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Abstract: This paper aims at extending a previous contribution dealing with the random
autonomous-homogeneous linear differential equation with discrete delay τ > 0, by adding a
random forcing term f (t) that varies with time: x′(t) = ax(t) + bx(t− τ) + f (t), t ≥ 0, with initial
condition x(t) = g(t), −τ ≤ t ≤ 0. The coefficients a and b are assumed to be random variables,
while the forcing term f (t) and the initial condition g(t) are stochastic processes on their respective
time domains. The equation is regarded in the Lebesgue space Lp of random variables with finite p-th
moment. The deterministic solution constructed with the method of steps and the method of variation
of constants, which involves the delayed exponential function, is proved to be an Lp-solution, under
certain assumptions on the random data. This proof requires the extension of the deterministic
Leibniz’s integral rule for differentiation to the random scenario. Finally, we also prove that, when
the delay τ tends to 0, the random delay equation tends in Lp to a random equation with no delay.
Numerical experiments illustrate how our methodology permits determining the main statistics of
the solution process, thereby allowing for uncertainty quantification.

Keywords: random linear delay differential equation; stochastic forcing term; random Lp-calculus;
uncertainty quantification

1. Introduction

In this paper, we are concerned with random delay differential equations, defined as classical delay
differential equations whose inputs (coefficients, forcing term, initial condition, . . .) are considered
as random variables or regular stochastic processes on an underlying complete probability space
(Ω,F ,P), which may take a wide variety of probability distributions, such as Binomial, Poisson,
Gamma, Gaussian, etc.

Equations of this kind should not be confused with stochastic differential equations of Itô type,
forced by an irregular error term called White noise process (formal derivative of Brownian motion).
In contrast to random differential equations, the solutions to stochastic differential equations exhibit
nondifferentiable sample-paths. See [1] (pp. 96–98) for a detailed explanation of the difference between
random and stochastic differential equations. See [1–6], for instance, for applications of random
differential equations in engineering, physics, biology, etc. Thus, random differential equations require
their own treatment and study: they model smooth random phenomena, with any type of input
probability distributions.

From a theoretical viewpoint, random differential equations may be studied in two senses: the
sample-path sense or the Lp-sense. The former case considers the trajectories of the stochastic processes
involved, so that the realizations of the random system correspond to deterministic versions of the
problem. The latter case works with the topology of the Lebesgue space (Lp, ‖ · ‖p) of random
variables with finite absolute p-th moment, where the norm ‖ · ‖p is defined as: ‖U‖p = E[|U|p]1/p
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for 1 ≤ p < ∞ (E denotes the expectation operator), and ‖U‖∞ = inf{C ≥ 0 : |U| ≤ C almost surely}
(essential supremum), U : Ω→ R being any random variable. The Lebesgue space (Lp, ‖ · ‖p) has the
structure of a Banach space. Continuity, differentiability, Riemann integrability, etc., can be considered
in the aforementioned space Lp, which gives rise to the random Lp-calculus.

In order to fix concepts, given a stochastic process x(t) ≡ x(t, ω) on I × Ω, where I ⊆ R
is an interval (notice that as usual the ω-sample notation might be hidden), we say that x is
Lp-continuous at t0 ∈ I if limh→0 ‖x(t0 + h) − x(t0)‖p = 0. We say that x is Lp-differentiable at

t0 ∈ I if limh→0 ‖
x(t0+h)−x(t0)

h − x′(t0)‖p = 0, for certain random variable x′(t0) (called the derivative
of x at t0). Finally, if I = [a, b], we say that x is Lp-Riemann integrable on [a, b] if there exists a sequence
of partitions {Pn}∞

n=1 with mesh tending to 0, Pn = {a = tn
0 < tn

1 < . . . < tn
rn = b}, such that, for

any choice of points sn
i ∈ [tn

i−1, tn
i ], i = 1, . . . , rn, the limit limn→∞ ∑rn

i=1 x(sn
i )(t

n
i − tn

i−1) exists in Lp. In
this case, these Riemann sums have the same limit, which is a random variable and is denoted by∫ b

a x(t)dt.
This Lp-approach has been widely used in the context of random differential equations with no

delay, especially the case p = 2 which corresponds to the Hilbert space L2 and yields the so-called mean
square calculus; see [5,7–15]. Only recently, a theoretical probabilistic analysis of random differential
equations with discrete constant delay has been addressed in [16–18]. In [16], general random delay
differential equations in Lp were analyzed, with the goal of extending some of the existing results on
random differential equations with no delay from the celebrated book [5]. In [17], we started our study
on random delay differential equations with the basic autonomous-homogeneous linear equation,
by proving the existence and uniqueness of Lp-solution under certain conditions. In [18], the authors
studied the same autonomous-homogeneous random linear differential equation with discrete delay
as [17], but considered the solution in the sample-path sense and computed its probability density
function via the random variable transformation technique, for certain forms of the initial condition
process. Other recent contributions for random delay differential equations, but focusing on numerical
methods instead, are [19–21].

There is still a lack of theoretical analysis for important random delay differential equations.
Motivated by this issue, the aim of this contribution is to advance further in the theoretical analysis of
relevant random differential equations with discrete delay. In particular, in this paper we extend the
recent study performed in [17] for the basic linear equation by adding a stochastic forcing term:{

x′(t, ω) = a(ω)x(t, ω) + b(ω)x(t− τ, ω) + f (t, ω), t ≥ 0, ω ∈ Ω,
x(t, ω) = g(t, ω), −τ ≤ t ≤ 0, ω ∈ Ω.

(1)

The delay τ > 0 is constant. The coefficients a and b are random variables. The forcing term
f (t) and the initial condition g(t) are stochastic processes on [0, ∞) and [−τ, 0] respectively, which
depend on the outcome ω ∈ Ω of a random experiment which might be sometimes omitted in notation.
The term x(t) represents the differentiable solution stochastic process in a certain probabilistic sense.
Formally, according to the deterministic theory [22], we may express the solution process as

x(t, ω) = ea(ω)(t+τ)eb1(ω),t
τ g(−τ, ω)

+
∫ 0

−τ
ea(ω)(t−s)eb1(ω),t−τ−s

τ (g′(s, ω)− a(ω)g(s, ω))ds

+
∫ t

0
ea(ω)(t−s)eb1(ω),t−τ−s

τ f (s, ω)ds, (2)
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where b1 = e−aτb and

ec,t
τ =



0, −∞ < t < −τ,

1, −τ ≤ t < 0,

1 + c
t
1!

, 0 ≤ t < τ,

1 + c
t
1!

+ c2 (t− τ)2

2!
, τ ≤ t < 2τ,

...
...

n

∑
k=0

ck (t− (k− 1)τ)k

k!
, (n− 1)τ ≤ t < nτ,

is the delayed exponential function [22] (Definition 1), c, t ∈ R, and n = bt/τc+ 1 (here b·c denotes
the integer part defined by the so-called floor function). This formal solution is obtained with the
method of steps and the method of variation of constants.

The primary objective of this paper is to set probabilistic conditions under which x(t) is an
Lp-solution to (1). We decompose the original problem (1) as{

y′(t, ω) = a(ω)y(t, ω) + b(ω)y(t− τ, ω), t ≥ 0,
y(t, ω) = g(t, ω), −τ ≤ t ≤ 0,

(3)

and {
z′(t, ω) = a(ω)z(t, ω) + b(ω)z(t− τ, ω) + f (t, ω), t ≥ 0,
z(t, ω) = 0, −τ ≤ t ≤ 0.

(4)

System (3) does not possess a stochastic forcing term, and it was deeply studied in the recent
contribution [17]. Under certain assumptions, its Lp-solution is expressed as

y(t, ω) = ea(ω)(t+τ)eb1(ω),t
τ g(−τ, ω)

+
∫ 0

−τ
ea(ω)(t−s)eb1(ω),t−τ−s

τ (g′(s, ω)− a(ω)g(s, ω))ds, (5)

as a generalization of the deterministic solution to (3) obtained via the method of steps [22] (Theorem 1).
Problem (4) is new and requires an analysis in the Lp-sense, in order to solve the initial problem (1).
Its formal solution is given by

z(t, ω) =
∫ t

0
ea(ω)(t−s)eb1(ω),t−τ−s

τ f (s, ω)ds, (6)

see [22] (Theorem 2). In order to differentiate (6) in the Lp-sense, one requires the extension of the
deterministic Leibniz’s integral rule for differentiation to the random scenario. This extension is an
important piece of this paper.

In Section 2, we show preliminary results on Lp-calculus that are used through the exposition,
which correspond to those preliminary results from [17] and the new random Leibniz’s rule for
Lp-Riemann integration. Auxiliary but novel results to demonstrate the random Leibniz’s integral
rule are Fubini’s theorem and a chain rule theorem. In Section 3, we prove in detail that x(t) defined
by (2) is the unique Lp-solution to (1), by analyzing problem (4). We also find closed-form expressions
for some statistics (expectation and variance) of x(t) related to its moments. Section 4 deals with the
Lp-convergence of x(t) as the delay τ tends to 0. We then show a numerical example that illustrates
the theoretical findings. Finally, Section 5 draws the main conclusions.

In order to complete a fair overview of the existing literature, it must be pointed out that, apart
for random delay differential equations (which is the context of this paper), other complementary
approaches are stochastic delay differential equations and fuzzy delay differential equations. Stochastic
delay differential equations are those in which uncertainty appears due to stochastic processes with
irregular sample-paths: the Brownian motion process, Wiener process, Poisson process, etc. A new
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tool is required to tackle equations of this type, called Itô calculus [23]. Studies on stochastic delay
differential equations can be read in [24–28], for example. On the other hand, in fuzzy delay differential
equations, uncertainty is driven by fuzzy processes; see [29] for instance. In any of these approaches,
the delay might even be considered random; see [30,31].

2. Results on Lp-calculus

In this section, we state the preliminary results on Lp-calculus needed for the following sections.
Proposition 1 is the chain rule theorem in Lp-calculus, which was first proved in [8] (Theorem 3.19) in
the setting of mean square calculus (p = 2). Both Lemma 1 and Lemma 2 provide conditions under
which the product of three stochastic processes is Lp-continuous or Lp-differentiable. Proposition 2
is a result concerning Lp-differentiation under the Lp-Riemann integral sign, when the interval of
integration is fixed. These four results have been already used and stated in the recent contribution [17],
and will be required through our forthcoming exposition.

For the sake of completeness, we demonstrate Proposition 2 with an alternative proof to [17],
based on Fubini’s theorem for Lp-Riemann integration. In the random framework, Fubini’s theorem
has not been tackled yet in the recent literature. It states that, if a stochastic process depending on two
variables is Lp-continuous, then the two iterated Lp-Riemann integrals can be interchanged.

We present a new result, Proposition 3, in which we put conditions in order to Lp-differentiate
an Lp-Riemann integral whose interval of integration depends on t. This proposition supposes the
extension of the so-called Leibniz’s rule for integration to the random scenario. The proof relies on a
new chain rule theorem.

Proposition 1 (Chain rule theorem ([17] Proposition 2.1)). Let {X(t) : t ∈ [a, b]} be a stochastic process,
where [a, b] is any interval in R. Let f be a deterministic C1 function on an open set that contains X([a, b]). Fix
1 ≤ p < ∞. Let t ∈ [a, b] be any point such that:

(i) X is L2p-differentiable at t;
(ii) X is path continuous on [a, b];

(iii) there exist r > 2p and δ > 0 such that sups∈[−δ,δ] E[| f ′(X(t + s))|r] < ∞.

Then f ◦ X is Lp-differentiable at t and ( f ◦ X)′(t) = f ′(X(t))X′(t).

Lemma 1 ([17] Lemma 2.1). Let Y1(t, s), Y2(t, s) and Y3(t, s) be three stochastic processes and fix 1 ≤ p < ∞.
If Y1 and Y2 are Lq-continuous for all 1 ≤ q < ∞, and Y3 is Lp+η-continuous for certain η > 0, then the
product process Y1Y2Y3 is Lp-continuous.

On the other hand, if Y1 and Y2 are L∞-continuous, and Y3 is Lp-continuous, then the product process
Y1Y2Y3 is Lp-continuous.

Lemma 2 ([17] Lemma 2.2). Let Y1(t), Y2(t) and Y3(t) be three stochastic processes, and 1 ≤ p < ∞. If
Y1 and Y2 are Lq-differentiable for all 1 ≤ q < ∞, and Y3 is Lp+η-differentiable for certain η > 0, then the
product process Y1Y2Y3 is Lp-differentiable and d

dt (Y1(t)Y2(t)Y3(t)) = Y′1(t)Y2(t)Y3(t) + Y1(t)Y′2(t)Y3(t) +
Y1(t)Y2(t)Y′3(t).

Additionally, if Y1 and Y2 are assumed to be L∞-differentiable, and Y3 is Lp-differentiable, then Y1Y2Y3 is
Lp-differentiable, with d

dt (Y1(t)Y2(t)Y3(t)) = Y′1(t)Y2(t)Y3(t) + Y1(t)Y′2(t)Y3(t) + Y1(t)Y2(t)Y′3(t).

Lemma 3 (Fubini’s theorem for iterated Lp-Riemann integrals). Let H(t, s) be a process on [a, b]× [c, d].
If H is Lp-continuous, then

∫ b
a

∫ d
c H(t, s)ds dt =

∫ d
c

∫ b
a H(t, s)dt ds, where the integrals are regarded as

Lp-Riemann integrals.

Proof. The proof is a variation of Fubini’s theorem for Itô stochastic integration with respect to the
standard Brownian motion ([32] Theorem 2.10.1). The stochastic processes H(t, s),

∫ d
c H(t, s)ds and∫ b

a H(t, s)dt are Lp-continuous, so the iterated integrals exist. Let {Pn}∞
n=1 be a sequence of partitions
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of [a, b] with mesh tending to 0. Write Pn = {a = tn
0 < tn

1 < · · · < tn
n = b}, and let rn

i ∈ [tn
i−1, tn

i ],
1 ≤ i ≤ n, n ≥ 1. Consider the processes Gn(t, s) = ∑n

i=1 H(rn
i , s)1[tn

i−1,tn
i ]
(t) (here 1 denotes the

characteristic function of a set) and Fn(s) =
∫ b

a Gn(t, s)dt = ∑n
i=1 H(rn

i , s)(tn
i − tn

i−1). Notice that, by

definition of Lp-Riemann integral, limn→∞ Fn(s) =
∫ b

a H(t, s)dt in Lp.
By definition of Lp-Riemann integral,

∫ d

c
Fn(s)ds =

n

∑
i=1

(∫ d

c
H(rn

i , s)ds
)
(tn

i − tn
i−1)

n→∞−→
∫ b

a

∫ d

c
H(t, s)ds dt

in Lp. On the other hand,∥∥∥∥∫ d

c

∫ b

a
H(t, s)dt ds−

∫ d

c
Fn(s)ds

∥∥∥∥
p
=

∥∥∥∥∫ d

c

(∫ b

a
H(t, s)dt− Fn(s)

)
ds
∥∥∥∥

p

≤
∫ d

c

∥∥∥∥∫ b

a
H(t, s)dt− Fn(s)

∥∥∥∥
p

ds,

where the last inequality is due to a property of Lp-integration ([5] p. 102). As H(t, s) and Fn(s) are
Lp-bounded on [a, b]× [c, d] and [c, d], respectively (uniformly on n ≥ 1), the dominated convergence
theorem allows concluding that limn→∞

∫ d
c Fn(s)ds =

∫ d
c

∫ b
a H(t, s)dt ds in Lp.

Proposition 2 (Lp-differentiation under the Lp-Riemann integral sign). Let F(t, s) be a stochastic process
on [a, b]× [c, d]. Fix 1 ≤ p < ∞. Suppose that F(t, ·) is Lp-continuous on [c, d], for each t ∈ [a, b], and
that there exists the Lp-partial derivative ∂F

∂t (t, s) for all (t, s) ∈ [a, b] × [c, d], which is Lp-continuous on

[a, b]× [c, d]. Let G(t) =
∫ d

c F(t, s)ds (the integral is understood as an Lp-Riemann integral). Then G is

Lp-differentiable on [a, b] and G′(t) =
∫ d

c
∂F
∂t (t, s)ds.

Proof. We present an alternative and simpler proof to ([17] Proposition 2.2), based on Fubini’s
theorem (Lemma 3). Since ∂F

∂t is Lp-continuous, by Barrow’s rule ([5] p. 104) we can write

G(t) =
∫ d

c F(a, s)ds +
∫ d

c

∫ t
a

∂F
∂t (τ, s)dτ ds =

∫ d
c F(a, s)ds +

∫ t
a

∫ d
c

∂F
∂t (τ, s)ds dτ. The stochastic

process τ ∈ [a, b] 7→
∫ d

c
∂F
∂t (τ, s)ds is Lp-continuous; therefore, G′(t) =

∫ d
c

∂F
∂t (t, s)ds in Lp, as a

consequence of the fundamental theorem for Lp-calculus; see ([5] p. 103).

Lemma 4 (Version of the chain rule theorem). Let G(t, s) be a stochastic process on [a, b] × [c, d]. Let
u : [a, b]→ [c, d] be a differentiable deterministic function. Suppose that G(t, s) has Lp-partial derivatives, with
∂G
∂t (t, s) being Lp-continuous on [a, b]× [c, d], and ∂G

∂s (t, ·) being Lp-continuous on [c, d], for each t ∈ [a, b].
Then d

dt G(t, u(t)) = ∂G
∂t (t, u(t)) + u′(t) ∂G

∂s (t, u(t)) in Lp.

Proof. For h 6= 0, by the triangular inequality,∥∥∥∥G(t + h, u(t + h))− G(t, u(t))
h

− ∂G
∂t

(t, u(t))− u′(t)
∂G
∂s

(t, u(t))
∥∥∥∥

p

≤
∥∥∥∥G(t + h, u(t + h))− G(t, u(t + h))

h
− ∂G

∂t
(t, u(t))

∥∥∥∥
p︸ ︷︷ ︸

I1(t,h)

+

∥∥∥∥G(t, u(t + h))− G(t, u(t))
h

− u′(t)
∂G
∂s

(t, u(t))
∥∥∥∥

p︸ ︷︷ ︸
I2(t,h)

.
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By Barrow’s rule ([5] p. 104) and an inequality from ([5] p. 102),

I1(t, h) =
∥∥∥∥1

h

∫ t+h

t

∂G
∂t

(τ, u(t + h))dτ − ∂G
∂t

(t, u(t))
∥∥∥∥

p

=

∥∥∥∥1
h

∫ t+h

t

(
∂G
∂t

(τ, u(t + h))− ∂G
∂t

(t, u(t))
)

dτ

∥∥∥∥
p

≤ 1
|h|

∣∣∣∣∣
∫ t+h

t

∥∥∥∥∂G
∂t

(τ, u(t + h))− ∂G
∂t

(t, u(t))
∥∥∥∥

p
dτ

∣∣∣∣∣ .

The process ∂G
∂t (t, u(r)) is Lp-uniform continuous on [a, b]× [a, b]; therefore,

I1(t, h) ≤ sup
τ∈[t,t+h]∪[t+h,t]

∥∥∥∥∂G
∂t

(τ, u(t + h))− ∂G
∂t

(t, u(t))
∥∥∥∥

p

h→0−→ 0.

On the other hand, let Y(r) = G(t, r), for t ∈ [a, b] fixed. To conclude that limh→0 I2(t, h) = 0, we
need (Y ◦ u)′(t) = Y′(u(t))u′(t). We have that Y is Lp-C1([c, d]) and that u is differentiable on [a, b], so
the following existing version of the chain rule theorem applies: ([33] Theorem 2.1).

Remark 1. Although not needed in the subsequent development, Lemma 4 gives in fact a general
multidimensional chain rule theorem for Lp-calculus, for the composition of a stochastic process G(t, s) and two
deterministic functions (v(r), u(r)). This is the generalization of ([33] Theorem 2.1) to several variables. Indeed,
let G(t, s) be a stochastic process on an open set Λ ⊆ R2, with Lp-partial derivatives, ∂G

∂t (t, s) and ∂G
∂s (t, s),

being Lp-continuous on Λ. Let v, u : [a, b]→ R be two C1 deterministic functions with (v(r), u(r)) ∈ Λ. Then
d
dr G(v(r), u(r)) = v′(r) ∂G

∂t (v(r), u(r))+ u′(r) ∂G
∂s (v(r), u(r)). For the proof, just define G(t, r) = G(v(t), r).

By ([33] Theorem 2.1), ∂G
∂t (t, r) = v′(t) ∂G

∂t (v(t), r), which is Lp-continuous on (t, r). Additionally, ∂G
∂r (t, r) =

∂G
∂s (v(t), r) is Lp-continuous. Then G(v(r), u(r)) = G(r, u(r)) can be Lp-differentiated at each r, by our

Lemma 4: d
dr G(v(r), u(r)) = ∂G

∂t (r, u(r)) + u′(r) ∂G
∂r (r, u(r)) = v′(r) ∂G

∂t (v(r), u(r)) + u′(r) ∂G
∂s (v(r), u(r)).

Proposition 3 (Random Leibniz’s rule for Lp-calculus). Let F(t, s) be a stochastic process on [a, b]× [c, d].
Let u, v : [a, b]→ [c, d] be two differentiable deterministic functions. Suppose that F(t, ·) is Lp-continuous on
[c, d], for each t ∈ [a, b], and that ∂F

∂t (t, s) exists in the Lp-sense and is Lp-continuous on [a, b]× [c, d]. Then

H(t) =
∫ v(t)

u(t) F(t, s)ds is Lp-differentiable and

H′(t) = v′(t)F(t, v(t))− u′(t)F(t, u(t)) +
∫ v(t)

u(t)

∂F
∂t

(t, s)ds

(the integral is considered as an Lp-Riemann integral).

Proof. First, notice that H(t) is well-defined, since F(t, ·) is Lp-continuous. Decompose H(t) as
H(t) =

∫ v(t)
a F(t, s)ds −

∫ u(t)
a F(t, s)ds. Let G(t, r) =

∫ r
a F(t, s)ds, t ∈ [a, b], r ∈ [c, d]. We have

H(t) = G(t, v(t))− G(t, u(t)).
Let us check the conditions of Lemma 4. By Lemma 2, ∂G

∂t (t, r) =
∫ r

a
∂F
∂t (t, s)ds, which is

Lp-continuous on [a, b]× [c, d] as a consequence of the Lp-continuity of ∂F
∂t (t, s). On the other hand,

∂G
∂r (t, r) = F(t, r), by the fundamental theorem of Lp-calculus ([5] p. 103), with ∂G

∂r (t, ·) = F(t, ·) being
Lp-continuous. Thus, by Lemma 4,

H′(t) =
∂G
∂t

(t, v(t)) + v′(t)
∂G
∂r

(t, v(t))− ∂G
∂t

(t, u(t))− u′(t)
∂G
∂r

(t, u(t))

= v′(t)F(t, v(t))− u′(t)F(t, u(t)) +
∫ v(t)

u(t)

∂F
∂t

(t, s)ds.
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Remark 2 (Proposition 3 against another proof of the random Leibniz’s rule). In [10, Proposition 6], a
result pointing towards the conclusion of Proposition 3 was stated (in the mean square case p = 2, with v(t) = t,
u(t) = 0 and [c, d] = [a, b]). However, the proof presented therein is not correct. In the notation therein, the
authors proved an inequality of the form

‖K(t, ∆t)‖2 ≤ (t− a) max
x∈[a,t]

‖K1(x, t, ∆t)‖2 + max
x∈[t,t+∆t]

‖K2(x, t, ∆t)‖2.

The authors justified correctly that ‖K1(x, t, ∆t)‖2→0 and ‖K2(x, t, ∆t)‖2→0 as ∆t→ 0, for each x ∈ [a, b].
However, this fact does not imply

max
x∈[a,t]

‖K1(x, t, ∆t)‖2
∆t→0−→ 0, max

x∈[t,t+∆t]
‖K2(x, t, ∆t)‖2

∆t→0−→ 0,

as they stated at the end of their proof. For K1, one has to utilize the dominated convergence theorem. For K2,
one should use uniform continuity.

Remark 3 (Random Leibniz’s rule cannot be proved with a mean value theorem). In the deterministic
setting, both Proposition 2 and Proposition 3 can be proven with the mean value theorem. However, such proofs
do not work in the random scenario, as there is no version of the stochastic mean value theorem. In previous
contributions (see [15] Lemma 2.4, Corollary 2.5; [34] Lemma 3.1, Theorem 3.2), there is an incorrect version of
it. For instance, if U ∼ Uniform(0, 1) and Y(t) = 1{t>U}(t), t ∈ [0, 1], then Y is mean square continuous on

[0, 1] (notice that ‖Y(t)−Y(s)‖2
2 = |t− s|). Suppose that there exists η ∈ [0, 1] such that

∫ 1
0 Y(s)ds = Y(η)

almost surely. Then Y(η) = 1 − U almost surely. But this is not possible, since 1 − U ∈ (0, 1) and
Y(η) ∈ {0, 1}. Thus, Y does not satisfy any mean square mean value theorem.

3. Lp-solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term

In this section we solve (1) in the Lp-sense. To do so, we will demonstrate that x(t) defined by (2)
is the unique Lp-solution to (1). We will take advantage of the decomposition of problem (1) into its
homogeneous part, (3), and its complete part, (4). The formal solution to (3) is given by y(t) defined as
(5), while the formal solution to (4) is given by z(t) expressed as (6). The previous contribution [17]
provides conditions under which y(t) defined by (5) solves (3) in the Lp-sense. Thus, our primary goal
will be to find conditions under which z(t) given by (6) is a true solution to (4) in the Lp-sense.

Again, recall that the integrals that appear in the expressions (2), (5) and (6) are Lp-Riemann
integrals.

The uniqueness (not existence for now) of (1) is proved analogously to ([17] Theorem 3.1),
by invoking results from [7] that connect Lp-solutions with sample-path solutions, which satisfy
analogous properties to deterministic solutions. The precise uniqueness statement is as follows.

Theorem 1 (Uniqueness). The random differential equation problem with delay (1) has at most one Lp-solution,
for 1 ≤ p < ∞.

Proof. Assume that (1) has an Lp-solution. We will prove it is unique. Let x1(t) and x2(t) be two
Lp-solutions to (1). Let u(t) = x1(t)− x2(t), which satisfies the random differential equation problem
with delay {

u′(t, ω) = a(ω)u(t, ω) + b(ω)u(t− τ, ω), t ≥ 0,

u(t, ω) = 0, −τ ≤ t ≤ 0.



Mathematics 2020, 8, 1013 8 of 16

If t ∈ [0, τ], then t− τ ∈ [−τ, 0]; therefore, u(t− τ) = 0. Thus, u(t) satisfies a random differential
equation problem with no delay on [0, τ]:{

u′(t, ω) = a(ω)u(t, ω), t ∈ [0, τ],

u(0, ω) = 0.
(7)

In [7], it was proved that any Lp-solution to a random initial value problem has a product
measurable representative which is an absolutely continuous solution in the sample-path sense. Since
the sample-path solution to (7) must be 0 (from the deterministic theory), we conclude that u(t) = 0
on [0, τ], as desired. For the subsequent intervals [τ, 2τ], [2τ, 3τ], etc., the same reasoning applies.

Now we move on to existence results. First, recall that the random delayed exponential function
is the solution to the random linear homogeneous differential equation with pure delay that satisfies
the unit initial condition.

Proposition 4 (Lp-derivative of the random delayed exponential function ([17] Prop 3.1)). Consider the
random system with discrete delay{

x′(t, ω) = c(ω)x(t− τ, ω), t ≥ 0,

x(t, ω) = 1, −τ ≤ t ≤ 0,
(8)

where c(ω) is a random variable.
If c has absolute moments of any order, then ec,t

τ is the unique Lp-solution to (8), for all 1 ≤ p < ∞.
On the other hand, if c is bounded, then ec,t

τ is the unique L∞-solution to (8).

In [17], two results on the existence of solution to (3) were stated and proved. In terms of notation,
the moment-generating function of a random variable a is denoted as φa(ζ) = E[eaζ ], ζ ∈ R.

Theorem 2 (Existence and uniqueness for (3), first version ([17] Theorem 3.2)). Fix 1 ≤ p < ∞. Suppose
that φa(ζ) < ∞ for all ζ ∈ R, b has absolute moments of any order, and g belongs to C1([−τ, 0]) in the
Lp+η-sense, for certain η > 0. Then the stochastic process y(t) defined by (5) is the unique Lp-solution to (3).

Theorem 3 (Existence and uniqueness for (3), second version ([17] Theorem 3.4)). Fix 1 ≤ p < ∞.
Suppose that a and b are bounded random variables, and g belongs to C1([−τ, 0]) in the Lp-sense. Then the
stochastic process y(t) defined by (5) is the unique Lp-solution to (3).

In what follows, we establish two theorems on the existence of a solution to (4); see Theorem 4
and Theorem 5. As a corollary, we will derive the solution to (1); see Theorem 6 and Theorem 7.

Theorem 4 (Existence and uniqueness for (4), first version). Fix 1 ≤ p < ∞. Suppose that φa(ζ) < ∞ for
all ζ ∈ R, b has absolute moments of any order, and f is continuous on [0, ∞) in the Lp+η-sense, for certain
η > 0. Then the stochastic process z(t) defined by (6) is the unique Lp-solution to (4).

Proof. At the beginning of the proof of ([17] Theorem 3.2), it was proved that b1 = e−aτb has absolute
moments of any order, as a consequence of Cauchy-Schwarz inequality, therefore Proposition 4 tells
us that the process eb1,t

τ is Lq-differentiable, for each 1 ≤ q < ∞, and d
dt eb1,t

τ = b1eb1,t−τ
τ . It was also

proved that, by the chain rule theorem (Proposition 1), the process eat is Lq-differentiable, for each
1 ≤ q < ∞, and d

dt eat = aeat. To justify these two assertions on eb1,t
τ and eat, the hypotheses φa(ζ) < ∞

and b having absolute moments of any order are required.
Fix 0 ≤ s ≤ t. Let Y1(t, s) = ea(t−s), Y2(t, s) = eb1,t−τ−s

τ and Y3(s) = f (s), according to the
notation of Lemma 1. Set the product of the three processes F(t, s) = Y1(t, s)Y2(t, s)Y3(s), so that
our candidate solution process becomes z(t) =

∫ t
0 F(t, s)ds. We check the conditions of the random
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Leibniz’s rule, see Proposition 3, to differentiate z(t). By the first paragraph of this proof, in which we
stated that both eb1,t

τ and eat are Lq-differentiable, for each 1 ≤ q < ∞, we derive that Y1 and Y2 are
Lq-continuous on both variables, for all 1 ≤ q < ∞. Since Y3 is Lp+η-continuous, for certain η > 0 by
assumption, we deduce that F is Lp-continuous on both variables, as a consequence of Lemma 1.

Fixed s, let Y1(t) = ea(t−s), Y2(t) = eb1,t−τ−s
τ and Y3 = f (s). We have that Y1 and Y2 are

Lq-differentiable, for each 1 ≤ q < ∞. The random variable Y3 belongs to Lp+η . By Lemma 2, F(·, s) is
Lp-differentiable at each t, with

∂F
∂t

(t, s) =
{

aea(t−s)eb1,t−τ−s
τ + ea(t−s)b1eb1,t−2τ−s

τ

}
f (s).

Let us see that ∂F
∂t (t, s) is Lp-continuous at (t, s). Since a has absolute moments of any order

(by finiteness of its moment-generating function) and ea(t−s) is Lq-continuous at (t, s), for each
1 ≤ q < ∞, we derive that aea(t−s) is Lq-continuous at each (t, s), for every 1 ≤ q < ∞, by Hölder’s
inequality. Thus, we have that Y1(t, s) = aea(t−s) and Y2(t, s) = eb1,t−τ−s

τ are Lq-continuous at (t, s),
for each 1 ≤ q < ∞, while Y3(s) = f (s) is Lp+η-continuous. By Lemma 1, aea(t−s)eb1,t−τ−s

τ f (s) is
Lp-continuous at each (t, s). Analogously, ea(t−s)b1eb1,t−2τ−s

τ f (s) is Lp-continuous at (t, s). Therefore,
∂F
∂t (t, s) is Lp-continuous at (t, s). By Proposition 3, the process z(t) is Lp-differentiable and
z′(t) = F(t, t) +

∫ t
0

∂F
∂t (t, s)ds = f (t) + az(t) + bz(t − τ) (by definition of F(t, s) in the proof,

F(t, t) = ea(t−t)eb1,t−τ−t
τ f (t) = eb1,−τ

τ f (t) = f (t), where eb1,−τ
τ = 1 by definition of delayed exponential

function), and we are done.
Once the existence of Lp-solution has been proved, uniqueness follows from Theorem 1.

Theorem 5 (Existence and uniqueness for (4), second version). Fix 1 ≤ p < ∞. Suppose that a and b
are bounded random variables, and f is continuous on [0, ∞) in the Lp-sense. Then the stochastic process z(t)
defined by (6) is the unique Lp-solution to (4).

Proof. As was shown in ([17] Theorem 3.4), the process eb1,t
τ is L∞-differentiable and d

dt eb1,t
τ = b1eb1,t−τ

τ ,
because b1 = e−aτb is bounded. Additionally, the process eat is L∞-differentiable and d

dt eat = aeat, as a
consequence of the deterministic mean value theorem and the boundedness of a.

The rest of the proof is completely analogous to the previous Theorem 4, by applying the second
part of both Lemma 1 and Lemma 2.

Theorem 6 (Existence and uniqueness for (1), first version). Fix 1 ≤ p < ∞. Suppose that φa(ζ) < ∞ for
all ζ ∈ R, b has absolute moments of any order, g belongs to C1([−τ, 0]) in the Lp+η-sense and f is continuous
on [0, ∞) in the Lp+η-sense, for certain η > 0. Then the stochastic process x(t) defined by (2) is the unique
Lp-solution to (1).

Proof. This is a consequence of Theorem 2 and Theorem 4, with x(t) = y(t) + z(t). Uniqueness
follows from Theorem 1.

Theorem 7 (Existence and uniqueness for (1), second version). Fix 1 ≤ p < ∞. Suppose that a and b
are bounded random variables, g belongs to C1([−τ, 0]) in the Lp-sense and f is continuous on [0, ∞) in the
Lp-sense. Then the stochastic process x(t) defined by (2) is the unique Lp-solution to (1).

Proof. This is a consequence of Theorem 3 and Theorem 5, with x(t) = y(t) + z(t). Uniqueness
follows from Theorem 1.

Remark 4. As emphasized in ([17] Remark 3.6), the condition of boundedness for a and b in Theorem 7 is
necessary if we only assume that g ∈ C1([−τ, 0]) in the Lp-sense. See ([7] Example p. 541), where it is proved
that, in order for a random autonomous and homogeneous linear differential equation of first-order to have an
Lp-solution for every initial condition in Lp, one needs the random coefficient to be bounded.
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Assume the conditions from Theorem 6 or Theorem 7. From expression (2), it is possible to
approximate the statistical moments of x(t). We focus on its expectation, E[x(t)], and on its variance,
V[x(t)] = E[x(t)2]− (E[x(t)])2. These statistics provide information on the average and the dispersion
of x(t), and they are very useful for uncertainty quantification for x(t). For ease of notation, denote
the stochastic processes

F1(t, ω) = ea(ω)(t+τ)eb1(ω),t
τ g(−τ, ω),

F2(t, s, ω) = ea(ω)(t−s)eb1(ω),t−τ−s
τ (g′(s, ω)− a(ω)g(s, ω)),

F3(t, s, ω) = ea(ω)(t−s)eb1(ω),t−τ−s
τ f (s, ω).

Due to the linearity of the expectation and its interchangeability with the L1-Riemann integral ([5]
p. 104), if p ≥ 1,

E[x(t)] = E[F1(t)] +
∫ 0

−τ
E[F2(t, s)]ds +

∫ t

0
E[F3(t, s)]ds. (9)

To compute V[x(t)] when p ≥ 2, we start by

x(t)2 = F1(t)2 +
∫ 0

−τ

∫ 0

−τ
F2(t, s1)F2(t, s2)ds2 ds1

+
∫ t

0

∫ t

0
F3(t, s1)F3(t, s2)ds2 ds1 + 2

∫ 0

−τ
F1(t)F2(t, s)ds

+2
∫ t

0
F1(t)F3(t, s)ds + 2

∫ 0

−τ

∫ t

0
F2(t, s1)F3(t, s2)ds2 ds1.

Each of these integrals has to be considered in Lp/2; see ([35] Remark 2). This is due to the loss of
integrability of the product, by Hölder’s inequality. By applying expectations,

E[x(t)2] = E[F1(t)2] +
∫ 0

−τ

∫ 0

−τ
E[F2(t, s1)F2(t, s2)]ds2 ds1

+
∫ t

0

∫ t

0
E[F3(t, s1)F3(t, s2)]ds2 ds1 + 2

∫ 0

−τ
E[F1(t)F2(t, s)]ds

+2
∫ t

0
E[F1(t)F3(t, s)]ds + 2

∫ 0

−τ

∫ t

0
E[F2(t, s1)F3(t, s2)]ds2 ds1. (10)

As a consequence, one derives an expression for V[x(t)], by utilizing the relation V[x(t)] =

E[x(t)2]− (E[x(t)])2. Other statistics related to moments could be derived in a similar fashion.
In Example 1, we will show how useful these expressions are to determine E[x(t)] and V[x(t)] in

practice. Our procedure is an alternative to the usual techniques for uncertainty quantification: Monte
Carlo simulation, generalized polynomial chaos (gPC) expansions, etc. [1,2].

4. Lp-convergence to a Random Complete Linear Differential Equation When the Delay Tends to 0

Given a discrete delay τ > 0, we denote the Lp-solution (2) to (1) by xτ(t). We denote the
Lp-solutions (5) and (6) to (3) and (4) by yτ(t) and zτ(t), respectively, so that xτ(t) = yτ(t) + zτ(t).
Thus, we are making the dependence on the delay τ explicit. If we put τ = 0 into (1), (3) and (4), we
obtain random linear differential equations with no delay:{

x′0(t, ω) = (a(ω) + b(ω))x0(t, ω) + f (t, ω), t ≥ 0,

x0(0, ω) = g(0, ω),
(11)

{
y′0(t, ω) = (a(ω) + b(ω))y0(t, ω), t ≥ 0,

y0(0, ω) = g(0, ω),
(12)
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{
z′0(t, ω) = (a(ω) + b(ω))z0(t, ω) + f (t, ω), t ≥ 0,

z0(0, ω) = 0,
(13)

respectively. The following results establish conditions under which (11), (12) and (13) have
Lp-solutions.

Theorem 8 ([17] Corollary 4.1). Fix 1 ≤ p < ∞. If φa(ζ) < ∞ and φb(ζ) < ∞ for all ζ ∈ R, and
g(0) ∈ Lp+η for certain η > 0, then the stochastic process y0(t) = g(0)e(a+b)t is the unique Lp-solution
to (12).

On the other hand, if a and b are bounded random variables and g(0) ∈ Lp, then the stochastic process
y0(t) = g(0)e(a+b)t is the unique Lp-solution to (12).

Theorem 9. Fix 1 ≤ p < ∞. If φa(ζ) < ∞ and φb(ζ) < ∞ for all ζ ∈ R, and f is continuous on [0, ∞)

in the Lp+η-sense for certain η > 0, then the stochastic process z0(t) =
∫ t

0 e(a+b)(t−s) f (s)ds is the unique
Lp-solution to (13).

On the other hand, if a and b are bounded random variables and f is continuous on [0, ∞) in the Lp-sense,
then the stochastic process z0(t) =

∫ t
0 e(a+b)(t−s) f (s)ds is the unique Lp-solution to (13).

Proof. Take the first set of assumptions. Let F(t, s) = e(a+b)(t−s) f (s) be the process inside the integral
sign. Since φa < ∞ and φb < ∞, the chain rule theorem (Proposition 1) allows differentiating e(a+b)t

in Lq, for each 1 ≤ q < ∞. In particular, e(a+b)(t−s) is Lq-continuous at (t, s), for 1 ≤ q < ∞. As f
is continuous on [0, ∞) in the Lp+η-sense, we derive that F is Lp-continuous at (t, s). It also exists
∂F
∂t (t, s) = (a+ b)e(a+b)(t−s) f (s) in Lp. Since a+ b has absolute moments of any order, (a+ b)e(a+b)(t−s)

is Lq-continuous at (t, s), for 1 ≤ q < ∞. Then ∂F
∂t is Lp-continuous at (t, s). By Proposition 3, z0 is

Lp-differentiable and z′0(t) = F(t, t) +
∫ t

0
∂F
∂t (t, s)ds = f (t) + (a + b)z0(t), and we are done.

Suppose that a and b are bounded random variables and f is continuous on [0, ∞) in the Lp-sense.
If a and b are bounded, then e(a+b)t is L∞-differentiable (this is because of an application of the
deterministic mean value theorem; see ([17] Theorem 3.4)). Then an analogous proof to the previous
paragraph works in this case, by only assuming that f is continuous on [0, ∞) in the Lp-sense.

Theorem 10. Fix 1 ≤ p < ∞. If φa(ζ) < ∞ and φb(ζ) < ∞ for all ζ ∈ R, g(0) ∈ Lp+η , and f is
continuous on [0, ∞) in the Lp+η-sense for certain η > 0, then the stochastic process x0(t) = g(0)e(a+b)t +∫ t

0 e(a+b)(t−s) f (s)ds is the unique Lp-solution to (11).
On the other hand, if a and b are bounded random variables, g(0) ∈ Lp, and f is continuous on [0, ∞) in

the Lp-sense, then the stochastic process x0(t) = g(0)e(a+b)t +
∫ t

0 e(a+b)(t−s) f (s)ds is the unique Lp-solution
to (11).

Proof. It is a consequence of Theorem 8 and Theorem 9 with x0(t) = y0(t) + z0(t).

Our goal is to establish conditions under which limτ→0 xτ(t) = x0(t) in Lp, for each t ≥ 0. To do
so, we will utilize limτ→0 yτ(t) = y0(t) and limτ→0 zτ(t) = z0(t).

The first limit, limτ→0 yτ(t) = y0(t), was demonstrated in ([17] Theorem 4.5), by using inequalities
for the deterministic and random delayed exponential function ([36] Theorem A.3), ([17] Lemma 4.2,
Lemma 4.3, Lemma 4.4).

Theorem 11 ([17] Theorem 4.5). Fix 1 ≤ p < ∞. Let a and b be bounded random variables and let g be a
stochastic process that belongs to C1([−τ, 0]) in the Lp-sense. Then, limτ→0 yτ(t) = y0(t) in Lp, uniformly
on [0, T], for each T > 0.

Next we prove the convergence limτ→0 zτ(t) = z0(t). As a corollary, we will be able to derive
limτ→0 xτ(t) = x0(t).
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Theorem 12. Fix 1 ≤ p < ∞. Let a and b be bounded random variables and let f be a continuous stochastic
process on [0, ∞) in the Lp-sense. Then, limτ→0 zτ(t) = z0(t) in Lp, uniformly on [0, T], for each T > 0.

Proof. Notice that zτ(t) defined by (6) (see the first paragraph of this section) exists by Theorem 5,
which used the boundedness of a and b and the Lp-continuity of f on [0, ∞). Analogously, z0(t) exists
by Theorem 9.

Fix t ∈ [0, T]. We bound

‖zτ(t)− z0(t)‖p ≤
∫ t

0

∥∥∥ea(t−s) f (s)
(

eb1,t−τ−s
τ − eb(t−s)

)∥∥∥
p

ds

≤
∫ t

0

∥∥∥ea(t−s)
∥∥∥

∞
‖ f (s)‖p

∥∥∥eb1,t−τ−s
τ − eb(t−s)

∥∥∥
∞

ds.

We have ‖ea(t−s)‖∞ ≤ e‖a‖∞T and ‖ f (s)‖p ≤ C f = maxs∈[0,T] ‖ f (s)‖p. These bounds yield

‖zτ(t)− z0(t)‖p ≤ C f e‖a‖∞T
∫ t

0

∥∥∥eb1,t−τ−s
τ − eb(t−s)

∥∥∥
∞

ds. (14)

Let k be a number such that k ≥ ‖b1‖∞ = ‖eaτb‖∞, for all τ ∈ (0, 1]. By ([17] Lemma 4.3),∥∥∥eb1,t−τ−s
τ − eb1(t−s)

∥∥∥
∞
≤ CT,k · τ, (15)

for t ∈ [0, T], 0 ≤ s ≤ t and τ ∈ (0, 1]. On the other hand, by the deterministic mean value theorem
(applied for each outcome ω),

eb1(t−s) − eb(t−s) = ee−aτb(t−s) − eb(t−s)

= b(t− s)eξτ,ωb(t−s)(e−aτ − 1),

where ξτ,ω ∈ (1, e−aτ) ∪ (e−aτ , 1). In particular, |ξτ,ω | ≤ 1 + e‖a‖∞ . We apply again the deterministic
mean value theorem to e−aτ − 1:

e−aτ − 1 = eξτ,ω (−aτ),

where ξτ,ω ∈ (−aτ, 0) ∪ (0,−aτ). In particular,

‖e−aτ − 1‖∞ ≤ e‖a‖∞‖a‖∞τ.

As a consequence,

‖eb1(t−s) − eb(t−s)‖∞ ≤ ‖b‖∞Te(1+e‖a‖∞ )‖b‖∞Te‖a‖∞‖a‖∞︸ ︷︷ ︸
CT,‖a‖∞ ,‖b‖∞

τ. (16)

By combining (15) and (16) and by the triangular inequality,∥∥∥eb1,t−τ−s
τ − eb(t−s)

∥∥∥
∞
≤
∥∥∥eb1,t−τ−s

τ − eb1(t−s)
∥∥∥

∞

+
∥∥∥eb1(t−s) − eb(t−s)

∥∥∥
∞
≤
(

CT,k + CT,‖a‖∞ ,‖b‖∞

)
τ.

Substituting this inequality into (14),

‖zτ(t)− z0(t)‖p ≤ C f e‖a‖∞T
(

CT,k + CT,‖a‖∞ ,‖b‖∞

)
τ

τ→0−→ 0,

uniformly on [0, T].
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Theorem 13. Fix 1 ≤ p < ∞. Let a and b be bounded random variables, let g be a stochastic process that
belongs to C1([−τ, 0]) in the Lp-sense, and let f be a continuous stochastic process on [0, ∞) in the Lp-sense.
Then, limτ→0 xτ(t) = x0(t) in Lp, uniformly on [0, T], for each T > 0.

Proof. This is a consequence of Theorem 11 and Theorem 12, with xτ(t) = yτ(t) + zτ(t) and x0(t) =
y0(t) + z0(t).

Example 1. This is a test example, with arbitrary distributions, to show how (9) and (10) may be
employed to compute the expectation and the variance of the stochastic solution. Theoretical results
are also illustrated. Let a ∼ Beta(2, 3) and b ∼ Uniform(0.2, 1). Define g(t, ω) = sin(sin(d(ω)t2))

and f (t, ω) = cos(te(ω)2), where d and e are random variables with d ∼ Triangular(1, 1.15, 1.3) and
e ∼ Uniform(0.1, 0.2). By using the chain rule theorem, Proposition 1, it is easy to prove that both
g and f are C∞ in the Lp-sense, 1 ≤ p < ∞. The random variables a, b, d and e are assumed to be
independent. Consider the solution stochastic process xτ(t) defined by (2). It is an Lp-solution for all
1 ≤ p < ∞, by Theorem 7. With expressions (9) and (10), we can compute E[xτ(t)] and V[xτ(t)]; see
Figure 1. The results agree with Monte Carlo simulation on (1). Observe that, as τ approaches 0, the
solution stochastic process tends to the solution with no delay defined in Theorem 10, as predicted by
Theorem 13.
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Figure 1. Expectation (up) and variance (down) of xτ(t), Example 1.

Example 2. In this example, we specify new probability distributions for the input coefficients. Let
a ∼ Uniform(0.2, 1), b ∼ Uniform(−1, 0), d ∼ Beta(1, 1.3) and e ∼ Uniform(−0.2,−0.1), all of
them independent. The stochastic process xτ(t) given by (2) is an Lp-solution for all 1 ≤ p < ∞,
by Theorem 7. We compute E[xτ(t)] and V[xτ(t)] with (9) and (10), see Figure 2. Observe that the
convergence when τ → 0 agrees with Theorem 13.
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Figure 2. Expectation (up) and variance (down) of xτ(t), Example 2.

We now comment on some computational aspects. We have used the software Mathematica R©,
version 11.2 [37]. The integrals and expectations from (9) and (10) have been computed as
multidimensional integrals with the built-in function NIntegrate (recall that the expectation is an
integral with respect to the corresponding probability density function). Expression (9) does not
pose serious numerical challenges, and one can use a standard NIntegrate routine with no specified
options. However, for expression (10), we have set the option quasi-Monte Carlo with 105 sampling
points (otherwise the computational time would increase dramatically). We have checked numerically
that the following factors increase the computational time: large ratio t/τ; probability distributions
with unbounded support for the input data; and moderate or large dimensions of the random space.

5. Conclusions

In this paper, we have performed a comprehensive stochastic analysis of the random linear
delay differential equation with stochastic forcing term. The equation considered has one discrete
delay τ > 0, two random coefficients a and b (corresponding to the non-delay and the delay term,
respectively) and two stochastic processes f (t) and g(t) (corresponding to the forcing term on [0, ∞)

and the initial condition on [−τ, 0], respectively). Our setting supposes a step further than the previous
contribution [17], in which no forcing term was considered (i.e., f (t) = 0). We have rigorously
addressed the problem of extending the deterministic theory to the random scenario, by proving that
the deterministic solution constructed via the method of steps and the method of variation of constants
is an Lp-solution, under certain assumptions on the random data. A new result, the random Leibniz’s
rule for Lp-Riemann integration has been necessary to derive our conclusions. We have also studied
the behavior in Lp of the random delay equation when the delay tends to zero.

Our approach has been shown to be useful to approximate the statistical moments of the solution
stochastic process, in particular its expectation and its variance. Thus, it is possible to perform
uncertainty quantification. Our procedure is an alternative to the usual techniques for uncertainty
quantification: Monte Carlo simulation, generalized polynomial chaos (gPC) expansions, etc.

Our approach could be extendable to other random differential equations with or without delay.
As usual, one could prove that the deterministic solution also works in the random framework. To do
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so, a rigorous and careful analysis of the probabilistic properties of the solution based on Lp-calculus
should be conducted.

Finally, we humbly think that advancing in theoretical aspects of random differential equations
with delay will permit rigorously applying this class of equations to modeling phenomena involving
memory and aftereffects together with uncertainties. In particular, they may be crucial to capture
uncertainties inherent to some complex modeling problems, since input parameters of this type of
equations may belong to a wider range of probability distributions than the ones considered in Itô
differential equations.
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