, 527–530.
21. Arnold, V.I. Small denominators and problems of stability of motion in classical and celestial mechanics.

Russ. Math. Surv. 1963. 18, 85–191. [CrossRef]
22. Moser, J. Lectures on Hamiltonian Systems; Memoirs of the American Mathematical Society: Providence, RI,

USA, 1968; Volume 81.
23. Markeev, A.P. Libration Points in Celestial Mechanics and Space Dynamics; Nauka: Moscow, Russia, 1978.
24. Khazin, L.G.; Shnol, E.E. Stability of Critical Equilibrium States; Manchester University Press: Manchester, NH,

USA, 1991.
25. Koshel, K.V.; Ryzhov, E.A.; Carton, X.J. Vortex Interactions Subjected to Deformation Flows: A Review.

Fluids 2019, 4, 14. [CrossRef]
26. Borisov, A.V.; Mamaev, I.S.; Romodanov, S.M. Dynamic interaction of point vortices and a two-dimentional

cylinder. J. Math. Phys. 2007, 48, 065403. [CrossRef]
27. Kurakin L.G.; Lysenko I.A.; Ostrovskaya I.V.; Sokolovskiy M.A. On stability of the Thomson’s vortex n-gon

in the geostrophic model of the point vortices in two-layer fluid. J. Nonlinear Sci. 2019, 29, 1659–1700.
[CrossRef]

28. Kurakin, L.G., Lysenko, I.A. On the stability of the orbit and the invariant set of Thomson’s vortex polygon
in a two-fluid plasma. Rus. J. Nonlin. Dyn. 2020, 16, 3–11.

29. Gantmacher, F.R. Lectures on Analytical Mechanics; Glavnaya Redaktsiya Fiziko-Matematicheskoj Literatury,
Nauka: Moscow, Russia, 1966.

30. Routh, E.J. A Treatise on the Stability of a Given State Motion; Macmillan: London, UK, 1877; 108p.
31. Sokol’sky, A.G. On Stability of an Autonomous Hamiltonian System with Two Degrees of Freedom under

First-Order Resonance. J. Appl. Math. Mech. 1977, 41, 20–28. [CrossRef]
32. Markeev, A.P. Stability of a canonical system with two degrees of freedom in the presence of resonance.

J. Appl. Math. Mech. 1968, 32, 766–772. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.43.214
http://dx.doi.org/10.1103/PhysRevLett.75.3277
http://www.ncbi.nlm.nih.gov/pubmed/10059543
http://dx.doi.org/10.1063/1.1482175
http://www.ncbi.nlm.nih.gov/pubmed/12779587
http://dx.doi.org/10.1073/pnas.27.12.575
http://dx.doi.org/10.1080/14786443109461714
http://dx.doi.org/10.1134/1.1831532
http://dx.doi.org/10.1134/S1560354712020050
http://dx.doi.org/10.1007/s11202-010-0048-x
http://dx.doi.org/10.1016/j.jappmathmech.2011.05.012
http://dx.doi.org/10.1134/S1560354712050024
http://dx.doi.org/10.1007/s40590-016-0121-y
http://dx.doi.org/10.1070/RM1963v018n06ABEH001143
http://dx.doi.org/10.3390/fluids4010014
http://dx.doi.org/10.1063/1.2425100
http://dx.doi.org/10.1007/s00332-018-9526-2
http://dx.doi.org/10.1016/0021-8928(77)90083-1
http://dx.doi.org/10.1016/0021-8928(68)90108-1


Mathematics 2020, 8, 1033 19 of 19

33. Bautin, N. N. Behavior of Dynamics Systems Near the Boundary of the Stability Region; Gostekhizdat: Moscow,
Russia, 1984.

34. Kurakin, L.G.; Ostrovskaya, I.V.; Sokolovskiy, M.A. On the stability of discrete tripole, quadrupole, Thomson’
vortex triangle and square in a two-layer/homogeneous rotating fluid. Regul. Chaotic Dyn. 2016, 21, 291–334.
[CrossRef]

35. Kurosh, A.G. Course of Higher Algebra; Nauka: Moscow, Russia, 1962.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1134/S1560354716030059
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation
	Stability of a Regular Vortex N-gon for =0
	 Linear Analysis of Stability of the Vortex N-gon in the Case of Arbitrary 
	 The Perturbations Equation
	 Orbital Stability and Instability of Two-Dimension Invariant Set: General Definitions and Theorems
	Stability Diagram of a Regular Vortex N-gon

	The Double-Zero Resonance in the Stability Problem of the Thomson Vortex Triangle
	The Resonance 1:2 in the Stability Problem of the Thomson Vortex Pentagon
	Conclusions
	Properties of Eigenvalues 1k, 2k and i0k of Matrices F1, F2 and G0 
	References

