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1. Introduction

In 1935 Birkhoff introduced in [1], and in 1947 James studied in [2,3] a notion of orthogonality
in Banach spaces in an attempt to generalize the standard notion of orthogonality in Hilbert spaces,
which is important for study of Geometry of Banach spaces. More precisely, given a complex Banach
space X and two elements x, y ∈ X, one says that x is Birkhoff-James orthogonal to y, denoted

x⊥By,

if
‖x + λy‖ ≥ ‖x‖ ,

holds for all λ ∈ C. This relation generalizes the standard notion of orthogonality in Hilbert spaces.
However, for most Banach spaces it is not a symmetric relation, that is,

x⊥By does not imply y⊥Bx

in general.
A good overview of Birkhoff-James orthogonality for Banach spaces is given in 2012 by Alonso,

Martini and Wu in their paper [4].
A special type of Banach spaces, and more specifically Banach algebras- the so called C∗-algebras,

were introduced in 1943 by Gelfand and Naimark in their seminal paper [5]. At the present time the
theory of C∗-algebras is well developed. For the development of the subject, see for example [6–8].
In [9,10] one can find very important applications of C∗-algebras to Quantum Physics.

Recently, in 2019, Komuro, Saito and Tanaka in [11] studied elements in C∗-algebras on which
Birkhoff-James orthogonality is symmetric in a suitable sense. More precisely, denoting by A a C∗-algebra
and by A+ its positive cone, the authors say that an element a ∈ A+ is an A+-local left symmetric point for
Birkhoff-James orthogonality if for all b ∈ A+ the relation

a⊥Bb implies b⊥Ba.
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Analogously, a ∈ A+ is an A+-local right symmetric point for Birkhoff-James orthogonality if for all
b ∈ A+ the relation

b⊥Ba implies a⊥Bb.

Let A be a C∗-algebra. The two main results of the aforementioned paper of Komuro, Saito and
Tanaka characterize A+-local left symmetric points and A+-local right symmetric points in the
following way:

Theorem 1 (Komuro-Saito-Tanaka). Let A be a C∗-algebra and a ∈ A+ a positive element of norm one.
Then a is an A+-local left symmetric point for Birkhoff-James orthogonality if and only if a is a projection
satisfying for each b ∈ A+ the property that there exists λ ∈ C, such that

aba = λa.

Proof. See [11] for details.

Theorem 2 (Komuro-Saito-Tanaka). Let A be a unital C∗-algebra and a ∈ A+ a non-zero positive element.
Then a is an A+-local right symmetric point for Birkhoff-James orthogonality if and only if a is invertible.

Proof. See [11] for details.

The Hausdorff projective limits of projective families of Banach algebras as natural locally-convex
generalizations of Banach algebras have been studied sporadically by many authors since 1952,
when they were first introduced by Arens [12] and Michael [13]. The Hausdorff projective limits of
projective families of C∗-algebras were first mentioned by Arens [12]. They have since been studied
under various names by many authors. Development of the subject is reflected in the monograph
of Fragoulopoulou [14]. We will follow Inoue [15] in the usage of the name locally C∗-algebras for
these algebras. A lot of research has been done in the attempts to generalize to locally C∗-algebras
the known results for C∗-algebras (see for example [15–19] to name a few). In particular, in [20] it
has been shown how important it is in Physics to go out of category of C∗-algebras to the category
of locally C∗-algebras- the reason is that not all operators of Quantum Physics, say for example the
Energy operator, are bounded.

In the present notes we extend Theorems 1 and 2 of Komuro, Saito and Tanaka to locally
C∗-algebras. This is the first attempt to study Geometry of Birkhoff-James orthogonality in locally
convex spaces and algebras.

2. Preliminaries

First, let us recall some basic notions on topological ∗-algebras. A ∗-algebra (or involutory algebra)
is a complex algebra A with an involution

∗ : A→ A,

such that
(a + λb)∗ = a∗ + λb∗,

and
(ab)∗ = b∗a∗,

for every a, b ∈ A and every λ ∈ C.
A seminorm ‖.‖ on A is a C∗-seminorm if it is submultiplicative, i.e.,

‖ab‖ ≤ ‖a‖ ‖b‖ ,



Mathematics 2020, 8, 1027 3 of 14

and satisfies the C∗-condition, i.e.,
‖a∗a‖ = ‖a‖2 ,

for every a, b ∈ A. Note that the C∗-condition alone implies that ‖.‖ is submultiplicative,
and in particular

‖a∗‖ = ‖a‖ ,

for every a ∈ A (cf. for example [14]).
In the case when a seminorm ‖.‖ on a ∗-algebra A is a C∗-norm, and A is complete in the topology

generated by this norm, A is called a C∗-algebra.
A topological ∗-algebra is a ∗-algebra A equipped with a topology making the operations (addition,

multiplication, additive inverse, involution) separately continuous. For a topological ∗-algebra A,
we denote by N(A) the set of continuous C∗-seminorms on A. If topology τA is generated by a
separating and saturated family N(A), A is called a locally C∗-algebra. One can see that in this case
N(A) is a directed set with respect to pointwise ordering, because

max{‖.‖α , ‖.‖β} ∈ N(A)

for every ‖.‖α , ‖.‖β ∈ N(A), where α, β ∈ Λ, with Λ being a certain directed set.
For a topological ∗-algebra A, and ‖.‖α ∈ N(A), α ∈ Λ,

ker ‖.‖α = {a ∈ A : ‖a‖α = 0}

is a ∗-ideal in A, and ‖.‖α induces a C∗-norm (we as well denote it by ‖.‖α) on the quotient algebra

Aα = A/ ker ‖.‖α ,

and Aα is automatically complete in the topology generated by the norm ‖.‖α , thus is a C∗-algebra
(see [14] for details). Each pair ‖.‖α , ‖.‖β ∈ N(A), such that

β � α,

α, β ∈ Λ, induces a natural (continuous) surjective ∗-homomorphism

gβ
α : Aβ → Aα,

such that for any α, β, γ ∈ Λ, such that
γ � β � α,

gγ
α = gβ

α ◦ gγ
β .

Let now again, Λ be a set of indices, directed by a relation (reflexive, transitive, antisymmetric)
” � ”. Let

{Aα, α ∈ Λ}

be a family of C∗-algebras, and gβ
α be, for

α � β,

the continuous linear ∗-mappings
gβ

α : Aβ −→ Aα,

so that
gα

α(xα) = xα,

for all α ∈ Λ, and
gβ

α ◦ gγ
β = gγ

α ,
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whenever
α � β � γ.

Let Γ be the collections {gβ
α} of all such transformations. Let A be a ∗-subalgebra of the direct

product algebra

∏
α∈Λ

Aα,

so that for its elements
xα = gβ

α(xβ),

for all
α � β,

where
xα ∈ Aα,

and
xβ ∈ Aβ.

Definition 1. The ∗-algebra A constructed above is called a Hausdorff projective limit of the projective family

{Aα, α ∈ Λ},

of C∗-algebras relatively to the collection

Γ = {gβ
α : α, β ∈ Λ : α � β},

and is denoted by
lim←−
α∈Λ

Aα,

and is called the Arens-Michael decomposition of A.

It is well known (see, for example [21] or [22]) that for each x ∈ A, and each pair α, β ∈ Λ,
such that α � β, there is a natural projection

πβ : A −→ Aβ,

with the basic property
πα(x) = gβ

α(πβ(x)),

and each projection πα for all α ∈ Λ is continuous.

Theorem 3. A topological ∗-algebra (A, τA) over C is a locally C∗-algebra iff A is a complete Hausdorff
topological ∗-algebra in which the topology τA is generated by a saturated separating family N(A) of
C∗-seminorms.

Proof. See for example [14] for details.

Example 1. Every C∗-algebra is a locally C∗-algebra.

Example 2. A closed ∗-subalgebra of a locally C∗-algebra is a locally C∗-algebra.

Example 3. The product ∏
α∈Λ

Aα of C∗-algebras Aα, with the product topology, is a locally C∗-algebra.
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Example 4. Let X be a compactly generated Hausdorff space (this means that a subset Y ⊂ X is closed iff Y ∩K
is closed for every compact subset K ⊂ X). This spaces are called k-spaces in [23]. Then the algebra C(X) of all
continuous, not necessarily bounded complex-valued functions on X, with the topology of uniform convergence
on compact subsets, is a locally C∗-algebra. It is well known that all metrizable spaces and all locally compact
Hausdorff spaces are compactly generated (see [24] or [23] for details).

Let A be a locally C∗-algebra. Then an element a ∈ A is called bounded, if ‖a‖∞ < ∞, where

‖a‖∞ = sup{‖a‖α : α ∈ Λ, ‖.‖α ∈ N(A)}.

The set of all bounded elements of A is denoted by b(A).
It is well-known that for each locally C∗-algebra A, its set b(A) of bounded elements of A is a

locally C∗-subalgebra, which is a C∗-algebra in the norm ‖.‖∞ , such that it is dense in A in its topology
τA (see for example [14]).

Let
Uα = {a ∈ A : ‖a‖α ≤ 1},

α ∈ Λ. Then {Uα}α∈Λ is a directed base with the associated family {‖.‖α}α∈Λ of C∗-seminorms on A
generating the topology τA of A.

Let A∗ as usual denote the conjugate space of A. For a given α ∈ Λ,

A∗(α) = { f ∈ A∗ : f is bounded on Uα},

denotes all functionals in A∗ that are bounded on Uα. Let

Λ( f ) = {α ∈ Λ : f is bounded on Uα}

denote all indices α in Λ so that a given f ∈ A∗ is bounded on Uα.
A linear functional on a locally convex space is continuous if and only if it is bounded on some

neighborhood of zero. It means in our notation that f ∈ A∗ if and only if Λ( f ) 6= ∅.
From that it follows that if f ∈ A∗(α), then there exists a linear functional fα on Aα, such that

f (a) = fα(πα(a)),

for all a ∈ A. Thus,
A∗ =

⋃
α∈Λ

A∗(α).

Let now
A∗(+) = { f ∈ A∗ : f (a∗a) ≥ 0 for all a ∈ A},

A∗(α,+) = { f ∈ A∗(α) : f (a∗a) ≥ 0 for all a ∈ A},

α ∈ Λ, and
A∗α(+) = { fα ∈ A∗α : fα(a∗αaα) ≥ 0 for all aα ∈ Aα}.

α ∈ Λ.
One can see that:
(i). the mapping

f → fα,

α ∈ Λ, is an algebraic isomorphism of A∗(α) onto A∗α;
(ii).

‖ fα‖ = sup
a∈Uα

| f (a)| ,
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a ∈ A, α ∈ Λ;
(iii). a functional f ∈ A∗(α) is positive (Hermitian) if and only iff fα ∈ A∗α is positive (Hermitian);
(iv). if A is unital, then the mapping

f → fα,

α ∈ Λ, from A∗(α,+) onto A∗α(+) is bi-continuous with respect to the relative w∗- topologies σ(A∗, A)

and σ(A∗α, Aα) of those spaces. Thus,

A∗(+) =
⋃

α∈Λ

A∗(α,+).

(see for example [15] for details.)
A non-zero positive functional f on A is called pure, it cannot be represented as a linear combination

of two other positive functionals with non-negative coefficients. It is equivalent to a statement that from

g ≤ f ,

it follows that the exists λ ∈ [0, 1], so that
g = λ f .

One can see that for f ∈ A∗(α,+) to be pure it is necessary and sufficient for fα to be pure.
A family of Hilbert spaces family of Hilbert spaces {Hα}α∈Λ called inductive if for α, β ∈ Λ, and

α � β,

the following conditions hold:
(i).

Hα ⊂ Hβ;

(ii).
(., .)α = (., .)β

on Hα.
Let

H =
⋃

α∈Λ

Hα

be a union of an inductive family of Hilbert spaces {Hα}α∈Λ.
We define a topology τH on H as follows:
(i).

X ⊂ H

is a closed set in H;
if and only if
(ii).

X = H,

or
(iii). for some α ∈ Λ,

X ⊂ Hα,

and H is closed in Hα.
With that topology τH , H is called a locally Hilbert space. It is shown in [15] that (H, τH) is a T1

topological space.
Let for each α ∈ Λ,

Pα : H → Hα,
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be the orthogonal projection from H onto Hα, and for each pair of indices α, β ∈ Λ, such that

β � α,

Pβ
α : Hβ → Hα,

be the orthogonal projection from Hβ onto Hα. One can see that

Pα = Pβ
α ◦ Pβ,

and for each α ∈ Λ, and each vector ξ ∈ H, there exists a decomposition

ξ = ξ ′ + η,

such that
(ξ ′, η) = 0,

ξ ′ ∈ Hα, and η belongs to the complement of Hα in H, i.e.,

Pα(ξ) = ξ ′,

and
Pα(η) = 0H .

(see [15] for details.)
Each locally Hilbert space (H, τH) is a pre-Hilbert space in a canonical way, and each pre-Hilbert

space can be endowed with structure of a locally Hilbert space, and

H ∼= lim−→
α∈Λ

Hα,

where Λ can be taken of the same cardinality as the set of all finite-dimensional Hilbert subspaces of H
ordered by inclusion.(see [25] for details).

Let (A, τA) be a locally C∗-algebra in which the topology τA generated by separating and saturated
family N(A) of C∗-seminorms {‖.‖α}α∈Λ. Thus,

A ∼= lim←−
α∈Λ

Aα,

i.e., A is topologically ∗-isomorphic to the projective limit of the projective family of C∗-algebras
{Aα}α∈Λ, where for each α ∈ Λ, Aα is isometrically ∗-isomorphic to the factor algebra

A/ker ‖.‖α

endowed with the factor norm. (see for example [14] for details). In this case we call A a locally
C∗-algebra of type Λ.

Remark 1. Generally speaking, their may be locally C∗-algebras of different types when Λ is more than countable.

We say that a locally Hilbert space (H, τH) is of type Λ, if there exists an inductive family of its
Hilbert subspaces generating it, i.e.,

H ∼= lim−→
α∈Λ

Hα.

Let B(Hα) for each α ∈ Λ, be the C∗-algebra of all bounded linear operators on Hα. From the fact
that the family of Hilbert spaces {Hα}α∈Λ, generates the locally Hilbert spaces H of type Λ, it follows
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that it is inductive, and that the family of C∗-algebras B(Hα) is projective. We denote by L(H) the
projective limit

L(H) ∼= lim←−
α∈Λ

B(Hα),

of that family {B(Hα)}α∈Λ.
Let

T : H → H,

be a linear operator on locally Hilbert space H of type Λ. For each α ∈ Λ, let

Tα(ξ) = T(ξ) when ξ ∈ Hα.

The operator T is called coherent if and only if for every α, β ∈ Λ, such that α 4 β,

Pβ
α ◦ T = T ◦ Pβ

α .

Lemma 1 (Inoue). A coherent linear operator T on H is continuous if and only if for each α ∈ Λ, Tα ∈ B(Hα).

Proof. See [15] for details.

As a corollary one gets that each coherent continuous linear operator on H leaves Hα for each
α ∈ Λ invariant, i.e., for each α ∈ Λ,

T(Hα) ⊂ Hα.

For that reason a linear coherent continuous linear operator T on H is called a locally bounded
operator (see [26]). If we define

πα : lim←−
α∈Λ

B(Hα)→ B(Hα)

as
πα : T → Tα

for each α ∈ Λ, then L(H) can be identified with the locally C∗-algebra of type Λ of all locally bounded
linear operators on the locally Hilbert space H of type Λ.

Let A and B be locally C∗-algebras of the same type Λ with respective Arens-Michael
decompositions

A ∼= lim←−
α∈Λ

Aα and B ∼= lim←−
α∈Λ

Bα.

We call a ∗-homomorphism
ϕ : A→ B

a locally ∗-homomorphism, if and only if for each α ∈ Λ, there exits a ∗-homomor-phism of C∗-algebras
Aα and Bα,

ϕα : Aα → Bα,

so that
πB

α ◦ ϕ = ϕα ◦ πA
α ,

where πA
α (resp. πB

α ) is the natural projection from A onto Aα (resp. the natural projection from B
onto Bα )

By a locally ∗-representation {A, µ, H} of a locally C∗-algebra A of type Λ on a locally Hilbert space
H of type Λ we understand a locally ∗-homomorphism

µ : A→ L(H),
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from A into the C∗-algebra B(H) of bounded linear operators on some Hilbert space H.
Let

A ∼= lim←−
α∈Λ

Aα,

be a locally C∗-algebra of type Λ,
µ : A→ L(H)

be a ∗-homomorphism from A into L(H), where

H ∼= lim−→
α∈Λ

Hα,

is a locally Hilbert space of type Λ. Then one can see that {A, µ, H} is a locally ∗-representation of the
locally C∗-algebra A of type Λ if and only if for each α ∈ Λ, {Aα, µα, Hα} is a ∗-representation of the
C∗-algebra Aα on the Hilbert space Hα.

3. Symmetry of Birkhoff-James Orthogonality in Positive Cones of Locally C∗-algebras

Let A be a locally C∗-algebra, and a, b ∈ A. We say that a is Birkhoff-James orthogonal to b, denoted by

a⊥Bb,

if for each α ∈ Λ, the inequality
‖a + λb‖α ≥ ‖a‖α ,

holds for all λ ∈ C. We say that if A+ is the positive cone of A, the element a ∈ A+ is an A+-local left
symmetric point for Birkhoff-James orthogonality if for all b ∈ A+ the relation

a⊥Bb implies b⊥Ba.

Analogously, a ∈ A+ is an A+-local right symmetric point for Birkhoff-James orthogonality if for all
b ∈ A+ the relation

b⊥Ba implies a⊥Bb.

The following three lemmata are valid:

Lemma 2. Let
A ∼= lim←−

α∈Λ

Aα,

be a locally C∗-algebra of type Λ, and a, b ∈ A. Then

a⊥Bb

in A if and only if for each α ∈ Λ,
aα⊥Bbα

in Aα.

Proof. First assume that
a⊥Bb.

It implies that for all α ∈ Λ,
‖a + λb‖α ≥ ‖a‖α ,
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holds for all λ ∈ C. For a given arbitrary α ∈ Λ, we conclude that

‖aα + λbα‖Aα
= ‖a + λb‖α ≥ ‖a‖α = ‖aα‖Aα

,

thus, due to the arbitrarity of α, in each Aα,

aα⊥Bbα.

Conversely, let us assume that for each α ∈ Λ,

aα⊥Bbα

in Aα. It means that for each α ∈ Λ,

‖aα + λbα‖Aα
≥ ‖aα‖Aα

.

From the last inequality we get that for each α ∈ Λ,

‖a + λb‖α = ‖aα + λbα‖Aα
≥ ‖aα‖Aα

= ‖a‖α ,

thus
a⊥Bb,

which was required.

Lemma 3. Let
A ∼= lim←−

α∈Λ

Aα,

be a locally C∗-algebra of type Λ, and a, b ∈ A. Then for each α ∈ Λ,

πA
α (A+) = A+

α .

Proof. See [15] for details.

Lemma 4. Let A be a locally C∗-algebra. Then a ∈ A+ is a projection if and only if for all α ∈ Λ, aα is a
projection in A+

α .

Proof. Let a ∈ A+ be a projection, i.e., a2 = a. Applying, for all α ∈ Λ, the natural projection πA
α to the

last identity, we get
a2

α = πA
α (a)2 = πA

α (a2) = πA
α (a) = aα,

thus a2
α = aα, i.e., aα is a projection in A+

α .
Conversely, let for all α ∈ Λ, aα ∈ A+

α be such that a2
α = aα. Let us consider a family {aα}α∈Λ.

This family is a projective family, i.e., there exists a unique a ∈ A, such that for each α ∈ Λ,

πA
α (a) = aα.

Let us consider a2 ∈ A+. For each α ∈ Λ,

πA
α (a2) = πA

α (a)2 = a2
α = aα,

which implies that a2 = a. Indeed, let us on the contrary assume that a2 6= a. It would mean that there
exists at least one α0 ∈ Λ, such that a2

α0
6= aα0 . This contradiction completes the proof.

Now we are ready to prove a version of Theorem 1 for locally C∗-algebras.
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Theorem 4. Let A be a locally C∗-algebra of type Λ and a ∈ A+ a positive element of A, such that for each
α ∈ Λ,

‖a‖α = 1.

Then a is an A+-local left symmetric point for Birkhoff-James orthogonality if and only if a is a projection
satisfying for each b ∈ A+, the property that there exists λ ∈ C, such that

aba = λa.

Proof. First note, that since b ∈ A+, if a is a projection and λ ∈ C, then

(aba)(λa) = (λa)(aba) = λaba,

thus the elements λa and aba always commute, and therefore both belong to the maximal commutative
locally C∗-subalgebra of A that contains a.

Let a ∈ A+ be an A+-local left symmetric point for Birkhoff-James orthogonality such that for
each α ∈ Λ,

‖a‖α = 1.

From Lemmas 2 and 3 it follows that for each α ∈ Λ, aα ∈ A+
α is an A+

α -local left symmetric point
for Birkhoff-James orthogonality in Aα, and

‖aα‖Aα
= ‖a‖α = 1.

From Theorem 1 applicable to Aα it follows that aα is a projection and for each bα ∈ A+
α , there exists

λ ∈ C, such that
aαbαaα = λaα,

where bα without loss of generality can be taken in be arbitrary projective family {bβ}β∈Λ. Indeed, let

α 4 β,

α, β ∈ Λ, and
aαbαaα = λ1 · aα,

but
aβbβaβ = λ2 · aβ.

We get that
λ1 · aα = aαbαaα = gβ

α(aβbβaβ) = gβ
α(λ2 · aβ) = λ2 · aα,

and
λ1 = λ2,

thus λ does not depend of α ∈ Λ, as long as bα is taken from a projective family {bβ}β∈Λ.
Therefore, there exists a unique b ∈ A, such that for each α ∈ Λ,

πA
α (b) = bα ∈ A.

We show that
aba = λa.

Indeed, if we assume that
aba 6= λa,
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for any λ ∈ Λ, there will exist α0 ∈ Λ, such that

πA
α0
(aba) = πA

α0
(a)πA

α0
(b)πA

α0
(a) = aα0 bα0 aα0 6= λaα0 = πA

α0
(λa).

Contradiction proves what required.
Conversely, let a ∈ A+ be a projection satisfying for each α ∈ Λ,

‖a‖α = 1,

such that for each b ∈ A+, there exists λ ∈ C, such that

aba = λa.

The later means that for each α ∈ Λ,

πA
α (aba) = πA

α (a)πA
α (b)π

A
α (a) = aαbαaα = πA

α (λa) = λaα,

i.e.,
aαbαaα = λaα,

for each bα ∈ A+
α , and aα is a projection in Aα due to Lemma 4.

Applying Theorem 1 to algebra Aα we get that aα ∈ A+
α is an A+

α -local left symmetric point for
Birkhoff-James orthogonality in Aα, for each α ∈ Λ. Applying Lemma 2 we get that a is an A+-local
left symmetric point for Birkhoff-James orthogonality, which was required.

In order to establish a version of Theorem 2 for locally C∗-algebras, we would need the following:

Lemma 5. Let A be a unital locally C∗-algebra of type Λ. Then a ∈ A is invertible if and only if for all α ∈ Λ,
aα is invertible.

Proof. Let a ∈ A be invertible, i.e., there exists a unique b ∈ A, such that

ab = 1A.

Applying for each α ∈ Λ, the natural projection πA
α , we get that

πA
α (ab) = πA

α (a)πA
α (b) = aαbα = πA

α (1A) = 1Aα
,

and aα is invertible in Aα.
Conversely, let a ∈ A be such that for each α ∈ Λ, aα is invertible in Aα, i.e., there exists a unique

bα ∈ Aα for each α ∈ Λ, such that
aαbα = 1Aα

.

Let B be maximal commutative locally C∗-subalgebra of A, such that a ∈ B. It is obvious that B is
of the same type Λ, and aα, bα ∈ Bα for all α ∈ Λ, and

B ∼= lim←−
α∈Λ

Bα,

where each Bα is a commutative unital C∗-subalgebra of Aα. Using a Gelfand-Naimark type theorem
for commutative locally C∗-algebras (see [27]) we get a functional locally C∗-algebra C(X) of type Λ
of all continuous complex-valued functions on compactly generated completely regular topological
space X with generating family of Hausdorff compacts Xα, such that

B ∼= C(X),
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for each α ∈ Λ, and
Bα
∼= C(Xα),

where C(Xα) is a commutative unital C∗-algebra under supremum norm. Let fa ∈ C(X), be the
function corresponding to the element a ∈ A, and let faα ∈ C(Xα) be the function corresponding to aα.
Since each aα is invertible in Aα, faα is never equal to 0 for all xα ∈ Xα, for each α ∈ Λ. Thus fa is never
equal to 0 for all x ∈ X, thus, there exists a function

1
fa
∈ C(X).

Let b be an element in B corresponding to the function 1
fa

. We get that

ab = 1B = 1A,

thus, a is invertible, and for each α ∈ Λ,
πA

α (b) = bα

due to uniqueness of bα.

Now we are ready to prove a version of Theorem 2 for locally C∗-algebras.

Theorem 5. Let A be a unital locally C∗-algebra and a ∈ A+ a non-zero positive element. Then a is an
A+-local right symmetric point for Birkhoff-James orthogonality if and only if a is invertible.

Proof. Let a be an A+-local right symmetric point for Birkhoff-James orthogonality in A. Due to
Lemma 2, for each α ∈ Λ, each

aα = πA
α (a)

is an A+
α -local right symmetric point for Birkhoff-James orthogonality in Aα. Applying Theorem 2 to

the algebra Aα, we get that each aα is invertible, and from Lemma 5 it follows that a is invertible in A.
Conversely, let a ∈ A+ be non-zero positive invertible element. From Lemma 3 and Lemma 5

it follows that each aα is a non-zero positive invertible element in A+
α . Applying Theorem 2 to the

algebra Aα, we get that each aα is an A+-local right symmetric point for Birkhoff-James orthogonality
in Aα. From Lemma 2 it now follows that a is an A+-local right symmetric point for Birkhoff-James
orthogonality in A.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Birkhoff, G. Orthogonality in linear metric spaces. Duke Math. J. 1935, 1, 169–172. (In English) [CrossRef]
2. James, R.C. Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc. 1947, 61,

265–292. (In English) [CrossRef]
3. James, R.C. Inner product in normed linear spaces. Bull. Am. Math. Soc. 1947, 53, 559–566. (In English)

[CrossRef]
4. Alonso, J.; Martini, H.; Wu, S. On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces.

Aequ. Math. 2012, 83, 153–189. (In English) [CrossRef]
5. Gelfand, I.M.; Naimark, M.A. On the imbedding of normed rings into the ring of operators in Hilbert space.

Rec. Math. [Mat. Sbornik] N.S. 1943, 12, 197–213. (In English)
6. Dixmier, J. C∗-algebras. In Translated from the French by Francis Jellett; North-Holland Mathematical Library;

North-Holland Publishing Co.: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1977;
Volume 15, 492p. (In English)

http://dx.doi.org/10.1215/S0012-7094-35-00115-6
http://dx.doi.org/10.1090/S0002-9947-1947-0021241-4
http://dx.doi.org/10.1090/S0002-9904-1947-08831-5
http://dx.doi.org/10.1007/s00010-011-0092-z


Mathematics 2020, 8, 1027 14 of 14

7. Murphy, G.J. C∗-algebras and Operator Theory; Academic Press, Inc.: Boston, MA, USA, 1990; 286p. (In English)
8. Pedersen, G.K. C∗-algebras and Their Automorphism Groups, 2nd ed.; Edited and with a preface by Søren Eilers

and Dorte Olesen; Pure and Applied Mathematics; Academic Press: Amsterdam, The Netherlands; London,
UK, 2018; 520p. (In English)

9. Emch, G.G. Emch, G.G. Algebraic Methods in Statistical Mechanics and Quantum Field Theory; Interscience
Monographs and Texts in Physics and Astronomy; John Wiley & Sons, Inc.: New York, NY, USA; London,
UK; Sydney, Australia; Toronto, ON, Canada, 1972; Volume XXVI, 333p. (In English)

10. Emch, G.G. Mathematical and Conceptual Foundations of 20th-Century Physics; North-Holland Mathematics
Studies; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1984; Volume 100, 549p. (In English)

11. Komuro, N.; Saito, K.-S.; Tanaka, R. On symmetry of Birkhoff orthogonality in the positive cones of
C∗-algebras with applications. J. Math. Anal. Appl. 2019, 474, 1488–1497. (In English) [CrossRef]

12. Arens, R.F. A generalization of normed rings. Pac. J. Math. 1952, 2, 455–471. (In English) [CrossRef]
13. Michael, E.A. Locally Multiplicatively-Convex Topological Algebras; American Mathematical Society:

Providence, RI, USA, 1952; 79p. (In English)
14. Fragoulopoulou, M. Topological Algebras with Involution; North-Holland Mathematics Studies; Elsevier Science

B.V.: Amsterdam, The Netherlands, 2005; Volume 200, 495p. (In English)
15. Inoue, A. Locally C∗-algebra. Mem. Fac. Sci. Kyushu Univ. Ser. A 1971, 25, 197–235. (In English) [CrossRef]
16. Katz, A.A. A note on Civin-Yood Theorem for locally C∗-algebras. Malaya J. Mat. 2015, 3, 182–186. (In English)
17. Katz, A.A. A note on Jacobson-Rickart-Kadison theorem for locally C∗-algebras. Indian J. Math. 2016, 58.

(In English); Seventh Dr. George Bachman Memorial Conference, suppl. (2019), pp. 1–7.
18. Phillips, N.C. Inverse limits of C∗-algebras. J. Oper. Theory 1988, 19, 159–195. (In English)
19. Schmüdgen, K. Uber LMC∗-Algebren. Math. Nachr. 1975, 68, 167–182. (In German) [CrossRef]
20. Iguri, S.; Castagnino, M. The formulation of Quantum Mechanics in terms of nuclear algebras. Int. J. Theor.

Phys. 1999, 38, 143–164. (In English) [CrossRef]
21. Trèves, F. Topological Vector Spaces: Distributions and Kernels; Academic Press: New York, NY, USA; London,

UK, 1967; 565p. (In English)
22. Schaefer, H.H.; Wolff, M.P. Topological Vector Spaces, 2nd ed.; Graduate Texts in Mathematics; Springer:

New York, NY, USA, 1999; Volume 3, 346p. (In English)
23. Engelking, R. General Topology, 2nd ed.; Translated from the Polish by the author; Sigma Series in Pure

Mathematics; Heldermann Verlag: Berlin, Germany, 1989; Volume 6, 529p. (In English)
24. Kelley, J.L. General Topology; Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]; Graduate Texts in

Mathematics, No. 27; Springer: New York, NY, USA; Berlin, Germany, 1975; 298p. (In English)
25. Gheondea, A. On locally Hilbert spaces. Opusc. Math. 2016, 36, 735–747. (In English) [CrossRef]
26. Gheondea, A. Operator models for Hilbert locally C∗-modules. Oper. Matrices 2017, 11, 639–667. (In English)

[CrossRef]
27. Friedman, O.; Katz, A.A. On Gelfand-Naimark type theorems for unital abelian complex and real locally

C∗-, and locally JB-algebras. In Topological Algebras and Their Applications; Walter de Gruyter GmbH & Co
KG: Berlin, Germany, 2018; pp. 73–108. (In English)

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jmaa.2019.02.033
http://dx.doi.org/10.2140/pjm.1952.2.455
http://dx.doi.org/10.2206/kyushumfs.25.197
http://dx.doi.org/10.1002/mana.19750680113
http://dx.doi.org/10.1023/A:1026685224464
http://dx.doi.org/10.7494/OpMath.2016.36.6.735
http://dx.doi.org/10.7153/oam-11-43
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Symmetry of Birkhoff-James Orthogonality in Positive Cones of Locally C-algebras
	References

