. mathematics ﬁw\o\w

Article

Group Invariant Solutions and Conserved Quantities
of a (3+1)-Dimensional Generalized
Kadomtsev-Petviashvili Equation

Innocent Simbanefayi ! and Chaudry Masood Khalique 123 *

1 International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical

Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa;
isimbanefayi@yahoo.com

College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao 266590, China

Department of Mathematics and Informatics, Azerbaijan University, Jeyhun Hajibeyli str., 71,

Baku AZ1007, Azerbaijan

Correspondence: Masood.Khalique@nwu.ac.za

check for

Received: 13 May 2020; Accepted: 10 June 2020; Published: 20 June 2020 updates

Abstract: In this work, we investigate a (3+1)-dimensional generalised Kadomtsev—Petviashvili
equation, recently introduced in the literature. We determine its group invariant solutions by employing
Lie symmetry methods and obtain elliptic, rational and logarithmic solutions. The solutions derived in
this paper are the most general since they contain elliptic functions. Finally, we derive the conserved
quantities of this equation by employing two approaches—the general multiplier approach and
Ibragimov’s theorem. The importance of conservation laws is explained in the introduction. It should
be pointed out that the investigation of higher dimensional nonlinear partial differential equations
is vital to our perception of the real world since they are more realistic models of natural and
man-made phenomena.
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1. Introduction

The study of nonlinear partial differential equations (NLPDEs) and their solutions has become a
subject of much interest in the past few decades. Modelling natural phenomena such as the behaviour
of water waves is often an interdisciplinary research area connecting such areas as mathematics,
physics and engineering. Along with the progress in modelling nonlinear phenomena came a myriad
of methods designed to derive the exact solutions of these models. Some of these methods are Lie
group analysis [1-5], homogeneous balance technique [6], the ansatz method [7], the Hirota bilinear
method [8], the (G’/G)-expansion technique [9,10], the Kudryashov method [11,12], the simplest
equation method [13], the Jacobi elliptic function expansion technique [14], and the F-expansion
method [15], bifurcation method [16] just to mention a few.

The (3+1)-dimensional Kadomtsev—Petviashvili (KP) equations [17]

(4 + 6Ly + Uyyy)x £ Bty £+ 3uz; =0 1)

have their origins in the classic 1970 work of two Soviet physicists Kadomtsev and Petviashvili [18].
It models waves in scenarios where the ratio between the depth of water and the wavelength is
very small coupled with insubstantial nonlinear restoring forces. It is also a generalisation of the
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Korteweg-de Vries (KdV) equation, named after the Dutch mathematicians Korteweg and de Vries [19].
The highest order term u,yy caters for weak dispersion, while the term uu, describes the nonlinearity
aspect of a wave and the last two terms of (1) describe diffractive divergence [20]. The sign “+" in the
last two terms corresponds to either positive or negative dispersion. Since then, several researchers
have studied equations of the form (1), see for instance [21-26]. Investigations into (1) have ranged
from establishing the stability of their solitons [23], determining their integrability properties [24],
Painlevé analysis [25] and deriving their exact multiple wave solutions [26]. The (3+1)-dimensional
generalised KP equation

Uty + Uty + 3uxuxy + 3uxxuy + Uyxxy — Uzz = 0 )

to the best of our knowledge was introduced in [27], where the Pliicker relation for determinants
was used to obtain one Wronskian solution. Furthermore, in the same work, the Jacobi identity for
determinants was used to establish a Grammian solution for (2). Multiple solitons and multiple
singular solitons for Equation (2) were derived in [28] using a simplified form of Hirota’s method.
In their work, the researchers in [28] contrast their results with those obtained in [27] in terms of the
spatial variable z. Later in [29], an extra term uy,, was added to (2), thus introducing a new form of the
(3+1)-dimensional generalised KP equation, which we denote here by (3+1)-D gKPe, and it reads

Uty + Uty + Utz + 3uxuxy + 3uxxuy + Uxxxy — Uzz = 0. (©)]

In their work [29], the authors showed that addition of the new term affects the dispersion relations
significantly. Furthermore, they applied Hirota’s direct method to determine the multiple soliton
solutions of (3). In [30], the Equation (3) was studied and exact solutions were obtained through the
use of Hirota’s bilinear method and an extended homoclinic test approach.

In this work, we seek to derive the exact solutions of the (3+1)-D gKPe (3) by making use of its Lie
point symmetries and direct integration. We will not employ adhoc methods as often is the case when
treating NLPDE:s of this nature. Furthermore, we will for the first time derive the conserved quantities
of Equation (3) by invoking two approaches.

Lie group theory was discovered by a Norwegian mathematician, Marius Sophus Lie (1842-1899),
around the middle of nineteenth century. Lie perceived that the seemingly different methods for
finding exact solutions of differential equations were, in reality, all special cases of a broad integration
approach; the theory of transformation groups. This theory is an analog of Galois theory and has an
enormous impact on mathematics and mathematical physics today. It is contemplated to be one of the
most significant techniques to determine the exact solutions of differential equations [1-5].

Conservation laws are essential to our comprehension of the physical world and are considered
to be basic laws of nature, with wide application in physics, and in other fields for instance chemistry,
engineering, and so on. In classical physics, three types of such laws are conservation of energy, linear
momentum and angular momentum. Conservation laws are used in establishing the integrability of
differential equations (DEs) and are also used in determining whether the solution of a DE exists and
is unique. Moreover, one can also use conservation laws in checking the authenticity of numerical
solution methods [31-44].

We want to emphasize here that a study of higher dimensional NLPDEs is critical to our
understanding of the world around us since they are more realistic models of natural and man-made
phenomena [45].

2. Exact Solutions of the (3+1)-D gKPe

In this section, we determine the exact solutions of the (3+1)-D gKPe (3) by utilizing its Lie point
symmetries and direct integration. Roughly speaking, a Lie point symmetry of a PDE is a local group
of transformations acting on the independent and dependent variables of the PDE that maps every
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solution of the PDE to another solution of the same PDE. That is to say, it maps the solution set of the
PDE to itself.

It can be seen, using for example, MathLie package [46], that Equation (3) has a finite-dimensional
Lie subalgebra Lg, which is generated by the vector fields

d d 0 d
Xl_gl Xz—az X3_@/ X4_$/
) d ]
X5 = _tﬁ +Z£+Z@+ (Zt‘i‘Z)E,
0 d 0 0 @
Xe = 15t$ +3(4t + x)g +3(3y — 22)@ — 3(4t — z)g
0
+ (4x +4y — 3u)£,
and the two infinite-dimensional subalgebras generated by
) d
Xp = Pl(t)@’ Xp, = Fz(tﬂLZ)@, @)

where F; and F, are arbitrary functions of their arguments.

2.1. Invariant Solutions under the Symmetries Xy, - - -, X4

Firstly, we invoke the translation symmetries and reduce the (3+1)-D gKPe (3) to a fourth order
ordinary differential equation (ODE). Thus, using the four translation symmetries X;, X», X3 and X4
of Equation (3), we can obtain the following invariant solution:

u(t,x,y,z) =U(p), p=yx+ay+pz—vt, (6)
where 7, «, § and v are constants. This reduces the Equation (3) to
ayP U™ + 6a?U'U" — (av + B2 + Bv + yv)U" = 0. %)
Integrating (7) once with respect to p yields
ayU" 4 3a92U"? — (av + B>+ pv +yv)U' + Ky =0 (8)

with Ky a constant. Now letting

av + B? + Bv + v Ko
U'(p) =79(p), w=- % and Ky = 25,
Equation (8) becomes
‘P” + 3(P2 —w¢+ Ky =0. )

This ODE can be integrated easily. Multiplying (9) by ¢’ and integrating once with respect to
p gives
¢ = — (29 — wP? + 2K + 2K3) (10)

with K; an integration constant. If the algebraic equation ¢* — %wgbz + K1¢ + Ko = 0 has the roots
A1 > Ay > As, then we have

¢ = =2(p — M) (¢ — A2) (¢ — A3). (11)



Mathematics 2020, 8, 1012 4 0of 20

Equation (11) has the well-known solution expressed in terms of the Jacobi elliptic function,
that is,

M—A A —A
¢(p>—Az+(A1—Az>cn2< — 3p\M2>, Mz:/\i—/\; (12)

Here cn(p|M?) is the Jacobi elliptic cosine function. Furthermore, pertinent to note is that
when M?— 1, en( p|M?)— sech (p) and when M2— 0, cn(p|M?)— cos (p) [47]. A comparison of
Equations (9) and (10) reveals that

w = 2()\1 + Ay + /\3), Ki = AMAy+ A3+ AA3, Ky = —A1A0A3.
Reverting to original variables, the solution of the (3+1)-D gKPe (3) is thus

_{-(0-M)HM}p  (Ai—Ay)dn(4 p|M?) E (am (A p|M?) | M?)
M2 AM2,/dn (A p|M2)2

u(t,x,y,z) , (13)

where E(p|M?) is the elliptic integral of the second kind, am(p|M?) is the amplitude function,
dn(p|M?) is the delta amplitude function, cn(p|M?) is the Jacobi cosine function and A =
(A — A3)/2 [47,48]. Figure 1 depicts the profile of solution (13) for suitable parameter values.

Figure 1. Profiles of solution (13).

Figure 1 depicts the coexistence of bright and dark solitons. It is well-known that bright soliton
profile are characterized by hyperbolic secant. The bright soliton solution usually takes a bell-shaped
figure and propagate undistorted without any change in shape for arbitrarily long distances. However,
dark soliton solutions, configured also as topological optical solitons, are given by hyperbolic tangent.

Important to note is that Equation (10) is reminiscent of the ODE obtained in the quintessential
work of Korteweg and de Vries in [49]. This ODE is associated with long waves propagating along
a rectangular canal. The ODE (10) describes stationary waves and by imposing certain constraints
such as having the fluid undisturbed at infinity, Korteweg and de Vries obtained negative and positive
solitary waves as well as cnoidal wave solutions [49,50].

2.2. Invariant Solution under the Symmetry Xs

We now turn our attention to the point symmetry Xs. The usual computations yield the group
invariant solution u(t,x,y,z) = U({), where { = t(t + z). This, substituted into (3) gives the ODE

U’ +u =0, (14)
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whose solution is U({) = C; + C2In(¢), and hence the group invariant solution of the (3+1)-D gKPe
(3) under the symmetry Xs is
u(t,x,y,z) =C+ CIn{t(t+2z)} (15)

with Cy, C; integration constants. The corresponding graphical representation of solution (15) is given
in Figure 2.

006
-0.0x]

-4 -20 20 40

Figure 2. Profiles of solution (15).

The profiles portrayed in Figure 2 are typical of a grey singular soliton solution, more so the
distinctive asymptotic form observable for lim;_,q u(t, x,y,z) = —oo.

2.3. Invariant Solution under the Symmetry Xe

Finally, we compute the group invariant solution under X¢. By following the ususal procedure
we obtain the group invariant solution

u(t,x,y,z) :t_%u(é)—%t+§x+%y+%z, (16)

where ¢ = +~1/5(x — t). Substituting (16) into (3) and simplifying ultimately yields the second-order
ODE
cu’ +2u' =o. (17)

Equation (17) can be solved much like Equation (14), which in turn gives the invariant solution of
the (3+1)-D gKPe (3) under the group generated by Xg:

u(t,x,y,z) = C; + G /5 (x — )71 (18)

with Cj, C; integration constants. In Figure 3, solution (18) is depicted.

50

memmrm

Figure 3. Profiles of solution (18).
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The density plot coupled with the two dimensional profile in Figure 3 depicts a singular
soliton-like wave with a singularity in the spatial domain at 0 < x < 20.

3. Conserved Quantities of the (3+1)-D gKPe

In this section, we compute the conserved quantities of the (3+1)-D gKPe (3). In our work we
use the multiplier approach and the conservation theorem due to Ibragimov to derive the conserved
quantities of (3). However, first we provide salient features on both these approaches.

3.1. Multiplier Approach

The multiplier method is one of the most robust and preferred methods for deriving conserved
quantities of DEs [4,36-41]. This method attempts to mitigate the shortcomings of Noether’s
theorem [31], which requires amongst other things, the existence of a variational principle or a
Lagrangian before the theorem can be applied. We begin by providing a concise basis of the method.

3.1.1. Preliminaries
Let G be a system of m PDEs of order k, having n independent variables x = (x!, x%, - -+, x™)
and m field variables ® = ((®!, ®?, -- -, ®™)):
G = (Gl(x,CD,CD(l),d)(z),- .. ’(D(k))" .. ,Gm(x,QD,CD(l),d)(z),- .. '(D(k))) P (19)

where ®(;), P(y),- -+, P denote the derivatives of ® with respect to the variables x up to the k-th
derivative. A local conserved quantity T(x, ®, @1y, @p), -+, P(y)) of system (19) is a continutity equation

DTl =0, (20)

valid for the solution space ¢ of system (19).
In general, local nontrivial conserved quantities emanate from the divergence identity

DaT' +DpaT? + -+ D T" = A (%, D, D (1), Py, -+, D)) G(P). (21)

Here, Ay(x, @, P 1) CID(z), cee, dD(,)) is a series of conservation law multipiers which are dependent
on x, ¢ and the derivatives of ®, up to some arbitrary order r < k. The relationship (21) brings to
light the pre-eminent interrelation between conserved quantities T* and multipliers A,. A determining
condition to derive a set of multipliers A, (x, P, CD(l), CD(z), s, CD(,)) for system (19) is that

é
w(/\aG):Q x=1,---,m, (22)

where 6/6P" is the Euler-Lagrange operator given by

) 0

5O 9Dh

+Z(—1)3D]-1~~~D]-Saq>a7,i:1,~~,n,(x:1,~~,m. (23)
s>1 iij2js

The condition (22) is requisite and adequate for A to be a multiplier. A more rigorous and detailed
treatment of the theoretical justification of the multiplier approach including proofs of the formulas
utilised in this section can be found in [33].

3.1.2. Application of the Method

In order to determine conserved quantities of Equation (3), we begin by computing the first
order multipliers
A = A(t,x,u,uy, uy, uz),
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by utilising condition (22), that is,
1)
— (AE) = 24
= (AE) =0, 4)
where

E = upx + upy + Uiz + Suxliyy + Sthxxtly + Uyxxy — Uzz = 0.

The Euler operator (23) is given by

5 9 ) 0 0 0 0
— =— —Dy— —Dy,— + DD D:D D:D
ouou Yawy  Yauy O aun T ey U dur
0 ) 0 a
+ D? D.D D? D3D
Tou xx+ * ya + “ou zz+ yauxxxy

and Dy, Dy, Dy and D; are total derivative operators [4]. Expanding (24) and splitting on derivatives
of u, we obtain the following system of nine multiplier determining equations:

Aty + Atz - Azz - 0/ Atux - 0/ Ayux - O/ Azux - O/ Auxux - 0/
Ax =0, Ay =0, Ay, =0, Ay, =0. (25)

The solution algorithm of system (25) is simliar to that of obtaining Lie point symmetries. However,
with the aid of Gem, a Maple based package [44], this can be expedited. We thus have the multiplier

A = Cuy (26)
with C an integration constant. The conserved quantities of (3) are obtained via the divergence identity
DiT' + D:T* + D, TY + D, T* = EA,

where Tt is a conserved density and T*, TY, T* are spatial fluxes [36]. Thus, after some calculations,
we obtain the following conservation law:

1 1 1
Tt:iuxz_'—iuyux—’_iuquI
T =ttty Uyy + 21520 +1u Uxxx — = Uxy Uxx T 5 Ugxy Ux + 5 Ullpy + = UL
x Uxy x Uy 5 Uy U = 5 Uy Moy 7+ 5 Uy U o+ 5 Uiy o+ 5 Ul
1
+§uuxxxy_§uuzz/
Ty:_uuxuxx_iuutx_iuuxxxx/
1 1
TZ:—EuuterEuuxszuzux.

Since the derivatives of u in the multiplier (26) are of a lower order than both leading derivatives
of Equation (3), that is, usy and uyyyy, the conserved quantities derived here are low-order conservation
laws [36].

3.2. Ibragimov’s Approach

We now determine the conservation laws of (3) by applying a theorem due to Ibragimov [42,43].
As in the case of multiplier method, this theorem does not demand availability of a Lagrangian and is
established on a concept of an adjoint equation. Thus, it applies to an arbitrary differential equation,
irrespective of whether or not it comes from a variational principle.
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3.2.1. Preliminaries

The gist of Ibragimov’s method is that every infinitesimal generator is associated with a conserved
quantity, notwithstanding the absence of traditional Lagrangians which are envisaged in Noether’s
theorem [31]. Below we outline the method in detail.

Consider a system of NLPDEs (19) and its adjoint equations given by

* )
G (%, ®, ¥, Py, Y1) P2y Y2 iy V) = 550 (YGp) 27)

where 6 /5®* is the Euler-Lagrange operator (23) and m novel field variables ¥ = (¥1,...,¥™).

Theorem 1. Consider a system of m Equations (19). The adjoint system given by (27), inherits the symmetries
of the system (19). Namely, if the system (19) admits a point transformation group with a generator X =
&9 /0t 4+ 10 /D%, then the adjoint system (27) admits the operator X extended to the variables Y by the formula

9, .2
o T gye

; 0
Y =& e 2
i (28)
with appropriately chosen 1% = n%(x, ®,¥).

The functions & and 5* are infinitiesimal generator coefficients dependent on x and ®. In [43],
the coefficients 7§ in (28) are given by

e = —[Ag¥P +¥Di(&)], (29)

where A% can be computed by utilising the equation

X(Ga) = ALGp. (30)

We can obtain a conserved vector, for instance, for a third-order Lagrangian by applying
the formula

; ; oL oL oL
] 1
oL oL oL
Di(W") | === — Dy=——+-.. D;Dy(W* 1
i if ]
where L is the Lagrangian of the system G and G* that is defined as
L=Y"G, (32)
and W* is the Lie characteristic function given by
W"‘:iy“—gjcb’?‘,a:l,...,m. (33)

The reader is referred to [42,43] for a more comprehensive discussion of this method.
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3.2.2. Application of the Method

To begin, we define the adjoint equation of (3) as [43]

1)
F* = E {U(utx + Mty + T/ltz + 3uxuxy + 31/[xx1/ly + Uxxxy - uzz)}

0 0 d 0 0 d
= _ D _
(au xaux ya + Dtha + DtDya + DtDZ autz
+p2.% 1 D,D,. " +D2 9 DD {v (up +u
*ou Uxx g ya Zou Uzz yauxxxy & &

+uz + 3uxuxy + 3uxxuy + Uxxxy — uzz) }
= Utx + Uty + Otz + 60xUxy + SUxVxy + 3UyUxx + Vxxay — Vzz = 0. (34)

We have introduced a new variable v = v(¢, x,y,z). According to [43], the Equation (3) considered
together with its adjoint (34) has a Lagrangian £, given by

L =vF = v(upx + tpy + Uz + Suxliyy + Sthyxlly + Uyyxy — Uzz). (35)

Notice how 6L/éu = F* and 6L/év = F. The Lagrangian (35) is equivalent to the second
order Lagrangian

L =v(up + Uty + Utz + Suxlhyy + Slhyxlly — Uzz) + Vxxllyy. (36)

Now, Equation (34) admits all the symmetries (4) and (5) of (3) extended to the new variable
v(t, x,y,z). That is, the generators (4) and (5) become

d d ) d
3 47 — *
—pdiplipl S It (37)
with
0 =1 (6%,y,2,1,0) = = {A+ Dy(@) + Ds(6?) + Dy (&) + D:(&") | v. (38)
The parameter A is determined by using
X'(F) = AF, (39)

where X’ is the generator (4) prolonged to all the derivatives in (3), that is,

0 ] 0 %) 0 0
X' X+§x +€ja ‘|‘§txautx +gt‘yauty +Z;t‘zawz JFé'xacau

a 8 d
+ gxy Tuxy + gzz@ =+ gxxxy 7auxxxy .

XX

(40)

Here X = ¢19/0t + ¢29/9x + &9/dy + &49/9z + 7 9/0u and &', - -- ,&*, and 7 are functions
of (t,x,y,z,u). Furthermore, {x, Oy, Ctxs Ctys Ctz, Cxxs Cxys Czz @and Qxxxy are coefficient functions,
each given by the following formulae:
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Cx = Dx(n) )
Gy =Dy(n) — ”tDy(‘aﬂ) —uxDy(¢ 2) —uyDy (¢ 3) - “sz(§4)/
Ctx =Dx(Cr) — unDx (') — uxDx(8%) — ugyDx (&%) — ugzDx(

- utyDy(C3) — up Dy (

- thDz(g?’) - ”fZDZ(C4)’

(
(
(
Gty =Dy(Cr) — ”ttDy(gl) —uDy(& &)
Gtz = D2(Gt) — uaeD2 (&) — urD2(8%) (1)
Oxx = Dx(gx) uxth(gl) uxxDx(éz) - ”xny(gs) - uxsz(€4),
gxy = Dy(gx) uxtDy(gl) - ”xxD]/( 2) - ”xyDy(§3) o uxsz((;A),
2z =Dz (0x) — ”ztDZ(ér ) — ”szZ(@r ) — ”zyDZ(ga) - ”zzDZ(‘;A)/
Grxx = Dx(Qax) = txxt Dx(§') = e Dx (8%) = thaayD2(8) — 22D (5Y),
Grvry = Dy(Cxxx) — traat Dy (') = txxxx Dy (§%) — thrrry Dy (8) — txxnzDy (8).
See the full expansions of (41) in Appendix A. Now using Equations (3), (39) and (40) we compute
the values of the parameter A corresponding to each of the vector fields in (4) and (5).
Cases Xj, - -+, Xy
For the time translation symmetry X;, we have Fl=1and & =3 = =y = 0. Thus, it is easy
to see that

Cx = gy = gtx = gty = gtz = éxx = ny = gzz = Cxxxy = 0.

Consequently, we have X/ (F) = OF, thatis A = 0. From (38), we obtain * = 0 and the new
generator (4) retains the form of Xj, i.e., Y1 = d/9dt. Since the generator coefficients are all constants,
the translation symmetries will retain their form and this leads us to conclude that Y, = d/9dx,
Y3 =d/dyand Y4 = 9/0z.

Case X5

Here, we have the generator coefficients &' = —t, &2 = x, & =z, ¢* = 2t + zand 5§ = 0 from
which we can establish the following:

x=0, gy =0, Qtx = thtx — 2y, gty = Uty — 214]/2/ Otz = —2Uzz — Upy — Uty,
Cxx =0, @xy =0, {zz=—2Uy, — 2uy; — 2Uzz, gxxxy =0.

Consequently, we can verify that Xé (F) = OF, that is, A = 0. From (38), we can further establish
that #* = 0. The generator for the adjoint Equation (34) is thus Y5 = —td/0t + zd/dx + z0/dy + (2t +
z)d/0z.

Case X;

The vector field X4 has the coefficients &' = 15¢, & = 12t + 3x, &3 = 9y — 6z, & = —12t + 3z and
7 = 4x + 4y — 3u. The reckoning of the coefficient functions (41) yields

{x =4 —6uy, gy =4 —12uy, Cix = —21upy — 12uyy + 121y,
Gty = —27upy — V2uyy + 12uy;, Gtz = —21up; — 12ux; + 12u5; + 6Uyy,
Cxx = —Uyy, gxy = _15uxyr Czz = =y + 12uyz/ gxxxy = _21uxxxy'

Now, from Equations (39)-(41), we have

= — 21 (s + Uty + Uz + 3uxuxy + 3uxxuy + Uxxxy — Uzz)
=—21F.
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We can thus see that A = —21. Consequently,

n* =— (=214 Dy(15t) + Dy (12t 4 3x) + Dy (9y — 62z) + D, (—12t 4 3z)) v

=—7v.

We now have the vector field:
Ys = 15tot + (12t 4+ 3x)0x + (9y — 6z)dy + (3z — 12t)0z + (4x + 4y — 3u)du — 9vdv, corresponding
to (34).

Cases X7, Xg

Finally, considering the infinite-dimensional vector fields X7 and Xg we have, for (34), Y7 = F(t)ou
and Yg = F(t + z)ou, respectively.

To compute the conservation laws of (3), we utilise the formula [43]

C' =fL+W" (ac _p 2k

oL
Dy=——
au;" 8u§‘k

Iy

) + Dy (W)

where W* is the Lie characteristic function given by W* = y% — & u]”-‘. The reckoning of (42) gives the
following conserved quantities:

1 1 1 1
Ty = — Vllzz + 30uxyy + 30Uylxy + Vllyxxy + Evzut + Evyut + vaut + Evutz

1 1
+ Evuty + Evutx/

3 3 3 1 3 1
X; = Evyuxut + Buyvyut + Evuxyut + —Uxxylt + 50U — VU Uy — vaxuty

4 2 2
1 1 1 3 1
- 3w/lyutx - vayutx + vautxy + Zvyutxx - 1Uutxxy - Evutt/
3
Y1 = Euxvxut - Evuxxut + vaxxut + Evtut - Evuxutx - Zlvxxutx + vautxx
1 1
- ivutxxx - iv”tt;
/1= vu+1vu+vu 1vu‘
1— zUt 2 tht tz 7 tts
1 1 1 1 1 1
= — Uzl = Syl = Sl + Uy + Pl + 5 Ualx,
1 1 1 3 5
Xy = 3uxuxyv — Uzz 0 + Euxxxyv + U0 + Uy o + Eutxv + Evtux + iu"vy + 3uxuy'0x
1 1
+ iuxvxxy - Euxxvxy - vaxuxy + vauxxy + Zuxxxvy/
Yo = — Buyuyv 1u v 1u v+1vu +3u2v+1uv Uxx©
2 — xx4x 4xxxx ztx 2tx2xx4xxxx 4xxxx
+ Zluxxxvx/

1 1
Zy = Uy, U — FUno + SVt = UxDz;
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1 1 1 1
T3 = — Euyzv — EMWU — Euxyv + Euyvx + Euyvz + Euyvy,
1 3 3
X3 = — Euyuxyv — Euxuyyv — Z”XXWU — Eutyv + Evtuy + 3u§vx + Euxuyvy + Euyvxxy
1 1
- Euxyvxy + vauxyy - Zuyyvxx + Zvyuxxy/
3 1 3
Y3 = —uzv+ Euxuxyv + Euxxuyv + iuxxxyv + U, v + Eutyv + U0 + Evtuy + Euxuyvx
- vaxuxy + vauxxy + 1”yvxxan
/3 = Uy 0 — Eutyv + Evtuy — UyUy;
1 1 1 1 1 1
Ty = Euzvz — Evuzz + Euzvy — Evuyz + Euzvx — EWXZ’
3
Xy = Euzvyux — Evuyzux + 3uzuyvx — SUuyuxz + Evuzuxy — iuxzvxy + vauxyz — Zuyzvxx
1 1
+ Zvyuxxz + Zluzvxxy - 1vuxxyz + Euzvt - EvutZ/
3 1 3
Yy = Euz”xvx + Euxxzvx - Evuxuxz - Evuz”xx - iuxzvxx + Euzvxxx - Evuxxxz + Euzvt
1
— ZOU¢z,
2
1 1
Zy = — Uz0z + 30UxUyy + 30Uylyy + Vllxxxy + Euzvt + Evutz + Vupy + Vly;
1 1 1 1 1 1
Ts = — EWZ + toyu, + Ezvzuz + toyuz + Ezvyuz + to,uy + Ezvxuz — Ezvuzz — Evuy
1 1 1 1 1 1 1
+ 520Uy + SZUyUy — FUUy; — Z0Uy; — 20Uy — SOUUy + 207Uy + SZ0yUx + 5ZUyUx
2 2 2 2 2 2 2
1
+ Ezuxvx — Uz — Z0Ux; — Z0Uyy — 30U Uyy — Ezvuxx — 3tolylyy — POlyxxy
1 1 1 1 1
— Etvzut — Etvyut — Etvxut — Etvutz — Etvuty — Etvutx,
3
X5 = 327);@15 + Ezvyuxuy + 6tuzUxUy + 3ZULUx Uy + BZUxVylly — 6FVU Uy — 320Uz Uy,

— SZUUxyUy +

2 4

3 1 3 5
~Z0xxyly — 3t0xUrlly + Ezvtuy + 3tousuy + Ezvyux — VU; — ZUUy

3 3 3
+ 3tuzvyuy + 5 ZUzyllx — 3touyzuy — 5 Z0Vlyzlx — 5 ZUlyylix + 3touzuyy + 520Uz lxy
1 1 1
+ 3zvuxuxy — fUyzUxy — Ezuxzvxy — Ezuxyvxy + toxtyyz + Ezvxuxyz + Ezvxuxyy
1 1 1 1
— Ezvxyuxx - Etuyzvxx — Zzuyzvxx - leuyyvxx - Zzuxyvxx + Etvyuxxz
1 1 1 3
+ szyuxxz + szyuxxy + Ezvxuxxy + Etuzvxxy + ;zuzvxxy + Zzuxvxxy — Etvuxxyz
3 3 1 1 1 3
— Ezvuxxyz — szuxxyy + Ezvyuxxx + zzvuxxxy + Evut — Etvyuxut — Etvuxyut
3 1 1 1 1 1
- Ztvxxyut + tu, vt + Ezuzvt + Ezuxvt — Etutvt — touy; + Ezvutz + Ezvuty
3 1 1 1 1 3 1
+ Etvuxuty + Etvxxuty + EZth + Etvxyutx — Etvxutxy — vayutxx + Ztvutxxy + Etvutt,
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3 5 3 3 3
Y5 = Ezvxux + 3tu, vy + Ezuzvxux + Ezuyvxux — 3ty Uy — Ezvuxzux

3 1 3 1 3
+ Ezvuxyux — 3z0Uxy Uy + levxxxux — Etvxutux + Ezvtux + Etvutxux

3 3 1 1
— DUy — Z0Uz; — St0UZ Uy — Ezvuzuxx + Ezvuyuxx — Etuxzvxx — Ezuxzvxx

1 1 1 1 1 1

- Ezuxyvxx - Ezuxxvxx + Etvxuxxz + Ezvxuxxz + 1zvxuxxy + Ezvxuxxx
1 1 1

=+ Etuzvxxx + Zzuzvxxx + Zzuyvxxx - Etvuxxxz - szuxxxz =+ Ezvuxxxy
1 1 3 1 1 1

— 1zvuxxxx + Evut + Etvuxxut — thvxxxut + tu,v; + Ezuzvt + Ezuyvt
1 1 1 1 1 1

— Etutvt — touy; + Ezvutz + Ezvuty + Ezvutx + Ztvxxutx — Ztvxutxx

+ L tou + L tou
4 txxx 2 tts

Zs = — 2tu,v; — zZU,v; — ZUyUz — ZUxVz + HUUz + Vlly + Z0Uyz + Vlly + 20Uy,

+ 6tvU Uy + 320U Uy + 6FVUy ULy + 320Uy ULy + 280Uy + Z0Uxxxy

1 1 1 1 1 1
+ Ewt + tuyvr + Ezuzvt + Ezuyvt + Ezuxvt — Etutvt + Ezvutz + 2tvuty

1 1 1 _
+ Ezvuty + 2t0uUsy + Ezvutx + Etvutt,

3 9 3
Te = — 3vu, — 9tuy,v — Ezuzzv — 3uyv + 6ty v — Eyuyzv + Ezuyzv — Eyuwv

3 3 3
+ 3zouyy — 3uyv — Exuxzv — Ezuxzv — 6tuyyv — Exuxyv — Eyuxyv + 3zUyyv

3 1 15
+ 45t Uy Uy U — 61y — Exuxxv + 45tuy 1y + 15t Uyxry0 + Etutzv + 7tutyv

15 3 3 9
+ Etvutx +4v — 2x0, — 2yv, + Euvz — 6tu,v, + Ezuzvz + Eyvzuy — 3zvzuy

3 3 9
— 2xvy — 2yvy + Euvy — 6tuzvy + Ezuzvy + iyuyvy — 3zuyvy + 61Uy

3 3 3 3
+ Exvzux + 6toy iy + ixvyux — 2x0y — 2yvx + Euvx — 6tu,vy + Ezuzvx

+9uv 3zuy vy + 61U,V —0—3xu0 —|—1tvu+15tvu+15tvu
zyyx yOx xOx T 5 XUxOx = S P02l 7+ L0yl T - L,
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27
Xe = 27yvxu§ — 18,zvxu§ + 120uy — 36vuyuy + Eyvyuxuy — 9zvyuyuy — 12x051y
— 12yvruy + Yuvyuy — 36tuz vty + 9zuzUx iy + 36tUx U Uy + IXUKV Uy
27 27
+ 36tvuy 1y — 9ZVUx Uy — iyvuxyuy + 9zvuxyuy — B0xxUy + Zyvxxyuy

9 9 9
— Ezvxxyuy + 45tv usuy + Eyvtuy — 3zvtuy — 45tvucuy + 18tvyu,% + Exvyui

9
+ 60Uz — 120Uz, — 3XVUzz — 6XVyUy — 6YVyly + Euvyux — 18tuzvyuy

9 9 27
+ Ezuzvyux + 18tvuyzux — Ezvuyzux — 7yvuyyux + 9zvuyy Uy — 6XVUyy

9 9
— 6YUUyy + SUVUyy — 18tVUZ Uy + S 20Uz Uy + 36t0U Uy + IXVUL Uy

2 2
15 3 9
+ 7vxuxy — BUxUxy + 6tUx; Uy — izuxzvxy — Eyuxyvxy + 3ZUyy Uy + 20yy

3 9 9 3
— 6tUxUxy; + Ezvxuxyz + Eyvxuxyy — 3ZUxUyyy + ?)yuxx — 6tV yUxy — Exvxyuxx

3 3 3
+ 3tuy; Uy — —ZUyz Vxx — Eyuwvxx + 5ZuyyUxx — 3tUyyVxx — leuxyvxx + Uy

4 2
3 27 3
— 3tvyuxxz + szyuxxz — 7vuxxy + Zyvyu”y — Ezvyuxxy + 6tvxuxxy

3 9 9
+ Exvxuxxy — 3xvxxy — 3yvxxy + Zuvxxy — 9tuzvxxy + Zzuzvxxy + 9tuxvxxy
9 9 2 9
+ Exuxvxxy + Mvuyyy; — Ezvuxxyz — Zyvuxxyy + Ezvuxxyy + 3tvyUxxx
3 3 45 45 45
+ vayuxxx + 3tvuxxxy + levuxxxy — 9vu; + 7tvyuxut + ?tvuxyut + Ztvxxyut

3 3 3 15
— 2x0; — 2Yyv; + Zuv; — 6tu 0 + ZzUz U + 6tuy U + XUV + LU + 18touy,

2 2 2 2
3 9 45
+ 3xouy, — Ezvutz + 12tougy + 3xvupy — Eyvuty + 3zoupy — itvuxuty
— Etv Uty + 610U + §xvu — 1—tv U + Etv Uty + Ei.‘v u
4 xx 4ty tx 2 tx 7 xyUtx 7 xHUtxy 4 yHixx
45

15
- Ztvutxxy - Ttvutt/
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Ye

9 9
= — 9Uu§ + 18tvxu,2( + fxvxui — 6XUx Uy — OYUx Uy + Z UV Uy — 18FU, U1y

2 2

2

3 3
— 9zvuxyux — 360U Uy — OXVUx Uy — vaxux + 3tV Uy + vaxxxux

45 3 45
+ Etvxutux + 6tvsuy + Exvtux — ?tvutxux + 60U, — YV, + 620U,

9 9 2
+ 6XVUxyx 4+ 6YVUxy — Euvuxx + 18tvu iy, — Ezvuzuxx + Tyvuyuxx

9 3 3
— 9zvuyuyy + vauxx + 3tUry Uy — Zzuxzvxx — Zlyuxyvxx + Ezuxyvxx

3 3
— BtUyxUxx — quxxvxx + Uxx — 3t0xlyyxz + S Z0xUxxz + Z]/Uxuxxy — 5ZUxUxxy

4 2

3 3
— 30U yxy + 30y Uxxx + 1xvx“xxx — XUxxx — YUxxx + Euvxxx — 3tUzVxxx

3 9 3
+ Ezuzvxxx + Zyuyvxxx - Ezuyvxxx + 3t0Uyxxz — szuxxxz + Zyvuxxxy

9 3 45 5
— Ezvuxxxy — 3t0Uxxxx — levuxxxx — 9ouy — Ttvuxxut + Ztvxxxut — 2x0;

3 3 9 15
— 2y + Euvt — 6tu,vr + Ezuzvt + Eyuyvt — 3zuyvt + Ktutvt + 6tvuy,

15 9 3
+ 9youy, — 7zvut2 + Eyvuty — 3zvupy — 6tvUL — Exvutx + 9yvuisy

15 15
— 620Uy — — Uy Upy + — 1t Upyx
4 4
15

15
— Ztvutxxx - 7tvutt,

Ze =12vu, + 12tv,u, — 3zvu, — 6tviu; + %zvtuz + 4xv; + 4yv, — 3uv,

TF,
X

Y,

Zr,

— 6vuy — 9yvzuy + 6zvzuy + 9yvuyz — 6zvuyZ — 60Uy — 12t0, Uy
— 3xvzuy + 12t0Uy; + 3x0Uy; — 36t0Ux Uy + IZVU Uy — 36EVUy ULy

+ 920Uy Uy — 12t0Uxxxy + 320Uxxxy — YvUr — 15t0 U — 2x01 — 2y04

3 9 3 15 3
+ Euvt + Eyuyvt — 3zuy vy + 6tuxv; + Exuxvt + 7tutvt + 9touy, + Ezvutz

9 3 15
— 12touy, — Eyvuty + 6zvup, — 18tvusy, — Exvutx + 3zoup — Etvutt;

1 1 1

2 2
3 1 3 3 1
= — §F1(t)uxy0 + EP{U — §F1(t)ux0y — 3F (H)uyvy — 1Fl(t)vxxy — §F1(t)0t/

3 1 3 1 1
= EFl(t)uxxv + EF{ZJ - EFl(t)uxvx — EFl(t)vxxx — EFl(t)vt,

1 1
= EF{U + Fi(t)vz — EFl(t)Ut}

9 27 9 2
+ —zu, v Uy + ?yuyvxux — 9zuyvyity + 18t0Uxz Uy — Ezvuxzux + ?yvuxyux
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1 1 1 1
Tr, = > 0 — vaFz(t +z)— EvaZ(t +z)— Eszz(t +z),

3 1 3
XFZ = — EFz(t + Z)Mxyv + EFZI'U — Euxvaz(t + Z) - 3uyvxF2(t + Z)

3 1
_ Z1—"2(1! +2) Uy — EUtFZ(t +2),
3 1, 3 1 1
Yr, = Euxsz(t +z)v+ Esz — Euxvsz(t +z)— ZlvxxxPz(t +z)— Evth(t +z),

1 1
Zp, = — EFZ’U +0v.F(t+z)— Evth(t +z).

4. Concluding Remarks

In this work, we used Lie symmetry methods to obtain analytical solutions of the (3+1)-dimensional
generalised KP Equation (3). The first solution contains an elliptic integral of the second kind,
an amplitude function, a delta amplitude function and a Jacobi cosine function. It is common
knowlegde that these functions degenerate to trigonometric or hyperbolic functions depending on the
behaviour of the parameter M2. Thus, the solution (13) is to our knowledge the most general solution
of (3) that has been obtained to date. Some of the solutions obtained were presented graphically.
Furthermore, we obtained logarithmic and rational solutions. Finally, we computed the conserved
quantities of Equation (3) using the multiplier method as well as Ibragimov’s conservation theorem.
The former method yielded a local low-order conserved quantity, while the later method yielded eight
conservation laws with each conserved vector corresponding to an infinitesimal generator.
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Appendix A. Prolongation Coefficients: Full Expansions

Ox =1x + ity — Uttx Gy — Uly — UREE — U3 — ”xuygi - ”y’gi — U=y
- uz‘ﬁ/

Cy =1y + Nuity — “tdzuy - ut‘:; - giux“y - ”x‘§§ - gguyuz - uzg; - uﬁéﬁ
- uygil

Tbx = Uptta ]y — Wl Uy — Epus — 2upCotiy — uplyytly — Uy Cotty — UpCylly
- ”%‘ﬁmux - ”y”t(ﬁu”x - ”zut‘ﬁu”x - ”t@%u”x + Nty — ”tg}u”x
— UsCpy — Ehl + gty — Uy &2 — 20pup E — Uy ity o — Uyl Eo
— tztts Gy — Uzt Gy — Uply — Uy — Uy Gy — UrCr + Uty — UFyy
- uy”tgagcu - ”zutéjlcu - ”xxgtz - utx(:tl - ”xyg? - ”ngf + Nix — utg}x

3 4 3
— UyGry — UzGpy — UyCiyllx,



Mathematics 2020, 8, 1012

Cty = UtTyuUy —

2
— Uy UGy tly —

4
- uzgtuuy -
- uyzutgi -
_ uxutgﬁu _
2
- uxgty -

gtz =UtyylUz — Mtéf

- uxut(:uuuz -

- utgtluuz -
- uyzut‘:?t -
— uyuZ, —
- uxg%z -
Qxx = Uuuu guu

- zutxéuux

- zuzgiuux -

- Zutx‘:alc -
ny = UxNyully —
uazcgzztuuy -
- utéalcuuy -
- uyyux?:’: -
+ Uxtyy — U
+ ny -
02z = Wuuu
- 2Mtz‘guuz
— Zuy(;‘guuz —
- Zutzé(;
éxxxy = uy”]uuuuu

3
- uyZ‘Zuuuux

1 3
- utgyuuuux -

2 .2
- 6uxxyguuux

2 2
- 6uyuxx§uuu Uy
4 2
- 3”yuxz guuu Uy

2 2
- 9uxy§xuu”

4 2
- Bungyuuu
+ 3uﬂ7xuuuu

Butéxyuu

- 4uxxxy€u Ux —

UGy —
”%‘:iu”y -
3y + g —
”tgguuy -
Uiy —

1
utgty -

utéuuuz -
uyg?uuz -
Uy Gy —
PGl —

1
utgtz -

- zuxygﬁux
Bl + Uxx Ty
zuxyg?c -
”xguu v
uxutguuuy
uzgélcuuy -
Uyl Gy —
*Ciu
uxgyzfy -
- ng
— 2uyzg;‘uuz
2z + Uz —
- 2“yz€2
uyf:uuuu
- uyutéuuuu x
uyé;uuuu?c

1
- 3utxy€uuu

utté,lluy — 2uty§3uy — utzt;‘fluy
uté’;uuy + rutly — unguuy
uxyutgi - qutyfﬁ - 2ututy§3, - uyyutg-?z
Uy — unly — iyGy — UGy + Uity

1 3 4
utyét - uyygt - ”yz‘:t + 1y

3 .2 2
gtuuy - utxguuy -

4
Uzt Gy lhy —

Uzl Cp —

“z”t‘:;u - “xyér% -
4

uzgty/

4u2

UpxCatlz — Uitz — tpy Cotlz — 2 Callz
Uy Coy e — Uz + Npllz — Ul
Efthz + Upzlly — Wzt o — UxttzE% — 2up
ooty & — Ui EE — UplL — Uy &S — Ui Co + Uiy
uyutggu - ungtz - Mtzgg - uyzg? - Mzzérzt1 + 1tz
”yg?zr
”tgllwuazc - ”ygiu” uzéuu
- zuxzcﬁux + 21 xu iy
— Ut &gy —

zuxz(:i + Mxx —

ngu
— 2ut§xuux
Uy UG — Uyl CF
y XX5u zZWXX5u
1 3 4
Ulyy — ”ygxx — UzGxs
2 1 3 4
Cxu y “xx(:u”y - “thu”y - Zuxyguuy - unguuy
— uzuxgﬁuuy — uxgiuuy + Mxully — uxé‘%uuy
§iyuy + Uxylu — Zuxuxyﬁﬁ - uxyutgi - qutyérll;
uzuxyéﬁ - uxxgﬁ - utx@i - uxyé; - uxzé’;
1 4 2 1 3
- uxufgyu - uzux‘:yu - uxygx - utygx - uyy'gx -
1 4
utgxy - uzgxy'
1
- ufguuu uyg

- 3“2263 U; + 277,zu Uz

3uxx§uux
— 2uy§xuux
— Zuxxij,zc

4
uyzéx

262”
— ZMszuMz
uzzuyéfl
”yég’y

3
utyguuu -

zuxz‘:uuz
- 2ut€zuuz
uzzux(:% - uzzut(;a - - 2uxz§§
- 2“22(’:;} + Mzz — ”xggz - ut'ﬁz -
4uxy‘:uuu

uz”yéuuuu YT 77yuuuu3

- 3uy€xuuuu - 3§xyuuu
3uxyz§uuu + 3uxy77uuuu2

- 6uyuxy€uuuux

- ‘:ﬁuuu “yy‘fiuu”i
yguuuu
- uzgyuuuu
3“xyy‘§uu
- 3Mxyut‘:uuuux - 3uyutx§uuuux
- 3uzuxy§§uuu§ - 6”XX§§uuu92c - 3ufx§;uuu2 - 3uxy(:;uuu?c
- 3uty€>1cuu Suyygxuuux 3uyz‘:fxuu

— 3u§§iuuu” - 3uzuy§xuuuux + BWquuu?c

3u26xyuu - 3632(xyuu§c

3”txxy§uux - 3uxxyy€3“x

3”y”t§xuuu
3”y€xyuu

”xxxxgu Uy —

3”y§xxuu

”txxx(:u”x -
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- uxxxyézux - 3uxxyz§3ux - uxxngﬁux + 3uxxy77uuux - 12uxyuxx612mux

— 4uyuxxx§§uux — 3uxxyut(';’3,uux — 3uxxuty§3mux — 6uxyutx§3mux

— 3uyutxx(;‘3mux — 6u§y§f’mux — 3uyyuxx§iuux — 6uyuxxy§ﬁuux

- 6“xz”xy§fmux - 3”yz”xx§§uux - 3Uyuxxz§§uux - 3uzuxxy§§u”x

+ iy Upx Nyl — 3uyuxxut§}muux - 3u§uxx§3uuux - 3uzuyuxx§fmuux

— 4uxxx€§uux — 3utxx§;uux - 3uxxy€§uux — 3uxxz€;1uux + 3lex’7yuuux

— 3uxxut§;m,ux — Buyuxx(j;uuux — 3uzuxx§‘yluuux — 9uxxy§§uux

— BllpxyCry i — Oy Coy e — Olhyz gy Glhy ey — Vbt Coyp U
— 6uxyutfj,1muux — 6uyutxfj}muux — 12uyuxy§iuuux — 6uyux2<§§uuux

- 6”2”9(1]6;1(1414”36 - 9”xx§;2cyu”x - 6”tx€:1cyu”x - 6“xy§?cyu“x - 6”ngjlcyu”x
- 6”361]632(9(14”36 - 3”ty§;1cxu”x - 3“yy§2xu”x - 3”yzgixu”x + 3uyHxxuulix

- 3”yutéyltxuuux - 3u§§?cxuuux - 3uzuy‘:§xuuux + 377xxyu“x - 3ut631cxyuux
_ 3My§;3cxyuux - 3uzg§cxyuux - uygyzcxxuux - gyzcxxyux + UxxxyMu

- 6uxxuxxy§%¢ - 4uxyuxxx‘:121 - uxxxyutgi - uxxxutygi - 3uxxyutx§}¢

- 3uxxutxy§}[ - 3Mxyutxx§3¢ - 3uxyyuxxgg - 6Mxyuxxy¢:z - uyyuxxxgg

- uyuxxxy‘:z - 3uxyzuxx(:§ - 3uxyuxxz§3 - 3uxzuxxy§3 - uyzuxxx(’-fﬁ

- uz”xxxy':ﬁ + 3uxy”xx77uu + UyUxxxfuu — 3”yu;2cx‘:%m - 3”xy”xx”t§}m

- uyuxxxutgllm - 3”yuxxutx§3¢u - 6”yuxyuxx‘:2u - uiuxxxgiu

- 3uyuxzuxx€;4m - 3uzuxyuxx§§u - uz”y“xxxéﬁu + UxxxTyu — 3u§x§§u

- uxxxut‘.f;u - 3uxxutx§;u - 3uxyuxx€;u - uyuxxx‘:;u - 3uxzuxx§§u

- uzuxxx‘:;u - 3”xxxy€;2( - uxxxxggz( - 3utxxy§;l¢ - utxxxg;lc - 3uxxyy§?(

- uxxxyg?( - 3“xxyz§;1c - uxxxz‘:i + 3uxxy77xu - 9uxyuxx€32cu - 3uyuxxx§%u
- 3uxxy”t‘:alm - 3”xx”ty‘§;lcu - 6”xy”txgalcu - 3“y”txxgalm - 6”32@6?@1

— 3uwuxx§3°’m — 6uyuxxy§§u — 6uxzuxy§§u — Buyzuxxéiu — Suyuxngfm

_ 3uzuxxy§fm + Buy U xuy — Buyuxxuté}mu — 3u§uxx§fmu — Suzuyuxxffiuu
_ 3”xxx632cy - 31/ltxx§31(y - 3“xxy€§;y - 3uxxz(’:iy + 3uxx77xyu - 3uxxut‘:;1;yu

- 3”y”xx§50’cyu - 3”zuxx§§yu - 3”xxy532cx - 3“txy§alcx - 3uxyy§ix - 3”xyzgix
+ Bty xu — Bttty — BthyUeCy — BtbytixCry — Ottythay Sy

- 3“y”x2€ixu - suzuxy‘ﬁxu - 3uxx§)2cxy - 3“tx§31cxy - 3uxy§93cxy

- 3ung§cxy - uxygixx - utyér)lcxx - uyyéixx - uyzgixx + UyMxxxu — uyufgalcxxu

223 4 1 3 4
- uy‘:xxxu - uzuy‘:xxxu + Nxxxy — utgxxxy - unyxxy - uzgxxxy'
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