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Abstract: The sequence of the k-generalized Fibonacci numbers (F(k)
n )n is defined by the recurrence

F(k)
n = ∑k

j=1 F(k)
n−j beginning with the k terms 0, . . . , 0, 1. In this paper, we shall solve the Diophantine

equation F(k)
n = (F(l)

m )2 + 1, in positive integers m, n, k and l.
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1. Introduction

We recall the Fibonacci sequence (Fn)n which is defined by the recurrent relation Fn+2 = Fn+1 + Fn,
where Fj = j, for j ∈ {0, 1}. The Fibonacci numbers have been the main object of many studies (see,
for example, [1–6] and references therein).

Like any very studied object in Mathematics, the Fibonacci sequence admits many generalizations
(in several distinct ways). Among these generalizations, we are interested in the k-generalized Fibonacci
sequence (F(k)

n )n≥−(k−2) which is defined by the recurrence relation

F(k)
n = F(k)

n−1 + F(k)
n−2 + · · ·+ F(k)

n−k,

with initial values F(k)
j = 0 (for j ∈ [−(k− 2), 0]) and F(k)

1 = 1. For instance, if k = 2, we have the usual

Fibonacci numbers (F(2)
n )n, for k = 3, (F(3)

n )n the sequence is called the Tribonacci sequence and so on
(Kessler and Schiff [7] remarked the appearance of these numbers in probability theory and in certain
sorting algorithms).

In the past few years, k-Fibonacci numbers are in the mainstream of many works. For example,
in 2013, two related conjectures were proved. The first one (proposed by Marques [8]) was proved
by Bravo and Luca [9] and is related to repdigits among k-Fibonacci numbers. The second conjecture
(proposed by Noe and Post [10]) concerns the intersection between these sequences, and was solved
(independently) by Marques [11] and Bravo, Luca [12]. In addition, Chaves and Marques [13] solved
the equation (F(k)

n )2 + (F(k)
n+1)

2 = F(k)
m and then Bednařík et al. [14] generalized this study to the

equation (F(k)
n )2 + (F(k)

n+1)
2 = F(l)

m . In 2019, Trojovský [15] proved that the Diophantine equation

F(k)
m = mt, with t > 1 and m > k + 1, has only the solutions F(2)

12 = 122 and F(3)
9 = 92.

We remark that the problem of determining all the perfect powers among Fibonacci numbers
was settled in a seminal work due to Bugeaud, Mignotte, and Siksek [16]. However, the problem of
solving completely the equation F(k)

n = yt, for k > 2 and t > 1, is still far from being solved. Indeed,
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the particular case (k, t) = (3, 2) (i.e., to find all Tribonacci numbers which are perfect squares) is a
known open problem which appeared as Problem 1 in a paper due to Pethő [17].

In this paper, we are interested in this kind of problem. Indeed, our goal is to study when a term
of a k-generalized Fibonacci sequence is near to a perfect square, whose basis is also a generalized
Fibonacci number (possibly of another order). More precisely, we have the Diophantine equation

F(k)
n = (F(l)

m )2 + c. (1)

Thus, in this paper, we shall solve this equation for c = 1 by proving that

Theorem 1. The solutions of Equation (1), for c = 1, in m, n, k and l, with min{m, n} ≥ 1 and min{k, l} ≥
2, are

(n, m, k, l) ∈ {(3, 1, k, l), (3, 2, k, l), (5, 3, 2, l)}.

Remark 1. We point out that the method presented here can be used to obtain all solutions of Equation (1),
for any previously fixed value of c (the choice of c = 1 has nothing of special). See a more detailed discussion
(on this fact) in Section 8. In addition, we remark that it is well-known that (for any given c) this equation has
only finitely many solutions (by a result of Nemes and Pethő [18]).

Remark 2. The Mandelbrot set is the set of complex numbers c for which the sequence (zn)n defined by a
nonlinear recurrence zn+1 = z2

n + c, with z0 = 0, does not diverge. Thus, the problem of solving the Diophantine
Equation (1) can be rephrased as: For which values of t > 0, a pair of consecutive zt’s belongs to (F(k)

n )× (F(l)
m )?

For proving our main result, we shall apply Baker’s theory, a Dujella–Pethö reduction method,
some key arguments due to Bravo-Luca, and a combinatorial lemma to deal with an extremal case.

2. Auxiliary Results

It is known that the characteristic polynomial of (F(k)
n )n is

ψk(x) := xk − xk−1 − · · · − x− 1.

This polynomial has only one root outside the unit circle (indeed this zero is a Pisot number,
i.e., all the other zeros have absolute value strictly smaller than 1). In addition, this zero is simple and
lies in the interval (2(1− 2−k), 2) (see [19]). Furthermore, Bravo and Luca [12] (Lemma 1) provided
the estimates

αn−2 ≤ F(k)
n ≤ αn−1 (2)

for all n ≥ 0, where α is the root of ψk(x) with largest absolute value.
There are many closed (non-recurrent) formulas for the nth term of (F(k)

n )n (see [20–23]). However,
we are interested in the undermentioned consequence of the simplified “Binet-like” formula due to
Dresden and Du [24] (Thm 2):

F(k)
n = gαn−1 + En(k), (3)

with |En(k)| < 1/2, for all n, where g := g(α, k), for g(x, y) := (x− 1)/(1 + (y + 1)(x− 2)). Moreover,
it is known that g ∈ (1/2, 3/4) and a useful fact from [13] is that gα > 1.

As mentioned before, we also shall use lower bounds for linear forms in logarithms. Among the
several results on this topic, we decided to use one due to Bugeaud, Mignotte and Siksek [16]
(Theorem 9.4).

Lemma 1. Let γ1, . . . , γt be nonzero real algebraic numbers and let b1, . . . , bt be nonzero integers. Let D =

[Q[γ1, . . . , γt] : Q] and let Aj be a real number satisfying
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Aj ≥ max{D · h(αj), | log αj|, 0.16}, for j ∈ [1, t].

Take
B ≥ max{|b1|, . . . , |bt|}.

If |γb1
1 · · · γ

bt
t − 1| is nonzero, then

|γb1
1 · · · γ

bt
t − 1| ≥ exp(−1.4 · 30t+3 · t4.5 · D2 · (1 + log D)(1 + log B)A1 · · · At).

In the previous lemma, the logarithmic height of an n-degree algebraic number γ is defined as

h(γ) =
1
n
(log |a|+

n

∑
j=1

log max{1, |γ(j)|}),

where a is the leading coefficient of the minimal polynomial of γ and (γ(j))1≤j≤n are the algebraic
conjugates of γ.

Some basic properties of the logarithmic height are:

i. h(αβ) ≤ h(α) + h(β);
ii. h(αr) = |r| · h(α), for all r ∈ Q∗ (nonzero rational numbers) and α ∈ Q (algebraic numbers);
iii. h(1/α) = h(α).

After establishing an upper bound for one of our variables (which is in general too large to
perform the necessary computations), the next step makes it substantially smaller. For this purpose,
our next ingredient is a theorem due to Dujella and Pethö [25]. Recall that, for a real number x, the Nint
function at x is ‖ x ‖:= min{|x− n| : n ∈ Z}.

Lemma 2. Let M ∈ Z>0 and let γ, µ ∈ R, such that γ is irrational. Let p/q be a convergent of the
continued fraction expansion γ with q > 6M, and let A, B be real numbers with A > 0 and B > 1.
If ε :=‖ µq ‖ −M ‖ γq ‖ is positive, then the Diophantine inequality

0 < mγ− n + µ < A · B−k

does not have solution in integers m, n, and k with

m ≤ M and k ≥ log (Aq/ε)

log B
.

Our last ingredient is a combinatorial argument which will be essential to deal with the extremal
case n = 2m− 2.

Lemma 3. Let k, m be any integers. For all k ≥ 2 and m > k + 1, we have

F(k)
2m−2 < (F(k)

m )2 + 1.

Proof. It is well-known that F(k)
r+1 counts the tiling of an (1× r)-board by tiles of lengths up to k. Thus,

we have F(k)
2m−2 tiles of an (1× (2m− 3))-board. On the other hand, we can see what happens at the

mark m − 1 (from left to right and we have it as a boundary point). For coverings by tiles which
do not intersect the position (m − 1, m), we have F(k)

m−1F(k)
m possible configurations. Now, for the

intersecting case, we can have the apparition of a part of length t in the right part of the original board
(for t ∈ {1, . . . , k− 1}, since k− 1 < m− 2). This gives at most F(k)

m−1−tF
(k)
m possible configurations. Thus,

the total number of configurations is at most F(k)
m−1F(k)

m +
(

∑k−1
t=1 F(k)

m−1−t

)
F(k)

m = (F(k)
m )2. In conclusion,

F(k)
2m−2 ≤ (F(k)

m )2 which completes the proof.
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Now, we are ready to start the proof of our main result. We shall split it in some sections in order
to make the text more readable.

3. An Inequality for m in Terms of l

Our goal is to solve the Diophantine equation

F(k)
n = (F(l)

m )2 + 1. (4)

To avoid unnecessary repetitions, we shall consider l > k (the case l ≤ k can be handled in the
same way). By the auxiliary results and Dresden–Du formula, we can rewrite (4) as

h2β2m−2 − gαn−1 = En(k)− 2hβm−1Em(l)− (Em(l))2 − 1,

where g := g(α, k) and h := g(β, l) and both |En(k)| and |Em(l)| are smaller than 1/2, for all positive
integers m and n. Thus,

|h2β2m−2 − gαn−1| < 1/2 + hβm−1 + (1/2)2 + 1 = hβm−1 + 7/4, (5)

and, dividing by h2β2m−2, we get

|(g/h2)β−2m+2αn−1 − 1| <
(

hβm−1 + 7/4
h2β2m−2

)
<

9
βm−1 , (6)

where we used hβ > 1.
Note that, if we put Γ1 := (g/h2)β−2m+2αn−1 − 1, then Γ1 6= 0. Indeed, suppose, towards a

contradiction, that h2β2m−2 = gαn−1. Since α and β have degree k and l respectively, with l > k,
then there exist σi and σj, i 6= j, embeddings of Q(β) into C, satisfying σi(α) = σj(α), which gives
(σ−1

j ◦ σi)(α) = α, and (σ−1
j ◦ σi)(β) = β′ 6= β, where β′ is one of the conjugates of β. Therefore, by

applying (σ−1
j ◦ σi), one can get the following contradiction:

1 > (h(β′, l)β′)2m−2 = gαn−1 >

(
7
4

)n−2

which is absurd for n ≥ 2. Thus, in order to apply Lemma 1, we choose

γ1 := g/h2, γ2 := α, γ3 := β, b1 := 1, b2 := n− 1, b3 := −2m + 2.

We have that h(γ2) = h(α) = (log α)/k, h(γ3) = h(β) = (log β)/l, and, by the mentioned
properties of the logarithmic height, we obtain

h(γ1) = h(g/h2) ≤ h(g) + 2h(h) ≤ 3 log k + 6 log l < 9 log l.

Since D = [Q(α, β) : Q] ≤ lk < l2, we can choose A1 := 9l2 log l, A2 := l log α and A3 := l log β.
In addition, the following inequalities hold:

2
n−2

2 < αn−2 ≤ F(k)
n = (F(l)

m )2 + 1 < β2(m−1)+1 < 22m−1, and

αn−1 ≥ F(k)
n = (F(l)

m )2 + 1 ≥ β2m−4 + 1 ≥ β2m−5 > α2m−5.

This implies that 2m− 4 ≤ n− 1 < 4m− 1. However, note that, by Lemma 3, the cases in which
n− 1 ∈ {2m− 4, 2m− 3} can not happen, since

F(k)
2m−3 < F(k)

2m−2 < (F(k)
m )2 + 1 < (F(l)

m )2 + 1.
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Thus, 2m− 2 ≤ n− 1, and hence max{1, n− 1, 2m− 2} = n− 1. Thus, we choose B := n− 1.
Therefore, the conditions to apply Lemma 1 are fulfilled, and since

1.4× 303+3 × 34.5 × (lk)2 × (1 + log (lk)) ≤ 4.1× 1011l4 log l

holds for l ≥ 4, then

|Γ1| > exp (−4.1× 1011l4 log l(1 + log(n− 1))(9l2 log l)(l log α)(l log β))

> exp (−1.8× 1012 × l8(log l)2(1 + log(n− 1))). (7)

Now, since n− 1 < 4m and, by combining (6) and (7), we have

9
βm−1 > |Γ1| > exp (−4.5× 1012 × l8(log l)2 log m)

and so
m

log m
< 8.1× 1012 × l8(log l)2.

Hence, from the useful fact that

x
log x

< A⇒ x < 2A log A , (8)

whenever x > e and A ≥ 3, we get the following upper bound for m in terms of l

m < 4.9× 1014 × l8(log l)3 . (9)

4. The Case of Small l

Next, we treat the cases when l ∈ [3, 238]. In this case, k < l ≤ 238, and inequality (9) implies that
m < 8.27× 1035 and n < 4m < 3.31× 1036. Now, write

Λ1 := (n− 1) log α− (2m− 2) log β + log(g/h2).

Suppose Λ1 > 0 (the other case can be handled in the same way). Then, 0 < Λ1 < eΛ1 − 1 =

(g/h2)β−2m+2αn−1 − 1 < 9× β−(m−1). Thus, we have

0 < (n− 1) log α− (2m− 2) log β + log(g/h2) < 9× β−(m−1) .

By dividing the above inequality by log β, we get

0 < (n− 1)γ− (2m− 2) + µ < 16.1× β−(m−1), (10)

where the numbers γ and µ are defined as γ := γk,l = log α/ log β and µ := µk,l = log(g/h2)/ log β.
We claim that γ is irrational. Indeed, if γ = p/q, for some p, q ∈ Z>0, we would obtain αq = βp,

which is impossible by using the same argument as for Γ1 6= 0. Let us denote q(m,k,l) by the denominator
of the m-th convergent of the continued fraction expansion of γk,l .

By setting M := 3.31× 1036, we use software Mathematica R© (see book [26] and our codes of these
computations in Appendix A) to get

min
3≤k≤237
4≤l≤238

{q(80,k,l)} > 2.1× 1047 > 6M,
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and also, for ε(k,l) := ||µ · q(80,k,l)|| −M||γ · q(80,k,l)||, we obtain that

min
3≤k≤237
4≤l≤238

{ε(k,l)} > 3.9× 10−144.

Note that the all conditions to use 2 are satisfied for the choice of A = 16.1 and B = β, and hence
there is no integer solution to inequality (10) (and consequently no integer solution to Equation (4)) for
n and m with

log(A · q(80,k,l)/ε(k,l))

log(B)
≤ m− 1 and n− 1 ≤ M,

for all k ∈ [3, 237] and l ∈ [4, 238]. Since n− 1 < M, then, we have

m− 1 <
log(16.1× q(80,k,l)/ε(k,l))

log(β)
< 973.

Therefore, m ≤ 973 and so n < 4m ≤ 3892. Now, we prepare a simple routine in Mathematica R©

which returns only the solutions

(n, m, k, l) ∈ {(3, 1, k, l), (3, 2, k, l), (5, 3, 2, l)}.

In conclusion, there are no solutions of (4) for k < l ≤ 238 and m > 3 (and so for n > 3).

5. The Case l ≥ 239

Now, we deal with the case l ≥ 239. For that, the following holds:

m < 4.9× 1014 × l8(log l)3 < 2l/2 .

By applying a very useful argument, due to Bravo and Luca [12] (pp. 2130–2132), we deduce that

|hβm−1 − 2m−2| < 2m−1

2l/2 +
2ml
2l +

2m+1l
23l/2 < 4× 2m−2

2l/2 , (11)

where the last inequality of (11) holds, since 4l < 2l/2 and 8l < 2l are true for l ≥ 11. Now, by the
Mean Value Theorem, we have

|h2β2m−2 − 22m−4| ≤ 2 max{hβm−1, 2m−2}|hβm−1 − 2m−2| < 4× 22m−2

2l/2 , (12)

where we used (11) together with hβm−1 < 2m−1. Thus, by combining (5) and (12), we get

|22m−4 − gαn−1| ≤ |h2β2m−2 − 22m−4|+ |gαn−1 − h2β2m−2|

< 4× 22m−2

2l/2 + hβm−1 +
7
4

.

Therefore, after dividing the last inequality by 22m−4, we get∣∣∣∣ gαn−1

22m−4 − 1
∣∣∣∣ < 4

2l/2−2 +
hβm−1

22m−4 +
7

22m−2 <
4

2l/2−2 +
1

2m−3 +
7

22m−2 . (13)

If m ≤ l, then F(k)
n = (F(l)

m )2 + 1 = 22m−4 + 1. On the other hand, we can slightly modify
the Bravo and Gomez’s [27] argument to find k-Fibonacci numbers of the form 2t − 1, to work on
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the equation F(k)
n = 2t + 1. Thus, in our case, the only solution is (k, m, n) = (2, 3, 2). Therefore,

m > l ⇒ m− 3 > l − 3 > l/2− 2, for all l ≥ 3, and we can rewrite (13) as∣∣∣∣ gαn−1

22m−4 − 1
∣∣∣∣ < 12

2l/2−2 . (14)

Note that, if Γ2 := gαn−124−2m − 1, then Γ2 6= 0. In fact, we can proceed as before to conclude that,
if gαn−1 = 22m−4, then, by Galois conjugation, we arrive at an absurdity as 1 > 22m−4. Thus, in order
to apply Lemma 1 again, we consider

β1 := g, β2 := α, β3 := 2, c1 := 1, c2 := n− 1, c3 := 4− 2m.

Since h(β1) = h(g) ≤ 3 log k, h(β2) = h(α) = log α/k, h(β3) = h(2) = log 2 and D′ = [Q(α) :
Q] = k, then we can choose A′1 := 3k log k, A′2 := log 2 and A′3 := k log 2. Again, we can take
B′ := n− 1, and thus the conditions to apply Lemma 1 are satisfied yielding

|Γ2| > exp (−2.80× 1011k2 log k(1 + log (n− 1))(3k log k)(log 2)(k log 2))

> exp (−4.79× 1011k4 log k2 log (n− 1)). (15)

Now, from (9) and the fact that n < 4m, we obtain log (n− 1) < 13.6 log(l), which holds for
l ≥ 239. Thus, using this inequality, we rewrite (15) as

|Γ2| > exp (−6.52× 1012k4 log k2 log l).

We obtain, by combining the previous inequality with (14),

(l/2− 2) log 2− log 12 < 6.52× 1012k4 log k2 log l

and so
l

log l
< 1.89× 1013k4 log k3.

Again, from inequality (8), we get

l < 1.21× 1015k4(log k)3. (16)

Now, by (9) and (16), we arrive at

n < 4.2× 10140k32(log k)27. (17)

6. The Case of Small k

Now, we consider the cases where k ∈ [3, 1782]. By (16) and k ≤ 1782, we have l ≤ 5.12× 1030.
Write Λ2 := (n− 1) log α− (2m− 4) log 2− log g. Suppose Λ2 > 0 (again, the other case is completely
similar). Then,

0 < Λ2 < eΛ2 − 1 = gαn−124−2m − 1 < 12× 2−l/2+2

and so
0 < (n− 1) log α− (2m− 4) log 2 + log g < 12× 2−l/2+2.

By dividing by log 2, we get

0 < (n− 1)γ′ − (2m− 4) + µ′ < 69.25× 2−l/2, (18)

where γ′ := γ′k = log α/ log 2 and µ′ := µ′k = log g/ log 2.



Mathematics 2020, 8, 1010 8 of 11

Note that γ′ is irrational, since 0 < log α/ log 2 = p/q, for p, q positive integers, gives, when taking
conjugates, αq = 2p ⇒ 1 > (α(i))q = 2q, which is absurd. Now, we define qm,k as the denominator of
the m-th convergent of the continued fraction of γ′. By taking M′ := 1.81 · 10268, we use Mathematica R©

again to get
min

3≤k≤1782
q600,k > 5.1× 10301 > 6M′.

We also have that ε′k := ||µ′q600,k|| −M′||γ′q600,k|| > 2.6× 10−236 for all k ∈ [3, 1782]. Since the
assumptions of Lemma 2 are satisfied, for A′ = 69.25 and B′ = 2, we can conclude that there are no
solutions of inequality (10) for n and k satisfying

n− 1 < M and
l
2
>

log(A′ · q200,k/ε′k)

log(B′)
.

Thus, l/2 < 3669, and then 239 ≤ l ≤ 7339. By using (9) together with n < 4m, we obtain
n < 1.17× 1049. By using the reduction method again (in inequality (18)), we get l < 225, which was
already solved.

7. The Final Step

Now, we still have l ≥ 239. Then, it remains to verify the cases when k ≥ 1783. Thus, the following
inequality holds:

n < 4.42× 10118k32(log k)35 < 2k/2 .

Using again the argument due to Bravo and Luca, we obtain

|gαn−1 − 2n−2| < 2n−1

2k/2 +
2nk
2k +

2n+1k
23k/2 < 4× 2n−2

2k/2 , (19)

where we used that 4k < 2k/2 and 8k < 2k are true for k ≥ 11. Combining (5), (12), and (19), we get

|22m−4 − 2n−2| ≤ |h2β2m−2 − 22m−4|+ |gαn−1 − h2β2m−2|+ |gαn−1 − 2n−2|

< 4× 22m−2

2l/2 + hβm−1 +
7
4
+ 4× 2n−2

2k/2 . (20)

If n ≤ k, then (4) becomes 2n−2 = F(k)
n = (F(l)

m )2 + 1, which cannot happen for n ≥ 4, since a
square plus 1 is never divisible by 4. The remaining cases, n ∈ {2, 3}, give us the solutions already
known. It follows that n > k.

Therefore, by dividing (20) by 2n−2 and using the inequalities n− 2 ≥ 2m− 3, (n− 1)/2 ≥ m− 1,
n > k and l > k, we get

|22m−n−2 − 1| < 8
2l/2 +

1
2(n−3)/2

+
7
2n +

4
2k/2 <

20
2(k−3)/2

.

Since m > l > k, as a consequence of Lemma 3, we have n 6= 2m − 2, and then
|22m−n−2 − 1| > 1/2, which, combined with the previous inequality, gives k ≤ 13, which is a
contradiction. This completes our proof.

8. Further Comments: The Case of a General c

As mentioned in Remark 1, we only choose c = 1 in order to explicit all calculations. In the
general case, the equation

F(k)
n = (F(l)

m )2 + c

has infinitely many solutions (n, k, m, l, c) (this follows, clearly, because the linear dependence of
equation in the variable c). For this reason, the more interesting case happens when c ≥ 1 is fixed.
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In this case, it seems reasonable to expect to deal with the case of an upper bound for all other variables
(i.e., n, m, k and l) in terms of c. In fact, the proof is completely similar until we arrive at the inequality
(6), which would be

|(g/h2)β−2m+2αn−1 − 1| < 11c
βm−1 .

Now, we split the proof into two cases:

• If βm/2 < c. In this case, we get directly the bounds

l < m < 4 log c/ log 2 and k < n < 2 + 2 log(2c4)/ log 2,

where the last inequality is obtained from

(
√

2)n−2 < F(k)
n = (F(l)

m )2 + c < β2m−2 + c < c4 + c ≤ 2c4.

• If βm/2 ≥ c. For this case, inequality (6) becomes

|(g/h2)β−2m+2αn−1 − 1| < 22
βm/2

which does not depend on c and thus, from this point on, we simply mimic the proof of Theorem 1.

9. Conclusions

In this paper, we study a Diophantine problem related to a higher order generalization of the
Fibonacci sequence. In fact, the k-generalized Fibonacci numbers, denoted by (F(k)

n )n, are defined
by the kth order recurrence F(k)

n = ∑k
j=1 F(k)

n−j with initial values 0, . . . , 0, 1 (k terms), where F(k)
1 = 1.

In particular, we solve completely the Diophantine equation Fk
n = (F(l)

m )2 + 1 (which can be related to
the problem of terms two (possibly distinct) generalized Fibonacci sequences as consecutive terms
of an orbit in a quadratic dynamics related to the Mandelbrot set). The main tools in the proof are
Baker’s theory, reduction, and Bravo–Luca methods (combined with a combinatorial lemma and some
Mathematica R© routines).
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Appendix A. Mathematica Commands

Below, we shall present the Mathematica commands used along the paper (the calculations in this
paper took roughly four days on a 2.5 GHz Intel Core i5 4 GB Mac OSX.).

• The nth term of the k-generalized Fibonacci sequence F(k)
n :

F[n_, k_] :=
SeriesCoefficient[Series[x/(1 - Sum[x^j, {j, 1, k}]), {x, 0, 1100}], n]

• The characteristic polynomial ψk(x)
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s[x_, k_] := x^k - Sum[x^j, {j, 0, k - 1}]

• The dominant root α of ψk(x):

alphasd[k_] := x /. Last[NSolve[s[x, k], x, 1400]]

• The function g(α, k):

gsd[k_] := (alphasd[k] - 1)/(2 + (k + 1)*(alphasd[k] - 2))

• The denominator of the nth convergent of the continued fraction of x:

DeFrac[x_, n_] := Last[Denominator[Convergents[x, n]]]

• The number γ := γk,l in (10):

gama[k_,l_] := Log[alphasd[k]]/Log[alphasd[l]]

• The Nint function of x, i.e., ||x||:

Near[x_] := Min[Abs[x - Floor[x]], Abs[Ceiling[x] - x]]

• The number µ := µk,l in (10):

Mi[k_,l_] := Log[gsd[k]/gsd[l]^2]/Log[alphasd[l]]

• The number ε(k,l) := ||µ · q(80,k,l)|| −M||γ · q(80,k,l)||:

e[k_, l_] := Near[Mi[k,l]*DeFrac[gama[k,l], 80]]
-3.31*10^(36)*Near[gama[k,l]*DeFrac[gama[k,l], 80]]
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14. Bednařík, D.; Freitas, G.; Marques, D.; Trojovský, P. On the sum of squares of consecutive k-bonacci numbers
which are l-bonacci numbers. Colloq. Math. 2019, 156, 153–164. [CrossRef]

15. Trojovský, P. On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes. Mathematics
2019, 7, 700. [CrossRef]

16. Bugeaud, Y.; Mignotte, M.; Siksek, S. Classical and modular approaches to exponential Diophantine equations
I. Fibonacci and Lucas powers. Ann. Math. 2006, 163, 969–1018. [CrossRef]
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