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Abstract: The core as a solution to a cooperative game has the advantage that any imputation from
it is undominated. In cooperative dynamic games, there is a known transformation that demonstrates
another advantage of the core—time consistency—keeping players adhering to it during the course
of the game. Such a transformation may change the solution, so it is essential that the new core share
common imputations with the original one. In this paper, we will establish the relationship between
the original core of a dynamic game and the core after the transformation, and demonstrate that
the latter can be a subset of the former.
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1. Introduction

The theory of cooperative dynamic games is useful for modeling and analyzing real world
problems. Examples include advertising, public goods provision, resource extraction, environmental
management, and others which are extensively discussed in [1,2]. The core as a solution to
a cooperative game has the advantage that any imputation from it is undominated. This solution
is quite popular in the literature on the application of dynamic game theory, not only because of
the aforementioned property, but also because of its flexibility, allowing allocating the cooperative
outcome in several ways, for instance, in lot sizing [3–5], pollution control [6–8], or non-renewable
resource extraction [9]. In cooperative dynamic games, there is a known transformation of
a characteristic function, which is a key component of any cooperative game measuring the claims of
any group of players [10,11]. The core determined by the modified characteristic function possesses
another advantage—time consistency—keeping players adhering to it and being non-negotiable
during the course of the game [1,12]. Such a transformation, however, may change the core, so it is
essential that the modified core share common imputations with the original one. This allows players
to expect if not all of the imputations from the original one, but a part of them. For this reason,
we will establish the relationship between the original core of a dynamic game and the core after the
transformation, and demonstrate that in some instances the latter can be a subset of the former. It was
proven in [11] that the proposed transformation rule applied an infinite number of times converges
when the total players’ payoffs along the agreed upon behavior are positive. Here we will relax this
assumption and refine the conditions that ensure the convergence of the transformation rule.

The structure of the paper is as follows. Section 2 introduces necessary definitions and concepts.
The main results of the paper are formulated in Section 3. We then study the relationship between
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the original core of a dynamic game and the modified ones and establish conditions for the limiting
core to be a subset of the original core also when considering classes of linear symmetric games,
linear-state games, and two-stage network games. Section 4 concludes.

2. Background

We consider a standard formulation of a dynamic game with complete information.
Let N = {1, . . . , n}, |N| = n > 2, be a finite set of players. The set of game stages (periods) is
described by a finite set T = {1, . . . , T}. We denote a state variable at stage t ∈ T by x(t) which
belongs to a state space X. Let x(1) = x1. Next, we denote an action of player i ∈ N at stage t ∈ T by
ui(t) which belongs to her action space Ui(t). (Since the sets of actions U1(t), . . . , Un(t), t ∈ T , and the
state space X have not been precisely defined, we suppose that they are not empty, and the values of
all optimization problems below exist and are finite). We suppose that the state dynamics is governed
by the difference equation

x(t + 1) = ft(x(t), u(t)) ∈ X (1)

for any t ∈ T from the initial state x1. It is supposed that x(t + 1) is uniquely defined. At each of T
game stages, players simultaneously choose actions and thus form an action profile u = (u1, . . . , un)

with ui = (ui(1), . . . , ui(T)) for i ∈ N. The payoff to player i ∈ N in the game is defined by
the real-valued function

Ji(x1, u) =
T

∑
t=1

hit(x(t), u(t)), i ∈ N,

and amounts to the sum of her stage payoffs. (As with [11], players are not rewarded at a terminal
state x(T + 1), yet the setting can easily be generalized to this case as well).

A player chooses an action according to her strategy which accounts for the current information
about the game available to her at the time of decision: this can be the information about the game
stage, the value of the state variable, the actions that players have taken at previous stages, etc.
We denote the information available to player i ∈ N at stage t ∈ T by ηi(t). A strategy ui of player
i is a rule that maps the player’s information space to her action space, i.e., at stage t player i with
information ηi(t) chooses the action ui(t) = ui(ηi(t)) ∈ Ui(t). (See [13] for more details). A collection
u = (u1, . . . , un) is a strategy profile. Each strategy profile generates a trajectory which is a profile
x = (x(1), . . . , x(T)) whose entries are determined by (1). One can introduce the payoff function Ji
of player i ∈ N defined on the set of players’ strategy profiles as follows: Ji(u) = Ji(x1, u) where u
is an action profile corresponding to u.

In the cooperative formulation of the game, players choose their strategies jointly to maximize
the payoff they generate, that is to maximize the sum ∑i∈N Ji(u). Let a strategy profile u∗ = (u∗1 , . . . , u∗n)
maximize the latter sum. This profile is called a cooperative strategy profile and the associated trajectory
x∗ = (x∗(1), . . . , x∗(T)) with x∗(1) = x1 is called a cooperative trajectory.

We now define a cooperative transferable utility game, or a TU game, (N, v) which is determined
by the same player set N and a characteristic function v. This function is defined on 2N , that is the set
of all subsets of set N, and for a subset S ⊆ N, called a coalition, its value (a real number) v(S) measures
the worth, or claims, of this coalition in the game. Additionally, v(∅) = 0. We will not specify how
this function is determined as it is not relevant to the analysis we will perform; we only note that
v(N) = ∑i∈N Ji(u∗), i.e., the grand coalition claims the maximum payoff it generates. (See different
concepts for determining the characteristic function in dynamic games in [12]). Once the value of v(N)

is obtained, players allocate it among them as an imputation which is a profile ξ(v) = (ξ1(v), . . . , ξn(v))
satisfying efficiency, i.e., ∑i∈N ξi(v) = v(N), and individual rationality, i.e., ξi(v) > v({i}), i ∈ N.
The set of all imputations, or the imputation set, will be denoted by I(v). A cooperative solution,
or simply a solution, to the cooperative dynamic game (N, v) is a rule that assigns a subsetM(v) ⊆ I(v)
to this game. In this paper, we suppose that the solution is the core, that is the subset of the imputation
set given by C(v) = {ξ(v) ∈ I(v) : ∑i∈S ξi(v) > v(S), S ⊂ N}. Having chosen the agreed upon



Mathematics 2020, 8, 1023 3 of 13

cooperative solution C(v), players jointly implement cooperative strategy profile u∗ moving along
cooperative trajectory x∗, and after obtaining the value v(N) as their payoff, the players allocate it
among them as an imputation from the chosen solution C(v).

In cooperative dynamic games, it is important that players adhere to the same solution
chosen at the initial stage as the game develops along the agreed upon cooperative trajectory x∗.
A time-consistent solution is stable to its revision during the course of the game, and implementing
certain mechanisms one can make cooperation sustainable. When the solution is time inconsistent,
there are effective mechanisms of game regularization, that is a change in players’ stage payoffs
along the cooperative trajectory, so that the solution becomes time consistent in the regularized
game. (See [1,12] for a comprehensive analysis of sustainable cooperation and the associated time
consistency property of a cooperative solution). In the vast majority of cases, such mechanisms
are designed on a special redistribution of players’ stage payoffs determined by an imputation
distribution procedure and they require consideration of proper subgames of the original game
along the cooperative trajectory. Each subgame is a dynamic game of T − t + 1 stages starting from
the initial state x∗(t), t ∈ T \ {1}. In a similar way, one can define a cooperative subgame (N, vt), the
imputation set I(vt), and the cooperative solution (the core C(vt)) to each subgame, t ∈ T \ {1}. (From
now on, the original cooperative game (N, v) will be denoted by (N, v1) for consistency in notation).
We suppose that the solution is not empty along the cooperative trajectory x∗. In other words, for each
state x∗(t), t ∈ T , the core C(vt) is not empty. If it is not the case, then from the first game stage when
this assumption is violated, the players are unable to follow the agreed upon solution.

Petrosyan et al. [11] examine the time consistency of the core based on a transformation of the
characteristic functions and reveal that the core of the transformed game becomes strong time consistent.
(Strong time consistency is a stricter property of a cooperative solution to a dynamic game; it is
applicable to set solutions and it coincides with the property of time consistency for point solutions
(see [10,14–16] for details)). The strong time consistency of the core was established with the use of
a modified characteristic function v̂t, t ∈ T , which for each coalition S ⊆ N accounts for values vτ(S)
and vτ(N), τ > t, along the cooperative trajectory x∗ and is given by:

v̂t(S) =
T

∑
τ=t

vτ(S)∑i∈N hiτ(x∗(τ), u∗(τ))
vτ(N)

, S ⊆ N. (2)

We call the sets I(v̂t) and C(v̂t) the modified imputation set and the modified core: these sets
are the imputation set and the core in the modified game (N, v̂t), t ∈ T .

Since the transformation rule changes the solution, a player or a group of players may want
to apply the rule again (or several times subsequently) to change the characteristic function of
the game and therefore their payoffs prescribed by the solution which is based on the characteristic
function. For a given cooperative trajectory x∗ and a coalition S ⊆ N, let v(S) = (v1(S), . . . , vT(S))′

and v̂(S) = (v̂1(S), . . . , v̂T(S))′. Using this notation, transformation rule (2) can be written in
matrix form:

v̂(S) = Θ v(S), (3)

where Θ is the upper-triangular matrix

Θ =


θ1 θ2 · · · θT−1 θT
0 θ2 · · · θT−1 θT
...

...
. . .

...
...

0 0 · · · θT−1 θT
0 0 · · · 0 θT

 ,
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whose entries are given by

θt =
∑i∈N hit(x∗(t), u∗(t))

∑T
τ=t ∑i∈N hiτ(x∗(τ), u∗(τ))

, t ∈ T .

Since θT = 1, the last column of Θ consists of ones. Using relation (3), for each coalition S ⊆ N
we construct an iterative process v(m)(S) = Θ v(m−1)(S), m = 1, 2, . . . with the initial condition
v(0)(S) = v(S) where v(m)(S) = (v(m)

1 (S), . . . , v(m)
T (S))′ and v(1)(S) = v̂(S). The iterative process can

be rewritten as:
v(m)(S) = Θm v(S), m = 1, 2, . . . (4)

It was established in [11] that under the assumption of the non-negativity of players’ stage payoffs
along the cooperative trajectory, the sequence of modified characteristic functions defined by (4)
converges. A limiting characteristic function v̄t, t ∈ T , is given by:

v̄t(S) =
vt(N)

vT(N)
· vT(S), S ⊆ N. (5)

We call the sets I(v̄t) and C(v̄t) the limiting imputation set and the limiting core: these sets are
the imputation set and the core in the limiting game (N, v̄t), t ∈ T . In [11], it was shown that when
the iterative process (4) converges and (i) when the core C(vt) 6= ∅ for any t ∈ T , then the modified
core C(v̂t) 6= ∅ for any t ∈ T , (ii) when the core at the terminal stage C(vT) 6= ∅, the limiting core
C(v̄t) 6= ∅ for any t ∈ T . Since we suppose that the original cores are non-empty along the cooperative
trajectory, all modified and limiting cores C(v(m)

t ) and C(v̄t) will be non-empty as well for all t ∈ T ,
m = 1, 2, . . ., provided that (4) converges.

3. The Results

3.1. General Results

The convergence of transformation rule (4) was only established for non-negative payoffs along
the cooperative trajectory. We now relax the non-negativity condition, yet still assume that the total
payoff ∑i∈N hit(x∗(t), u∗(t)) is non-zero at each game stage, i.e., at least one player contributes into
the grand coalition’s payoff.

Proposition 1. The limiting characteristic function v̄1 exists if and only if vt(N)vt+1(N) > 0 and
|vt+1(N)| 6 2|vt(N)| for t ∈ T \ {T}.

Proof. We suppose that matrix Θ can be decomposed as Θ = PΛP−1 where Λ is a diagonal matrix
whose diagonal entries are the eigenvalues of Θ, and P is a matrix whose columns are the corresponding
eigenvectors. When the limiting characteristic function exists, it holds that

v̄(S) = lim
m→∞

v(m)(S) = lim
m→∞

Θm v(S) = lim
m→∞

PΛmP−1 v(S). (6)

Since the transformation matrix Θ is upper triangular, we have that Λ = diag{θ1, . . . , θT}
and Λm = diag{θm

1 , . . . , θm
T } for m = 1, 2, . . . According to (6), the limiting characteristic function exists

if and only if the limit limm→∞ Λm exists. This is the case when the absolute values of the eigenvalues
of matrix Θ do not exceed 1: |θt| ∈ [0, 1] for t ∈ T . Recall that θT = 1.

If θt = (vt(N)− vt+1(N)) /vt(N) = 1 for some t ∈ T \ {T}, then vt+1(N) = 0. However,
the linear transformation requires that vt(N) 6= 0 for all t ∈ T . Therefore, it must hold that θt ∈ [−1, 1)
for t ∈ T \ {T} which is equivalent to

− 1 6
vt(N)− vt+1(N)

vt(N)
< 1, t ∈ T \ {T}. (7)
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For t ∈ T \ {T} if vt(N) > 0, then (7) is equivalent to 0 < vt+1(N) 6 2vt(N), whereas if vt(N) < 0,
(7) is equivalent to 2vt(N) 6 vt+1(N) < 0. Summarizing the above, (7) is equivalent to the conditions
mentioned in the statement of the proposition for every t ∈ T \ {T}.

Remark 1. When the limiting characteristic function v̄1 exists, then the limiting characteristic functions v̄t,
t ∈ T \ {1}, exist as well for any subgame along the cooperative trajectory.

The conditions that ensure the convergence of the iterative process (4) and, therefore, the existence
of the limiting characteristic function, have the following meaning. First, the grand coalition’s payoff
in the original game and its proper subgames along the cooperative trajectory are of same sign. Second,
the grand coalition’s payoff in any subgame must be at most twice its payoff in the preceding subgame
in absolute values.

Now we study the relationship between the core of the cooperative dynamic game and
the modified (limiting) core. As we noted, the transformation rule (4) changes the solution. Therefore,
players having agreed on the core C(v1) as a solution to game (N, v1) have to be sure that they will
be able to realize an imputation from it even after game transformation. Since for the grand coalition
N it holds that vt(N) = v(1)t (N) = · · · = v(m)

t (N) = · · · = v̄t(N) for every t ∈ T , the value to be
allocated is invariant to the transformation rule. Our main goal is to establish the relationship between
the original core C(v1), modified cores C(v(m)

1 ), m = 1, 2, . . ., and the limiting one C(v̄1). When the
latter cores intersect with C(v1), players are able to realize an imputation from the original core after
one-time or even multifaceted transformation of the characteristic function. We will need the following
definitions. A set-function v : 2N 7→ R is monotone if for every R ⊂ S ⊆ N we have that either
v(R) 6 v(S) or v(R) > v(S). A set-function v is called supermodular if for any subsets (coalitions)
S, R ⊆ N the following holds: v(S ∪ R) + v(S ∩ R) > v(S) + v(R). When the opposite inequality
holds for every pair of coalitions, the function v is called submodular. It is well known that the core
of a convex cooperative game, i.e., the game whose characteristic function is supermodular, is not
empty [17]. Therefore, when the characteristic functions max{v1, v(m)

1 }, m = 1, 2 . . ., and max{v1, v̄1}
are supermodular, we will have non-empty intersections C(v1) ∩ C(v

(m)
1 ) 6= ∅ and C(v1) ∩ C(v̄1) 6= ∅

respectively. As it is pointed out in [18], neither the minimum nor the maximum of two submodular
set-functions is in general submodular. However, the following result is useful:

Proposition 2 ([18]). Let v and w be real-valued submodular set-functions on 2N such that v− w is either
monotone increasing or decreasing. Then min{v, w} is also submodular.

The case when the modified cores C(v(m)
1 ), m = 1, 2, . . ., and the limiting core C(v̄1) are the subsets

of C(v1) is even more desirable. It ensures that players can realize an imputation from the original
core after the transformation(s) of the characteristic function. We would like to establish the conditions
providing a nested structure for the cores. Obviously, the inclusions C(vt) ⊆ C(v(m)

t ), m = 1, 2, . . .,

and C(vt) ⊆ C(v̄t) with t ∈ T hold if and only if vt(S) > v(m)
t (S) and vt(S) > v̄t(S) for every coalition

S ⊂ N. Recall that in the subgame which starts at the terminal stage, the original, the modified, and
the limiting cores coincide. Similarly, C(vt) ⊇ C(v(m)

t ) and C(vt) ⊇ C(v̄t) if and only if vt(S) 6 v(m)
t (S)

and vt(S) 6 v̄t(S) for every S ⊂ N. As the above inequalities require the comparison of the original
and the modified characteristic functions, we would prefer to establish relationship that require only
the definition of the original characteristic function. The following proposition addresses this issue.

Proposition 3. Let vt(N) be non-increasing in t and positive. It holds that

1. If v1(S)
v1(N)

6 · · · 6 vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t)

for every game stage t ∈ T .
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2. If v1(S)
v1(N)

> · · · > vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) ⊆ C(v(1)t ) ⊆ C(v(2)t ) ⊆ · · · ⊆ C(v̄t)

for every game stage t ∈ T .

3. If v1(S)
v1(N)

= · · · = vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) = C(v(1)t ) = C(v(2)t ) = · · · = C(v̄t)

for every game stage t ∈ T .

Proof. Prove the first claim. We suppose that v1(S)
v1(N)

6 v2(S)
v2(N)

6 · · · 6 vT(S)
vT(N)

for any coalition S ⊆ N.
Then for any t ∈ T and S it holds that the modified characteristic function

v(1)t (S) =
T−1

∑
τ=t

vτ(S)
vτ(N)

[vτ(N)− vτ+1(N)] + vT(S)

>
vt(S)
vt(N)

(
T−1

∑
τ=t

[vτ(N)− vτ+1(N)] + vT(N)

)
= vt(S).

(8)

For the modified characteristic function, we next prove that v(1)1 (S)

v(1)1 (N)
6

v(1)2 (S)

v(1)2 (N)
6 · · · 6 v(1)T (S)

v(1)T (N)

for every coalition S ⊆ N. Given a coalition S and a game stage t ∈ T \ {T}, we obtain

v(1)t+1(S)

v(1)t+1(N)
− v(1)t (S)

v(1)t (N)
=

v(1)t+1(S)
vt+1(N)

−
v(1)t+1(S) +

vt(S)
vt(N)

(vt(N)− vt+1(N))

vt(N)

=
vt(N)v(1)t+1(S)− vt+1(N)

(
v(1)t+1(S) +

vt(S)
vt(N)

(vt(N)− vt+1(N))
)

vt(N)vt+1(N)

=
(vt(N)− vt+1(N))

(
v(1)t+1(S)− vt+1(N) vt(S)

vt(N)

)
vt(N)vt+1(N)

>
(vt(N)− vt+1(N))

vt(N)vt+1(N)

(
vt+1(S)− vt+1(N)

vt(S)
vt(N)

)
=

(vt(N)− vt+1(N))

vt(N)

(
vt+1(S)
vt+1(N)

− vt(S)
vt(N)

)
> 0.

The latter inequality holds true because vt(S)
vt(N)

6 vt+1(S)
vt+1(N)

for any stage t ∈ T \ {T} and vt(N)

is non-increasing in t and positive. Therefore, v(1)1 (S)

v(1)1 (N)
6

v(1)2 (S)

v(1)2 (N)
6 · · · 6 v(1)T (S)

v(1)T (N)
for every coalition

S ⊆ N. Similar to (8), we conclude with v(2)t (S) > v(1)t (S) for every S and t ∈ T .

By induction, we get the following relation vt(S) 6 v(1)t (S) 6 · · · 6 v(m)
t (S) 6 v(m+1)

t (S) 6 . . .

for all S ⊆ N and t ∈ T . It immediately implies that C(v(m)
t ) ⊇ C(v(m+1)

t ) for m = 0, 1, . . .

with understanding v(0)t (S) = vt(S). Since vt(N) is positive and non-increasing in t, then by

Proposition 1, the limiting characteristic function exists. Thus, C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t)

for t ∈ T .
The second claim is proved in a similar way with the third one being a special case.

We note that the conditions in the above proposition require the monotonicity of the relative worth
of all coalitions along the cooperative trajectory. This proposition can be extended for the case when
vt(N) is non-decreasing in t and negative. We formulate additional instances in the next corollary.
As we already showed in Proposition 1, the case when vt(N) changes its sign in t does not lead to the
convergence of the iterative process and, as a result, to the existence of the limiting core.

Corollary 1. Let vt(N) be non-decreasing in t and negative. It holds that
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1. If v1(S)
v1(N)

6 · · · 6 vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) ⊆ C(v(1)t ) ⊆ C(v(2)t ) ⊆ · · · ⊆ C(v̄t)

for every game stage t ∈ T .

2. If v1(S)
v1(N)

> · · · > vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t)

for every game stage t ∈ T .

3. If v1(S)
v1(N)

= · · · = vT(S)
vT(N)

for any coalition S ⊆ N, then C(vt) = C(v(1)t ) = C(v(2)t ) = · · · = C(v̄t)

for every game stage t ∈ T .

3.2. Linear Symmetric Games

As a special class of cooperative dynamic games, we consider a class of linear symmetric
games with the characteristic function depending only upon the number of players in a coalition,
that is, vt(S) = At|S|+ Bt for all coalitions S ⊆ N and game stages t ∈ T . Following [19], cooperative
game (N, vt) has a non-empty core C(vt) if and only if vt(S)

|S| 6 vt(N)
|N| for any non-empty coalition S ⊆ N.

For the characteristic function under consideration, the latter inequality transforms into Bt
|S| 6

Bt
|N| ,

S ⊆ N, t ∈ T , which holds true for non-positive Bt. Since players consider the core to be the solution
to the cooperative dynamic game, the solution must prescribe a non-empty subset of the imputation
set. For this reason, we introduce the assumption Bt 6 0 for each t ∈ T . In practical situations, it is
reasonable to assume that the worth of grand coalition v1(N) is positive, i.e., players generate a positive
gain in the game under cooperation. At the same time in view of Proposition 1, the iterative process (4)
converges when the grand coalition’s payoff does not change its sign along the cooperative trajectory.
This implies that vt(N) > 0 and, therefore, At > 0 as well for all t ∈ T . The next results summarize
the relationship between the cores for the class of games under consideration. We let s = |S|.

Corollary 2. Let vt(S) = Ats + Bt, At > 0, Bt 6 0, t ∈ T . If the limiting characteristic function v̄t exists,
then C(vt)

⋂ C(v̄t) 6= ∅ for every game stage t ∈ T .

Proof. By the definition of the limiting characteristic function (5), we note that vt and v̄t are monotone.
Taking into account their difference, it holds that vt − v̄t is monotone as well. Using Proposition 2,
we prove the result.

Corollary 3. Let vt(N) = Atn + Bt be non-increasing in t and positive with At > 0, Bt < 0 for all t ∈ T .
It holds that

1. If A1
B1

> · · · > AT
BT

, then C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t) for every game stage t ∈ T .

2. If A1
B1

6 · · · 6 AT
BT

, then C(vt) ⊆ C(v(1)t ) ⊆ C(v(2)t ) ⊆ · · · ⊆ C(v̄t) for every game stage t ∈ T .

3. If A1
B1

= · · · = AT
BT

, then C(vt) = C(v(1)t ) = C(v(2)t ) = · · · = C(v̄t) for every game stage t ∈ T .

Proof. Prove the first claim. We suppose that At
Bt

> At+1
Bt+1

for any t ∈ T \ {T}. Then the following
sequence of equivalent relations holds:

At

Bt
>

At+1

Bt+1
⇔ AtBt+1 > At+1Bt

⇔ AtBt+1(s− n) 6 At+1Bt(s− n)

⇔ AtBt+1s + At+1Btn 6 AtBt+1n + At+1Bts

⇔ At At+1sn + AtBt+1s + At+1Btn + BtBt+1 6 At At+1sn + AtBt+1n + At+1Bts + BtBt+1

⇔ (Ats + Bt)(At+1n + Bt+1) 6 (At+1s + Bt+1)(Atn + Bt)

⇔ vt(S)vt+1(N) 6 vt+1(S)vt(N).
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Since vt(N) is positive for all t ∈ T \ {T}, the latter inequality is equivalent to vt(S)
vt(N)

6 vt+1(S)
vt+1(N)

,

t ∈ T \ {T}. By Proposition 3, we get the inclusions C(vt) ⊇ C(v(1)t ) ⊇ C(v(2)t ) ⊇ · · · ⊇ C(v̄t), t ∈ T .
The second claim is proved in a similar way with the third one being a special case.

To establish the relationship between the core C(vt) and the limiting core C(v̄t), we can relax
the monotonicity of the ratio At/Bt.

Corollary 4. Let vt(N) = Atn+ Bt be positive with At > 0, Bt < 0 for all t ∈ T . If the limiting characteristic
function v̄t exists, then for any game stage it holds that

1. If At
Bt

> AT
BT

, then C(vt) ⊇ C(v̄t).

2. If At
Bt

6 AT
BT

, then C(vt) ⊆ C(v̄t).

3. If At
Bt

= AT
BT

, then C(vt) = C(v̄t).

Proof. We prove the first statement. As with the proof of Corollary 3, it is easy to verify that vt(S)
vt(N)

6
vT(S)
vT(N)

, t ∈ T , S ⊆ N, and provided that the limiting characteristic function v̄t exists, we obtain the
inclusion C(vt) ⊇ C(v̄t).

The second and the third statements are proved similarly.

Remark 2. It is worth noting that Corollaries 3 and 4 can be extended to the non-decreasing in game stage
and negative values of the grand coalition’s payoffs along the cooperative trajectory (recall that by Proposition 1
for convergence, these values must be of same sign). If it is the case, then relaxing the assumption At > 0 for all
t ∈ T , one can easily show that the core inclusions become opposite.

3.3. Two-Stage Network Games

In this section, we establish the relationship between the cores for a class of cooperative two-stage
network games studied in [20,21] for a general model and in [22] for their applications in public
goods provision and market competition. We will define the characteristic functions in the two-stage
cooperative network game according to transformation rule (2) when implementing the cooperative
agreement. Taking into account that players receive their payoffs only at the second stage of the
game, that is v1(N) = v2(N), then it holds that v̂1(S) = v̂2(S) = v2(S) for any coalition S ⊆ N. Next,
the transformation matrix Θ takes the form

Θ =

(
0 1
0 1

)
.

Although the players’ payoffs at the first game stage are zero, the iterative process (4) converges.
From (5), we conclude that v̄1(S) = v̄2(S) = v2(S) for any coalition S ⊆ N as well. Since characteristic
functions v̂1, v̄1 in the cooperative two-stage network game and characteristic functions v̂2, v̄2 in its
cooperative one-stage subgame coincide, we get the equality C(v̂1) = C(v̂2) = C(v̄1) = C(v̄2) = C(v2)

for the cores.

3.4. A Class of Linear-State Games

Now we examine a class of linear-state games. For the model under consideration, we take one
studied in [23] with the purpose to establish the relationship between the cores in this class of games.
For convenience, we change the set of game stages T = {0, 1, . . . , T} and start indexing stages from
zero. In the model, the state dynamics is governed by the state equation

x(t + 1) = b0x(t) + b1 ∑
i∈N

ui(t) ∈ X, t ∈ T \ {T},
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with the initial condition x(0) = x0 ∈ X. Here ui(t) ∈ comp Ui ⊂ R+ for each player i ∈ N
and X = R+. The player i’s stage payoffs are defined by the functions

hit(x(t), u(t)) = ai0ui(t) +
ai1
2

u2
i (t) + ai2x(t), t ∈ T \ {T},

hiT(x(T)) = ai2x(T).

Additionally, we assume that ai1 < 0, and ai2 6= 0 are of same sign for each i ∈ N, and b0, b1 6= 0.
When the game is played cooperatively, players jointly maximize the sum

∑i∈N Ji(x0, u) = ∑i∈N(∑
T−1
t=0 hit(x(t), u(t)) + hiT(x(T))).

First, we introduce the following functions of stage number t ∈ T :

χ1(t) =
T−t

∑
τ=1

bτ
0 , χ2(t) =

T−t

∑
τ=1

τ−1

∑
m=0

bτ−m
0 , χ3(t) =

T−t−1

∑
τ=0

(
T−t−τ

∑
m=1

bm
0

)2

, t ∈ T \ {T},

with χ1(T) = χ2(T) = χ3(T) = 0. In [23], it was established that the cooperative trajectory is given by

x∗(t) =


x0, t = 0,

bt
0x0 −

b1

b0
∑
i∈N

1
ai1

t−1

∑
τ=0

bt−τ
0

(
ai0 +

b1

b0
χ1(τ) ∑

j∈N
aj2

)
, t ∈ T \ {0},

and the characteristic functions in the game and its cooperative proper subgames along
this trajectory equal

vt(N) = ∑
i∈N

(
−

a2
i0

2ai1
(T − t) + ai2x∗(t)(1 + χ1(t))−

ai2b1

b0
χ2(t) ∑

j∈N

aj0

aj1

)

−
(

b1

b0
∑
j∈N

aj2

)2

χ3(t) ∑
j∈N

1
2aj1

,

vt(S) = ∑
i∈S

(
−

a2
i0

2ai1
(T − t) + ai2x∗(t)(1 + χ1(t))−

ai2b1

b0
χ2(t) ∑

j∈N

aj0

aj1

)

−
b2

1
b2

0

(∑
j∈S

aj2

)2

∑
j∈S

1
2aj1

+ ∑
j∈S

aj2 ∑
j∈N\S

aj2

aj1

 χ3(t), S ⊂ N,

while for t = T and any S ⊆ N, we have vT(S) = ∑i∈S ai2x∗(T). Please note that characteristic
function vT is additive, therefore, the core C(vT) is non-empty and consists of a single imputation
ξ(vT) = (a12x∗(T), . . . , an2x∗(T)). Moreover, if there exists the core C(v̄T), it consists of the same
imputation as C(vT) = C(v̄T).

Before studying the relationship between the cores, we consider the following example.
It demonstrates that for the class of games under consideration (i) the modified core and the limiting
core can be subsets of the original one, (ii) they can share no common imputation with the original
core, and (iii) the original core can intersect with the modified core, but does not intersect with
the limiting one.

Example 1. We consider a 3-person game with T = 3 and perform simulation with the following parameters:
x0 = 15, b0 = 1, b1 = −1, a11 = a21 = a31 = −2, a12 = a22 = a32 = 0.05 whereas parameters a10, a20, a30

vary. Figure 1 demonstrates the situation when the original core C(v0) intersects with the modified core C(v(1)0 ),
but does not intersect with the limiting core C(v̄0). Next, the instance when the modified core and the limiting
core are subsets of the core C(v0) is depicted in Figure 2. Finally, in Figure 3, the original core intersects neither
with the modified core nor with the limiting one.
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3.45

3.5

3.55

3.6

3.35 3.4 3.45 3.5

3.35

3.4

3.45

3.5

C(v̄0)

Player 1Player 2

Player 3

I(v0) I(v(1)0 ) I(v(2)0 ) I(v(3)0 )

C(v0) C(v(1)0 ) C(v(2)0 ) C(v(3)0 )

Figure 1. A non-empty intersection of the original core and the modified core (a10 = 1, a20 = 1.1,
a30 = 1).

3.35

3.4

3.45

3.35 3.4 3.45

3.35

3.4

3.45

C(v̄0)

Player 1Player 2

Player 3

I(v0) I(v(1)0 ) I(v(2)0 ) I(v(3)0 )

C(v0) C(v(1)0 ) C(v(2)0 ) C(v(3)0 )

Figure 2. A nested cores pattern (a10 = 1, a20 = 1.01, a30 = 1).

3.5

3.6

3.7

3.8

3.9

4

3.3 3.4 3.5 3.6 3.7 3.8

3.3

3.4

3.5

3.6

3.7

3.8

C(v̄0)

Player 1Player 2

Player 3

I(v0) I(v(1)0 ) I(v(2)0 ) I(v(3)0 )

C(v0) C(v(1)0 ) C(v(2)0 ) C(v(3)0 )

Figure 3. All cores are pairwise disjoint (a10 = 1, a20 = 1.3, a30 = 1).
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The next proposition provides conditions under which the limiting core is a subset of
the original core.

Proposition 4. Let the limiting characteristic function v̄0 exist. If the inequality (∑j∈S
a2

j0
aj1
)/(∑j∈N

a2
j0

aj1
) 6

(∑j∈S aj2)/(∑j∈N aj2) holds for every coalition S ⊆ N and ai2
aj2

+
aj1
ai1

> 1 for any i, j ∈ N, then C(vt) ⊇ C(v̄t)

for every t ∈ T . Moreover, when players are symmetric, C(vt) ⊇ C(v̄t) for every t ∈ T .

Proof. First, we prove the statement assuming that players are asymmetric. Having the required
conditions satisfied, for any ai2, i ∈ N, of same sign we have:

v̄t(S)− vt(S) =
vt(N)

vT(N)
vT(S)− vt(S)

> −
b2

1
b2

0
χ3(t) ∑

i∈S
ai2

∑
i∈N

ai2 ∑
j∈N

1
2aj1
−∑

i∈S
ai2 ∑

j∈S

1
2aj1
− ∑

j∈N\S

aj2

aj1


= −

b2
1

2b2
0

χ3(t) ∑
i∈S

ai2

∑
i∈S

ai2 ∑
j∈N\S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈N\S

1
aj1
− 2 ∑

j∈N\S

aj2

aj1


> −

b2
1

2b2
0

χ3(t) ∑
i∈S

ai2

∑
i∈S

ai2 ∑
j∈N\S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈S

1
aj1
− ∑

j∈N\S

aj2

aj1

 .

When ai2 is positive for all i ∈ N, the following sequence of relations holds true:

ai2
aj2

+
aj1

ai1
≥ 1, ∀i, j ∈ N ⇒ ∑

i∈S

(
ai2
aj2

+
aj1

ai1

)
> 1, ∀S ⊆ N, ∀j ∈ N

⇔ 1
aj2

∑
i∈S

ai2 + aj1 ∑
i∈S

1
ai1

> 1, ∀S ⊆ N, ∀j ∈ N

⇔ 1
aj1

∑
i∈S

ai2 + aj2 ∑
i∈S

1
ai1

6
aj2

aj1
, ∀S ⊆ N, ∀j ∈ N

⇒ ∑
j∈N\S

(
1

aj1
∑
i∈S

ai2 + aj2 ∑
i∈S

1
ai1
−

aj2

aj1

)
6 0, ∀S ⊆ N

⇔

∑
i∈S

ai2 ∑
j∈N\S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈S

1
aj1
− ∑

j∈N\S

aj2

aj1

 6 0, ∀S ⊆ N.

Thus, v̄t(S)− vt(S) > 0 and C(vt) ⊇ C(v̄t) for t ∈ T .
When ai2 is negative for all i ∈ N, we obtain:∑

i∈S
ai2 ∑

j∈N\S

1
aj1

+ ∑
i∈N\S

ai2 ∑
j∈S

1
aj1
− ∑

j∈N\S

aj2

aj1

 > 0, ∀S ⊆ N.

Then v̄t(S)− vt(S) > 0 and C(vt) ⊇ C(v̄t) for t ∈ T . Therefore, when ai2 6= 0, i ∈ N, are of same sign,
C(vt) ⊇ C(v̄t) for t ∈ T .

Now suppose that players are symmetric. We note that in this case, the required conditions from
the first part are always met. Therefore, the inclusion C(vt) ⊇ C(v̄t) holds as well for t ∈ T .
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4. Conclusions

In this paper, we studied the relationship between the core of the original game and the cores
of modified games determined by a transformation rule because these cores may not intersect for
a dynamic game of a general structure. First, we extended the conditions known in the literature which
lead to the convergence of an iterative process based on this transformation rule. Second, we found
conditions under which one core is a subset of the other: these conditions require the monotonicity
of the relative worth of coalitions along the cooperative trajectory. Finally, for several classes of
dynamic games, we characterized the relationship between the cores.
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