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Abstract: Competition graph is a graph which constitutes from a directed graph (digraph) with an edge
between two vertices if they have some common preys in the digraph. Moreover, Fuzzy competition
graph (briefly, FCG) is the higher extension of the crisp competition graph by assigning fuzzy value to
each vertex and edge. Also, Interval-valued FCG (briefly, IVFCG) is another higher extension of fuzzy
competition graph by taking each fuzzy value as a sub-interval of the interval [0, 1]. This graph arises in
many real world systems; one of them is discussed as follows: Each and every species in nature basically
needs ecological balance to survive. The existing species depends on one another for food. If there
happens any extinction of any species, there must be a crisis of food among those species which depend
on that extinct species. The height of food crisis among those species varies according to their ecological
status, environment and encompassing atmosphere. So, the prey to prey relationship among the species
cannot be assessed exactly. Therefore, the assessment of competition of species is vague or shadowy.
Motivated from this idea, in this paper IVFCG is introduced and several properties of IVFCG and its
two variants interval-valued fuzzy k-competition graphs (briefly, IVFKCG) and interval-valued fuzzy
m-step competition graphs (briefly, IVFMCG) are presented. The work is helpful to assess the strength of
competition among competitors in the field of competitive network system. Furthermore, homomorphic
and isomorphic properties of IVFCG are also discussed. Finally, an appropriate application of IVFCG
in the competition among the production companies in market is presented to highlight the relevance
of IVFCG.

Keywords: interval-valued fuzzy competition graph; interval-valued fuzzy p competition graph;
interval-valued fuzzy neighbourhood graph; interval-valued m-step fuzzy competition graph;
homomorphism of graph products

1. Introduction

Cohen [1] first developed the concept of competition graph (CG) to solve the problem of the food web
in ecology. The problem of a food web is to describe the predator-prey relationship among species in the
community. Food web is a relationship network framed to describe the relationships among food habits
of species. It is a fact that there is a predator-prey relation in ecosystem among the species. The plants
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are the main source of energy for all the living entity. Species are classified into few levels depending on
the predator-prey relationship; for example, primary producer (plants), primary consumer (herbivorous),
secondary consumer (carnivorous) and omnivorous. In ecosphere, the plants those are the primary
producers can produce through photosynthesis. Herbivorous eats only plants for energy, carnivorous
takes herbivorous as their food. There is no unique choice of food to omnivorous. From primary producers
to secondary consumers there is a food chain among themselves. But the food web is not same at all as a
food chain. An example of a food web is shown in Figure 1. In this figure, grasses are the main source of
food and grasshoppers eat them, frogs eat grasshoppers, snakes eat frogs, peacocks have snakes but, eagle
depends on snakes as well as grasshoppers. If some species say grasshopper, abolished in this food web,
other species (here, eagle) who depend on the abolished species may either exterminate or may have to
make every effort for existence adapting another food habit depending on ecological nook, habitat and
surrounding atmosphere. Same species may have different food habits in different places depending on
ecosystem, habitat and surrounding atmosphere. In this example, shown in Figure 1, it is considered that
in a certain ecosystem, 70–80% eagle depends on the grasshopper and 30–40% on snake for his food need.
These can be transferred to its similar correspondence to interval-valued fuzzy number as [0.7, 0.8] and
[0.3, 0.4] respectively. Peacock has 100% dependence on snake, the snake has 100% dependence on frog
and frog has that on a grasshopper. Grasshopper depends only on grass. If any two species depends on
the same species, there must be a competition between those two species. Being motivated by this idea, we
can model up this natural phenomenon as an IVFCG. In addition to ecology, this graph model has many
uses in circuit designing, economical model and coding as well as energy systems, etc.

Figure 1. An example of a food web.

We have generalized the model to its more realistic cases as an IVFCG. In IVFCG, the vertices and
edges may be considered as an interval of numbers instead of precise numbers.

Graph theory has an extensive sector of applications in the real world. In 1975, Rosenfeld [2]
generalizes the Euler’s graph theory model to fuzzy graph (briefly, FG) theory. Before generalizing graph
theory, he has studied the fuzzy relation (briefly, FR) of fuzzy sets and he also introduced several types of
FGs. The scope of FG theory is widening fast for its demand in society. The FG theory is being extensively
used to solve the problems on the system where there is a network which is either physical, biological
or artificial such as, the neuron in the human brain, rail routing system, transportation problem, traffic
signaling system, scheduling problem, etc. In the fuzzy field of mathematics, there are various types of
FGs which are classified as follows:

1. the set of all vertices is crisp and the set of all edges is fuzzy
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2. the set of all vertices is fuzzy and the set of all edges is crisp
3. the set of all vertices is fuzzy and the set of all edges is fuzzy
4. the sets of all vertices and edges are crisp with fuzzy connectivity.

Among these, the most studied type of FGs is the third one, as this is the more general case of FGs.
Fuzzy systems are applied to the problems where approximate reasoning is involved.

A fuzzy set (FS) δ is a pair δ = (S, δ) the membership function (MF) δ : S→ [0, 1] where S is a vertex
set. There are different types of FSs which are extended further such as BFS, interval-valued FS (IVFS),
intuitionistic FS, etc.

Zadeh [3] developed the concept of IVFSs as a generalization of FSs in which the membership values
lies in [0, 1] instead of a precise number. Since the IVFS is an interval number, it is more strong enough to
consider real-world problems than the traditional FSs. Therefore, it has more area of applications such as
medical diagnosis, multivalued logic, fuzzy control, approximate reasoning, intelligent control, etc.

1.1. Motivation and Main Contribution of the Proposed Work

As we have seen, there is competition in most of our real-world problem, especially in industries,
ecology, or wherever the economy is involved. This competition depends on certain parameters. These
parameters can be anything like time, money, demand, etc. In the case of competitive real-world problems,
the contestant has to accurately determine who his competitors are and how strong they are. In a system
where many competitors are related to each other in different ways, it is possible to make this diagnosis
accurately with the help of a mathematical model. But one thing to note about these parameters is that
their values are never specified in the case of real-world problems. Time is an important parameter when
marketing a product in such a market industry. But in this case, it is very true that no one can say in
advance exactly when a product can be marketed. It can be said that the product can be marketed at any
time interval like 1 to 2 months or 30 days to 45 days, etc. Due to this kind of vagueness in the quality
of parameters, we will use fuzzy mathematical model instead of using any crisp mathematical model.
However, the simple fuzzy set system is multi-valued but cannot express the idea of the ‘interval’ properly.
So in this paper, we have proposed to extend our existing fuzzy system to an interval-valued fuzzy system
in competition graph model.

Main contribution of the proposed work is to find the strength of competition among competitors
exists in a network so that the competitors can decide their strong competitors and take positive steps to
achieve its profit. IVFCG is useful rather than other methods because:

1. most of real-world problems are those networks whose nodes have vague parameters and this
method deal with such type of networks well.

2. if the parameters associated with the nodes of the networks are of interval then the method is very
much useful in dealing such.

3. an efficient algorithmic approach.

Authors’ contribution towards the development of interval-valued fuzzy competition graph and
making use of it in market competition is listed in Table 1.
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Table 1. Comparison of the work to the existing research work.

Author Year Contributions Remarks

Cohen [1] 1968 Use of interval graphs in food webs Deals only with crisp graph

Kim et al. [4] 1995 p-Competition graph of a digraph Further variation of crisp
competition graph

Brigham et al. [5] 1995 Tolerance competition graph Deals with the competition
graphs where tolerances
matter

Cho et al. [6] 2000 m-Step competition graph of a digraph Another variation of a
competition graph

Sonnatag and Teichert [7] 2004 Competition hypergraphs Competition is studied in
hypergraphs

Samanta and Pal [8] 2013 Fuzzy k-Competition graphs and
p-Competition graphs

Fuzziness is considered in
the earlier two types of crisp
graphs

Pramanik et al. [9] 2017 Fuzzy φ-tolerance competition graphs Fuzziness is considered in
more general version of
tolerance competition graphs

Pramanik et al. [10] 2016 Interval-valued fuzzy φ-tolerance
competition graphs

More general fuzzy system
is considered in fuzzy
φ-tolerance competition
graphs

Pramanik et al. (This
paper)

In this paper, fuzzy values of all the network
problems related to competition are also
taken as intervals. As a result much more
generalizations have been made

More generalized concept
than all previous existing
research works.

1.2. Review of Previous Works

To represent any network in the mathematical model we use graphs. The graph is dealt with
several physical, biological, social, economic relationships very well. For example, friendship is a social
relationship network which is modelled as a graph for several community sites such as Facebook, Twitter,
LinkedIn, etc. in many forms and they have several problems to solve related to this network. In the
cases where the impreciseness in relations comes, the corresponding relationship network can be modelled
as an FG model. In 2003, Bhutani and Battou [11] consider the operations on FGs where the m-strong
property is reserved. The necessity of finding strongness in FGs demands the contribution of Bhutani and
Rosenfeld [12] to find strong arcs in FGs. The reader may look for more characterization of FGs in [13,14].

There are a lot of variations in CGs described in Cohen’s work [1]. Several researchers have
found various derivations of competition graphs. Such as Cho et al. [6] developed the m-step CG of
a digraph. The p-CG of a digraph has been defined by Kim et al. [4,15]. The tolerance CG is defined by
Brigham et al. [5]. The competition hypergraphs have been found in Sonnatag et al. [7]. Recent work on
FKCG and p-competition FGs is available in [8]. Nayeem and Pal [16] have worked to find the shortest
path in a network where the relationship between the nodes is imprecise. A detailed survey of the works on
CG can be found in [17]. Recently, the fuzzy tolerance graph [18] is further extended to fuzzy φ-tolerance
CG by Pramanik et al. [9]. To emphasize real-world problem Samanta and Pal [19,20] have studied fuzzy
planar graph. Pramanik et al. [21] have generalized the fuzzy planar graph by introducing the IVFSs
instead of traditional FSs. Rashmanlou and Pal [22] have studied several properties on highly irregular
interval-valued FGs (IVFG). To find the shortest path in a complex network is very emerging work in
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this modern edge. There are various techniques to find shortest paths in a network. The bipolar fuzzy
hypergraph is an extension of fuzzy hypergraph by introducing bipolar fuzzy vertex sets (or simply,
bipolar FS (BFS)) and bipolar FR instead of traditional FSs. The bipolar FG (BFG) is introduced by Samanta
and Pal [23] which has emerging importance in a complex networking system. Colouring problem is also
a challenging task in the research field nowadays. Samanta et al. [24] have introduced a new approach to
colour an FG in a vague sense. Rashmanlou et al. [25] have worked on bipolar fuzzy graphs which is an
extension of fuzzy graphs. In 2014, Rashmanlou and Pal [26] have studied the properties of isometry on
interval-valued fuzzy graphs. Balanced interval-valued fuzzy graphs [27] and Antipodal interval-valued
fuzzy graphs [28] are another two types of fuzzy graphs which are introduced by Rashmanlou and Pal.
For further studies on FGs and its variations the works of literature [29–31] may be very helpful.

There may occur challenging situations in a system’s operation characterized by a degree of vagueness
and/or uncertainty. Voskoglou [32] uses principles of fuzzy logic to develop a general model representing
such kind of situations. He also introduced a stochastic method for the description of a finite Markov
chain as the main steps of mathematical modelling process in [33]. In 2012, a fuzzy model [34] has been
developed by him to describe the process of Analogical Reasoning. Gil et al. [35] have determined the
travel and delay times in a road ending in a traffic light under different traffic flows and traffic light
cycles using a microscopic traffic simulator. To find the approximate measure of the behavior of the plant
Hedrea et al. [36] uses TP-based model transformation method in order to obtain a Tensor Product-based
model of magnetic levitation systems. Deveci et al. [37] developed a quantitative assessment framework
for public bus operators to translate the passenger demands into service quality specifications. Recently,
Deveci et al. [38] have developed a multi-criteria decision-making model considering technical, economic,
environmental and social criteria to assess Ireland’s most promising offshore wind sites. In airlines, crew
scheduling problem is a challenging problem. Deveci and Demirel have proposed a solution and made a
survey on this in [39]. Canitez and Deveci [40] have presented a model framework so that public transport
system and multi-stakeholder can better manage car sharing applications. In 2015, Deveci et al. [41]
studied fuzzy-based multi-criteria decision making methods to solve the carbon di-oxide geological
storage location selection problem.

In this paper, IVFCG is defined and investigated several properties on this graph. Also, several
variations of this graph class such as interval-valued m-step FCG, IVFKCG, etc. are introduced.
The homomorphism and isomorphism properties of several IVFCG products have also been studied.
An application on the competition of producers for their products is discussed. This application and the
application on ecosystem discussed earlier shows the importance of IVFCG.

The arrangements for the paper are as follows:
After a short inception in Section 1, previous works have been reviewed in Section 1.2. In Section 2,

the needful preliminaries that have been surveyed are placed. The main work of IVFCG is introduced in
Section 3. Introducing Definition of IVFCG, many results have been studied there. Section 4 describes an
interesting idea to apply in the real field. Homomorphism properties of IVFG products have been studied
in Section 5. Next, the conclusion has been drawn in Section 6.

2. Preliminaries

A FS δ on a set S is a function δ : S → [0, 1], known as the MF. The support of δ is supp(δ) = {d ∈
S|δ(d) 6= 0} and the core of δ is core(δ) = {d ∈ S|δ(d) = 1}. The support length is s(δ) = | supp(δ)| and the
core length is c(δ) = | core(δ)|. The height of δ is h(δ) = max{δ(d)|d ∈ S}. The FS δ is said to be normal if
h(δ) = 1.

A FG is defined on a non-empty finite set S equipped with FS δ defined by a MF δ : S→ [0, 1] and a
FR θ on the FS δ such that θ(p, q) ≤ δ(p) ∧ δ(q) for all p, q ∈ S, where ∧ represents minimum. A fuzzy
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edge (p, q), p, q ∈ S is said to be independent strong [31] if θ(p, q) ≥ 1
2 min{δ(p), δ(q)} and is called weak,

otherwise. The degree of a vertex d of a FG G = (S, δ, θ) is deg(d) = ∑
c∈S−{d}

θ(d, c). The order of a FG G is

O(G) = ∑
c∈S

δ(c). The size [22] of a FG G is S(G) = ∑ θ(c, d).

A directed FG or, fuzzy digraph (FDG) [42]
−→
F = (S, δ, ν) defined on a non-empty set S equipped with a

fuzzy MF δ : S→ [0, 1] and a FR ν : S× S→ [0, 1] such that for all c, d ∈ S, ν(
−→
c, d) ≤ δ(c) ∧ δ(d).

As ν need not be symmetric, an FDG may consists of two directed edges between two vertices
with opposite directions. These edges are called parallel edges. There exists a loop at a vertex c ∈ S,
if ν(−→c, c) 6= 0.

Every FG corresponds to an undirected FG F = (S, δ, θ) where θ(c, d) = max{ν(
−→
c, d), ν(

−→
d, c)} ∀ c, d ∈

S and this undirected FG is called the underlying FG [31].
A complete FDG is an FDG

−→
F = (S, δ, ν) in which the relation ν(

−→
c, d) = ν(

−→
d, c) = δ(c) ∧ δ(d) for all

c, d ∈ S holds.
To introduce the CG, Cohen defined a digraph

−→
F = (S,

−→
E ) which nicely represents an ecological

problem of food web. In food web, species are represented as vertex p in S(
−→
F ) and an arc

−−→
(p, s) in−→

E (
−→
F ) means that p preys on species s. A vertex p ∈ S(

−→
F ) represents a species in the food web and

arc
−−→
(p, s) ∈ −→E (

−→
F ) means that p is dependent on the species s. If a prey s is dependent on two different

species then it is said that the two species compete for the prey s. Therefore, each species in the food
web are interdependent and this interdependence is designed by Cohen as competition graph model.
An undirected graph G = (S, E) of a digraph

−→
F = (S,

−→
E ) with same vertex set S is said to be CG if

between any two vertices p, q there is an edge in E, such that the arcs
−−→
(p, s),

−−→
(q, s) are in

−−−→
E(
−→
F ). Several

fields like channel assignment, energy systems, modeling of complex economic, coding, etc. uses the study
of CG.

In an FDG
−→
F = (S, δ, ν), the fuzzy out-neighbourhood [31] of a vertex d ∈ S is a FS ∆+(d) = (S+

v , m+
v ),

where S+
v = {c|ν(

−→
d, c) > 0} and m+

v : S+
v → [0, 1] is defined by m+

v = ν(
−→
d, c).

In an FDG
−→
F = (S, δ, ν), the fuzzy in-neighbourhood [31] of a vertex d ∈ S is a FS ∆−(d) = (S−v , m−v ),

where S−v = {c|ν(
−→
c, d) > 0} and m−v : S−v → [0, 1] is defined by m−v = ν(

−→
c, d).

In a FG F = (S, δ, θ), the fuzzy neighbourhood [43] of a vertex d ∈ S is the FS ∆(d) = (Sv, mv), where
Sv = {c|θ(c, d) > 0} and mv : Sv → [0, 1] is defined by mv = θ(c, d).

A FS ∆+
m(d) = (S+

v , m+
v ), where S+

v = {c|−→θm(
−→
d, c) = min{ν(

−−→
d, c1), ν(−−→c1, c2), . . . , ν(−−→cm, c)} >

0, vc1c2 . . . cmc is a path from d to c} and m+
v : X+

v → [0, 1] is said to be the m-step fuzzy
out-neighbourhood [31] of a vertex d ∈ S of a directed FG

−→
F = (S, δ, ν).

The FCG [31] of an FDG
−→
F = (S, δ, ν) is an undirected graph C(−→F ) = (S, δ, θ) which has the

same fuzzy vertex set as in
−→
F and has a fuzzy edge between two vertices c, d ∈ S in C(−→F ) if and

only if ∆+(c) ∩ ∆+(d) is non-empty FS in
−→
F . The membership value of the edge (c, d) in C(−→F ) is

θ(c, d) = (δ(c) ∧ δ(d))h(∆+(c) ∩ ∆+(d)).
The m-step FCG [31] of an FDG

−→
F = (S, δ, ν) is denoted by Cm(

−→
F ) and is defined by Cm(

−→
F ) = (S, δ, θ)

where θ(c, d) = (δ(c) ∧ δ(d))h(∆+
m(c) ∩ ∆+

m(d)) for all c, d ∈ S.
An interval number [44] L is an interval [l−, l+] with 0 ≤ l− ≤ l+ ≤ 1. For any two interval numbers

L1 = [l−1 , l+1 ] and L2 = [l−2 , l+2 ] the followings are defined:

1. L1 + L2 = [l−1 , l+1 ] + [l−2 , l+2 ] = [l−1 + l−2 − l−1 · l
−
2 , l+1 + l+2 − l+1 · l

+
2 ],

2. min{L1, L2} = [min{l−1 , l−2 }, min{l+1 , l+2 }],
3. max{L1, L2} = [max{l−1 , l−2 }, max{l+1 , l+2 }],
4. L1 ≤ L2 ⇔ l−1 ≤ l−2 and l+1 ≤ l+2 ,
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5. L1 = L2 ⇔ l−1 = l−2 and l+1 = l+2 ,
6. L1 < L2 ⇔ L1 ≤ L2 but L1 6= L2,
7. kL1 = [kl−1 , kl+2 ], where 0 ≤ k ≤ 1.

2.1. Some Terminology of FGs

The fuzzy subgraph [45] of a FG F = (S, δ, θ) is a FG F′ = (S, τ, ν) with τ(c) ≤ δ(c) for all c ∈ S and
ν(c, d) ≤ θ(c, d) for all c, d ∈ S.

Definition 1. A FG F = (S, δ, θ) is said to be complete if θ(c, d) = min{δ(c), δ(d)} for all c, d ∈ S.

Strong edge in a FG is defined in many ways in various literature. Among them the definition stated
in [46] is more suitable for our purpose. We use this definition in our work too.

Definition 2. A FG F = (S, δ, θ) is called the bipartite FG if there are two non-empty vertex sets S1 and S2 such
that θ(d1, d2) = 0 if d1, d2 ∈ S1 or d1, d2 ∈ S2. Further, if θ(d1, d2) = min{δ(d1), δ(d2)} for all d1 ∈ S1 and
d2 ∈ S2, then F is called a complete bipartite FG.

An effective edge [47] in a FG F = (S, δ, θ) is an edge (c, d) such that the condition
θ(c, d) = min{δ(c), δ(d)} holds. The end vertices of the effective edge are called effective adjacent vertices.
The number of effective incident edges on a vertex d of a FG is the effective incident degree of the FG.
A FG is a complete FG if its all the edges are effective incident. The effective incident degree of a pendent
vertex in a FG is defined as 1. If one end vertex of a fuzzy edge of a FG is fuzzy pendent vertex then the
fuzzy edge is call fuzzy pendent edge [8]. The membership value of the fuzzy pendent edge is the minimum
among the membership values of the fuzzy end vertices.

If the degree of a vertex d of a FG F = (S, δ, θ) is a fixed positive real number, say, k for all d ∈ S then
the FG F is said to be regular [48]. The FG F is called totally regular FG [48] if each vertex of F has same total
degree k. If in a FG F there are at least two vertices which are adjacent with distinct degrees, the FG is said
to be irregular [49]. If every two adjacent vertices of the FG have different degrees then the FG is said to be
neighbourly irregular [49]. If there are at least two adjacent vertices which have distinct total degrees, is said
to be totally irregular. The FG is said to be neighbourly total irregular [49] if every two adjacent vertices have
distinct total degrees. A FG is said to be highly irregular [49] if every vertex of G is adjacent to vertices
with distinct degrees.

Definition 3. The crisp graph F∗ = (S, δ∗, θ∗) corresponding to a FG F = (S, δ, θ) with same vertex set and
δ∗ = {c ∈ S|δ(c) > 0} and θ∗ = {(c, d) ∈ S× S|θ(c, d) > 0} is called the underlying crisp graph of the FG F.

The complement [45] of FG F = (S, δ, θ) is the FG F′ = (S, δ′, θ′) where δ′(c) = δ(c) for all c ∈ S and

θ′(c, d) =

{
0, if θ(c, d) > 0,
δ(c) ∧ δ(d), otherwise.

Definition 4 ([50]). Let δ be a FS defined by δ : S→ [0, 1] and θ is a FR where
−→
θ : S× S→ [0, 1] such that for

all c, d ∈ S,
−→
θ (c, d) ≤ δ(c) ∧ δ(d). Then

−→
F = (S, δ,

−→
θ ) is said to be an FDG.

Since
−→
θ is well defined, an FDG does not have more than two directed edges with opposite directions

between any two vertices. The membership value of a directed edge
−−→
(c, d) is denoted by

−→
θ (c, d). The loop

at a vertex c is mathematically expressed as
−→
θ (c, c) 6= 0. Since, in an FDG

−→
θ (c, d) and

−→
θ (d, c) may have
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different values,
−→
θ . The underlying crisp graph of FDG is the graph similarly obtained except the directed

arcs are replaced by undirected edges.

2.2. Fuzzy Hypergraphs

Goetschel [51] introduced fuzzy hypergraphs. The Definition of fuzzy hypergraph is given below

Definition 5. Let S be a non-empty finite set and let E be a finite family of nontrivial FSs on S (or subsets of S)
such that S =

⋃{supp(A)|A ∈ E}. Then the pairH= (S, E) is a fuzzy hypergraph on S.

S and E are respectively vertex set and fuzzy edge set of H. The height of H, h(H), is defined by
h(H) = max{h(A)|A ∈ E}. A fuzzy hypergraph is simple if E has no repeated fuzzy edges and whenever
A, B ∈ E and A ⊆ B, then A = B. A fuzzy hypergraphH= (S, E) is support simple if whenever A, B ∈ E ,
A ⊆ B and supp(A) = supp(B), then A = B. Suppose A = (X1, θ) ∈ F, X1 ⊆ S and c ∈ (0, 1]. The c−cut
of A, Ac, is defined by Ac = {c ∈ S|θ(c) ≥ c}. If E c = {Ac| ∈ E/{φ}} and Sc =

⋃{Ac|A ∈ E}. If E c 6= φ,
then the (crisp) hypergraph Hc = (Sc, E c) is the c− level hypergraph ofH.

SupposeH1 = (S, E1) andH2 = (S, E2) are fuzzy hypergraphs. ThenH1 is partial hypergraph ofH2

if E1 ⊆ E2. A FS A = (S, θ) with θ : S→ [0, 1] is an elementary FS if θ is constant function or θ has range
{0, a}, 0 6= a. An elementary fuzzy hypergraph is a fuzzy hypergraph in which all fuzzy edges are elementary.

A fuzzy hypergraphH= (S, E) is a m tempered fuzzy hypergraph of a crisp hypergraph H∗ = (S, E) if
there exists a FS A = (S, m) such that m : S→ (0, 1] and E= {θEi |Ei ∈ E} where

θEi (c) =

{
min{m(e)|e ∈ Ei} if c ∈ Ei
0, otherwise

A fuzzy transversal T = (S, τ) of H is a FS defined on S with the property that τh(A) ∩ θh(A) 6= φ for
each A ∈ E (recall that h(A) is the height of A). A minimal fuzzy transversal T forH is a transversal ofH
with the property that if T1 < T, then T1 is not a fuzzy transversal ofH.

2.3. Fuzzy Intersection Graphs

McAllister [52] introduced fuzzy intersection graphs. The Definition of fuzzy intersection graph is
now given.

Definition 6. F= {A1 = (S, m1), A2 = (S, m2) . . . , An = (S, mn)} be a finite family of FSs defined on a
set S and consider F as crisp vertex set S = {d1, d2 . . . , vn}. The fuzzy intersection graph of F is the FG
Int(F )= (S, δ, θ) where δ : S→ [0, 1] is defined by δ(vi) = h(Ai) and θ : S× S→ [0, 1] is defined by

θ(vi, vj) =

{
h(Ai ∩ Aj), if l 6= j
0, if l = j.

2.4. Bipolar FGs

There are several real relationship network system, where each nodes or relation between them
simultaneously have some properties and as well as have opposite properties. For example, in almost
every social networking system a member may have two or more properties among them there are two
properties are very opposite to each other. Any member of the system may ‘like’ some other member or
he may ‘dislike’ the member. This concept introduces a new generalised FS which is called BFS system.
The elements of the set have some positive membership values and some negative membership values.
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Zhang [53], first introduced the concept of BFS as a generalisation of FS. For example, set of all foods
constitutes a set with the property ‘sweetness of food’, then this set must be a FS. This property indicates
there must have another property ‘bitterness of food’ which also should be traced out. Positive membership
values and negative membership values are set by defining grade of sweetness and grade of bitterness of
food respectively. Other tastes like salty, sour, pungent (e.g. chili), etc. are irrelevant to the corresponding
property. So membership values of tastes of these foods are taken as zero.

The Definition of BFS is given as follows. Let S be a nonempty set. A BFS T on S is an object
having the form T = {(c, m+(c), m−(c))| c ∈ S}, where m+ : S → [0, 1] and m− : S → [−1, 0] are
mappings. If m+(c) 6= 0 and m−(c) = 0, then we say that c has only the positive satisfaction for T.
Similarly, if m+(c) = 0 and m−(c) 6= 0, it is to be said that the vertex c somewhat satisfies the counter
property of T. There may have possibility that a vertex c with m+(c) 6= 0 and m−(c) 6= 0 may satisfy
MF so that some its properties overlaps that of its counter property over some portion of S. For the BFS
T = {(c, m+(c), m−(c))|c ∈ S}, we simply write T = (m+, m−).

For every two BFSs L = (m+
L , m−L ) and T = (m+

J , m−J ) on S,
(L ∩ T)(c) = (min(m+

L (c), m+
J (c)), max(m−L (c), m−J (c))).

(L ∪ T)(c) = (max(m+
L (c), m+

J (c)), min(m−L (c), m−J (c))).
Akram [44,54] introduced BFGs and investigated some properties of it. The formal Definition is given

as follows.

Definition 7. A BFG on a set S is the pair B = (L, T) where L = (m+
L , m−L ) is a BFS on S and T = (m+

J , m−J )
is a BFS on E ⊆ S× S such that m+

J (c, q) ≤ min{m+
L (c), m+

L (q)} and m−J (c, q) ≥ max{m−L (c), m−L (q)} for all
(c, q) ∈ E. Here L is called bipolar fuzzy vertex set of S, T is the bipolar fuzzy edge set of E. Thus B = (L, T) is
a BFG.

A BFG B = (L, T) is said to be strong if
m+

J (c, q) = min(m+
L (c), m+

L (q)) and m−(c, q) = max(m−L (c), m−L (q)).
The Definition of strong BFG is given below.

Definition 8. The complement [44] of a strong BFG B is B̄ = (L̄, T̄) where L̄ = (m̄+
L , m̄−L ) is a BFS on S̄ and

T̄ = (m̄+
J , m̄−J ) is a BFS on Ē ⊆ S̄× S̄ such that

(1) S̄ = S,
(2) m̄+

L (c) = m+
L (c) and m̄−L (c) = m−L (c) for all c ∈ S,

(3)

m̄+
J (c, q) =

{
0, if m+

J (c, q) > 0,
m+

L (c) ∧m+
L (q), otherwise.

m̄−J (c, q) =

{
0, if m−J (c, q) < 0,
m−L (c) ∨m−L (q), otherwise.

Definition 9 ([44]). Let F = (L, T) be a BFG where L = (m+
1 , m−1 ) and T = (m+

2 , m−2 ) be two BFSs on
a non-empty finite set S and E ⊆ S × S respectively. The graph F is called complete BFG if m+

2 (c, d) =

min{m+
1 (c), m+

1 (d)} and m−2 (c, d) = max{m−1 (c), m−1 (d)} for all c, d ∈ S.

Regular BFGs are also important subclass of BFGs.
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Definition 10 ([55]). Let F = (L, T) be a BFG where L = (m+
1 , m−1 ) and T = (m+

2 , m−2 ) be two BFSs on a
non-empty finite set S and E ⊆ S× S respectively. If d+(c) = k1, d−(c) = k2 for all c ∈ S, k1, k2 are two real
numbers, then the graph is called (k1, k2)-regular BFG.

Definition 11 ([55]). Let F = (L, T) be a BFG where L = (m+
1 , m−1 ) and T = (m+

2 , m−2 ) be two BFSs on a
non-empty finite set S and E ⊆ S× S respectively. td(c) = (td+(c), td−(c)) is the total degree of a vertex c ∈ S
where td+(c) = ∑

(c,d)∈E
m+

2 (c, d) + m+
1 (c), td−(c) = ∑

(c,d)∈E
m−2 (c, d) + m−1 (c). If all the vertices of a BFG are of

total degree, then the graph is called totally regular BFG.

An IVFS L on a set S is a mapping θL : S → [0, 1]× [0, 1], called the MF, i.e. θL(c) = [θ−L (c), θ+L (c)].
The support of L is supp(L) = {c ∈ S|θ−L (c) 6= 0} and the core of L is core(L) = {c ∈ S|θ−L (c) = 1}.
The support length is s(L) = | supp(L)| and the core length is c(L) = | core(L)|. The height of L is
h(L) = max{θL(c)|c ∈ S} = [h−(L), h+(L)] = [max{θ−L (c)}, max{θ+L (c)}], ∀c ∈ S.

Let F = {L1, L2, · · · , Ln} be a finite family of interval-valued fuzzy subsets on a set S. The fuzzy
intersection of two IVFSs (IVFSs) L1 and L2 is an IVFS defined by

L1 ∩ L2 =
{(

c,
[
min{θ−L1

(c), θ−L2
(c)},

min{θ+L1
(c), θ+L2

(c)}
])

: c ∈ S
}

The fuzzy union of two IVFSs L1 and L2 is a IVFS defined by

L1 ∪ L2 =
{(

c,
[
max{θ−L1

(c), θ−L2
(c)},

max{θ+L1
(c), θ+L2

(c)}
])

: c ∈ S
}

Fuzzy out-neighbourhood of a vertex d ∈ S of an interval-valued fuzzy directed graph (IVFDG)
−→
F = (S, L,

−→
T ) is the IVFS ∆+(d) = (X+

v , m+
v ) where X+

v = {c : θT(
−→
d, c) > 0} and m+

v : X+
v → [0, 1]× [0, 1]

defined by m+
v = θT(

−→
d, c) = [θ−T (

−→
d, c), θ+T (

−→
d, c)]

Here T is an interval-valued FR on a set S, is denoted by θT : S× S→ [0, 1]× [0, 1] such that

θ−T (c, q) ≤ min{θ−L (c), θ−L (q)}
θ+T (c, q) ≤ min{θ+L (c), θ+L (q)}

Consider L = [θ−L , θ+L ] is an IVFS on S and T = [θ−T , θ+T ] is an IVFS on S× S then the triplet F =

(S, L, T) is said to be an IVFG. An edge (c, d), c, d ∈ S in an IVFG is said to be independent strong if
θ−T (c, d) ≥ 1

2 min{θ−L (c), θ−L (d)}. An interval-valued FDG (IVFDG)
−→
F = (S, L,

−→
T ) is an IVFG where the

FR
−→
T is antisymmetric.
An IVFG Z = (S, L, T) is said to be complete IVFG if θ−(c, d) = min{δ−(c), δ−(d)} and θ+(c, d) =

min{δ+(c), δ+(d)}, ∀c, d ∈ S. An IVFG is said to be bipartite if there are two vertex sets S1 and S2 such
that S1 ∪ S2 = S and S1 ∩ S2 = φ where θ+(d1, d2) = 0 if d1, d2 ∈ S1 or d1, d2 ∈ S2 and θ+(d1, d2) > 0 if
d1 ∈ S1 (or S2) and d2 ∈ S2 (or S1).

The Cartesian product [44] Z1 × Z2 of two IVFGs Z1 = (S1, L1, T1) and Z2 = (S2, L2, T2) is defined as a
pair (S1 × S2, L1 × L2, T1 × T2) such that

1.

{
θ−L1×L2

(p1, p2) = min{θ−L1
(p1), θ−L2

(p2)}
θ+L1×L2

(p1, p2) = min{θ+L1
(p1), θ+L2

(p2)},
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for all p1 ∈ S1, p2 ∈ S2,

2.

{
θ−T1×T2

((c, p2), (c, q2)) = min{θ−L1
(c), θ−T2

(p2, q2)}
θ+T1×T2

((c, p2), (c, q2)) = min{θ+L1
(c), θ+T2

(p2, q2)},

for all c ∈ S1 and (p2, q2) ∈ E2,

3.

{
θ−T1×T2

((p1, q), (q1, q)) = min{θ−T1
(p1, q1), θ−L2

(q)}
θ+T1×T2

((p1, q), (q1, q)) = min{θ+T1
(p1, q1), θ+L2

(q)},

for all (p1, q1) ∈ E1 and q ∈ S2

The composition Z1[Z2] = (S1 ◦ S2, L1 ◦ L2, T1 ◦ T2) of two IVFGs Z1 and Z2 of the graphs Z∗1 and Z∗2
is defined as follows:

1.

{
θ−L1◦L2

(p1, p2) = min{θ−L1
(p1), θ−L2

(p2)}
θ+L1◦L2

(p1, p2) = min{θ+L1
(p1), θ+L2

(p2)},

for all p1 ∈ S1, p2 ∈ S2,

2.

{
θ−T1◦T2

((c, p2), (c, q2)) = min{θ−L1
(c), θ−T2

(p2, q2)}
θ+T1◦T2

((c, p2), (c, q2)) = min{θ+L1
(c), θ+T2

(p2, q2)},

for all c ∈ S1 and (p2, q2) ∈ E2,

3.

{
θ−T1◦T2

((p1, q), (q1, q)) = min{θ−T1
(p1, q1), θ−L2

(q)}
θ+T1◦T2

((p1, q), (q1, q)) = min{θ+T1
(p1, q1), θ+L2

(q)},

for all (p1, q1) ∈ E1 and q ∈ S2

4.

{
θ−T1◦T2

((p1, p2), (q1, q2)) = min{θ−L2
(p2), θ−L2

(q2), θ−T1
(p1, q1)}

θ+T1◦T2
((p1, p2), (q1, q2)) = min{θ+L2

(p2), θ+L2
(q2), θT1(p1, q1)},

otherwise.

The union Z1 ∪ Z2 = (S1 ∪ S2, L1 ∪ L2, T1 ∪ T2) of two IVFGs Z1 and Z2 of the graphs Z∗1 and Z∗2 is
defined as follows:

1.


θ−L1∪L2

(c) = θ−L1
(c) if c ∈ S1 and c /∈ S2

θ−L1∪L2
(c) = θ−L2

(c) if c ∈ S2 and c /∈ S1

θ−L1∪L2
(c) = max{θ−L1

(c), θ−L2
(c)} if c ∈ S1 ∩ S2.

2.


θ+L1∪L2

(c) = θ+L1
(c) if c ∈ S1 and c /∈ S2

θ+L1∪L2
(c) = θ+L2

(c) if c ∈ S2 and c /∈ S1

θ+L1∪L2
(c) = max{θ+L1

(c), θ+L2
(c)} if c ∈ S1 ∩ S2.

3.


θ−T1×T2

(c, q) = θ−T1
(c, q) if (c, q) ∈ E1 and (c, q) /∈ E2

θ−T1×T2
(c, q) = θ−T2

(c, q) if (c, q) ∈ E2 and (c, q) /∈ E1

θ−T1×T2
(c, q) = max{θ−T1

(c, q), θ−T2
(c, q)} if (c, q) ∈ E1 ∩ E2.

4.


θ+T1×T2

(c, q) = θ+T1
(c, q) if (c, q) ∈ E1 and (c, q) /∈ E2

θ+T1×T2
(c, q) = θ+T2

(c, q) if (c, q) ∈ E2 and (c, q) /∈ E1

θ+T1×T2
(c, q) = max{θ+T1

(c, q), θ+T2
(c, q)} if (c, q) ∈ E1 ∩ E2.

The join Z1 + Z2 = (S1 + S2, L1 + L2, T1 + T2) of two IVFGs Z1 and Z2 of the graphs Z∗1 and Z∗2 is
defined as follows:

1.

{
θ−L1+L2

(c) = (θ−L1
∪ θ−L2

)(c)
θ+L1+L2

(c) = (θ+L1
∪ θ+L2

)(c)



Mathematics 2020, 8, 1008 12 of 23

if c ∈ S1 ∪ S2,

2.

{
θ−T1+T2

(c, q) = (θ−T1
∪ θ−T2

)(c, q)
θ+T1+T2

(c, q) = (θ+T1
∪ θ+T2

)(c, q)

if (c, q) ∈ E1 ∩ E2,

3.

{
θ−T1+T2

(c, q) = min{θ−L1
(c), θ−L2

(q)}
θ+T1+T2

(c, q) = min{θ+L1
(c), θ+L2

(q)}

for all (c, q) ∈ E′, where E′ is the set of all edges joining the nodes of S1 and S2.

A homomorphism [48] between two FGs F1 = (S, δ1, θ1) and F2 = (S, δ2, θ2) is a map f : S1 → S2 which
satisfies δ1(c) ≤ δ2( f (c)) for all c ∈ S1 and θ1(c, q) ≤ θ2( f (c), f (q)) for all c, q ∈ S1 where S1 is the set of
vertices of F1 and S2 is that of F2. A FG F1 is said to be homomorphic to F2 if there exist a homomorphism
between F1 and F2.

An isomorphism [48] between two FGs F1 = (S, δ1, θ1) and F2 = (S, δ2, θ2) is a bijective homomorphism
f : S1 → S2 which satisfies δ1(c) = δ2( f (c)) for all c ∈ S1 and θ1(c, q) ≤ θ2( f (c), f (q)) for all c, q ∈ S1

where S1 is the set of vertices of F1 and S2 is that of F2. A FG F1 is said to be isomorphic to F2 if there exist
an isomorphism between F1 and F2.

3. Interval-Valued FCG

In this section, IVFCG is defined and investigated some properties.

Definition 12 (Interval-valued FCG). Interval-valued FCG (IVFCG) of an IVFDG
−→
Z = (S, L,

−→
T ) is an

undirected graph IVFC(
−→
Z ) = (S, L, T′) whose vertex membership value is same as that of IVFDG and membership

value of the edge (c, d) is an interval number θT′(c, d) = [θ−T′(c, d), θ+T′(c, d)] where,

θ−T′(c, d) =
(
θ−L (c) ∧ θ−L (d)

)
h−(∆+(c) ∩ ∆+(d))

θ+T′(c, d) =
(
θ+L (c) ∧ θ+L (d)

)
h+(∆+(c) ∩ ∆+(d))

for all c, d ∈ S.

Example 1. Let us consider an IVFDG shown in Figure 2. All the membership values of vertices and edges are
arbitrarily taken and depicted in Figure 2.

u u

u u
s? ?=

d1 [0.6, 0.7] d2 [0.4, 0.8]

d3 [0.5, 0.7] d4 [0.3, 0.5]

[0.3, 0.4][0.4, 0.6]

[0.3, 0.6]

[0.2, 0.5]

Figure 2. An IVFDG.
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All the obvious computations are done as follows:

∆+(d1) = {(d3, [0.4, 0.6]) , (d4, [0.2, 0.5])} ,

∆+(d2) = {(d3, [0.3, 0.6]) , (d4, [0.3, 0.4])}
∆+(d3) = φ, ∆+(d4) = φ,

∴ ∆+(d1) ∩ ∆+(d2) = {(d3, [0.4, 0.6]) , (d4, [0.2, 0.5])} .

Then, h−
(
∆+(d1) ∩ ∆+(d2)

)
= 0.3 and h+

(
∆+(d1) ∩ ∆+(d2)

)
= 0.6.

Hence, the IVFCG of the IVFDG is obtained and shown in Figure 3.

w w

w w

d1 [0.6, 0.7] d2 [0.4, 0.8]

d3 [0.5, 0.7] d4 [0.3, 0.5]

[0.12, 0.42]

Figure 3. IVFCG of the IVFDG shown in Figure 2.

Theorem 1. Let
−→
Z = (S, L,

−→
T ) be an IVFDG. An edge (c, d) of IVFC(

−→
Z ) is independent strong if and only if

h−(∆+(c) ∩ ∆+(d)) > 0.5 provided that ∆+(c) ∩ ∆+(d) has one and only one element.

Proof. Since ∆+(c) ∩ ∆+(d) has one and only one element let, ∆+(c) ∩ ∆+(d) = {(w, [m−, m+])}, where
[m−, m+] is interval-valued fuzzy membership value of the vertex w. Then h−(∆+(c) ∩ ∆+(d)) = m−. So,
θ−T′(c, d) = (θ−L (c) ∧ θ−L (d))h

−(∆+(c) ∩ ∆+(d)) = m− × (θ−L (c) ∧ θ−L (d)) >
1
2 (θ
−
L (c) ∧ θ−L (d)) if and only

if m− = h−(∆+(c) ∩ ∆+(d)) > 0.5. Hence the theorem follows.

It is evident that, if all the edges of an IVFDG are independent strong then, the corresponding IVFCG
may or may not have an independent strong edge. For this, an example is shown in Figure 4.

x x

x
w /

-
d1 [0.4, 0.5] d2 [0.3, 0.6]

d3 [0.1, 0.3]

[0.2, 0.4]

[0.1, 0.3][0.1, 0.2]

x x

x

d1 [0.4, 0.5] d2 [0.3, 0.6]

[0.03, 0.1]

d3 [0.1, 0.3]

(a) IVFDG whose all (b) IVFCG whose all
edges are strong edges are not strong

Figure 4. An example that an IVFCG have no independent strong edge although all the edges are
independent strong in IVFDG.

But in the next theorem, a result is obtained for the case when all the edges of a IVFDG are
independent strong.
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Theorem 2. Let all the edges of an IVFDG
−→
Z = (S, L,

−→
T ) be independent strong. Then

θ−T′(c, d)
(θ−L (c) ∧ θ−L (d))

2
> 0.5

for all c, d ∈ S in IVFC(
−→
Z ), provided θ−L (c) ∧ θ−L (d) 6= 0.

Proof. Since all the edges of
−→
Z = (S, L,

−→
T ) is independent strong then θ−T (

−→
c, d) >

1
2
(θ−L (c) ∧

θ−L (d)) i.e.,
θ−T (
−→
c, d)

θ−L (c) ∧ θ−L (d)
> 0.5. For all c, d ∈ S such that θ−T′(c, d) 6= 0 let ∆+(c) ∩

∆+(d) has at least one element. Let ∆+(c) ∩∆+(d) = {(w1, [m−1 , m+
1 ]), (w2, [m−2 , m+

2 ]),
. . . , (wk, [m−k , m+

k ])}, where [m−i , m+
i ] are membership values of wi, l = 1, 2, . . . , k. This shows that

[m−i , m+
i ] = [min{θ−T (−−→c, wi), θ−T (

−−→
d, wi)}, min{θ+T (−−→c, wi), θ+T (

−−→
d, wi)}]. Therefore, h−(∆+(c) ∩ ∆+(d)) =

max{m−1 , m−2 , . . . , m−k } = m−max (say). Obviously, m−max > θ−T (
−→
c, d) shows that

m−max

θ−L (c) ∧ θ−L (d)
>

θ−T (
−→
c, d)

θ−L (c) ∧ θ−L (d)
> 0.5.

Therefore,

θ−T′(c, d) = (θ−L (c) ∧ θ−L (d))h
−(∆+(c) ∩ ∆+(d))

or,
θ−T′(c, d)

θ−L (c) ∧ θ−L (d)
= m−max

or,
θ−T′(c, d)

(θ−L (c) ∧ θ−L (d))
2
=

m−max

θ−L (c) ∧ θ−L (d)
> 0.5.

Definition 13. An IVFG F1 = (S1, L1, T1) is said to be homomorphic to an IVFG F2 = (S2, L2, T2) if there exist
a homomorphism f : S1 → S2 such that θ−L1

(c) ≤ θ−L2
( f (c)), θ+L1

≤ θ+L2
( f (c)) for all c ∈ S1 and θ−T1

(c, d) ≤
θ−T2

( f (c), f (d)), θ+T1
(c, d) ≤ θ+T2

( f (c), f (d)) for all c, d ∈ S1.

If this homomorphism is bijective then the IVFG is said to be isomorphic.

Definition 14. An IVFG Z1 = (S1, L1, T1) is said to be isomorphic to an IVFG Z2 = (S2, L2, T2) if there exist
a bijective homomorphism f : S1 → S2 such that θ−L1

(c) = θ−L2
( f (c)), θ+L1

= θ+L2
( f (c)) for all c ∈ S1 and

θ−T1
(c, d) = θ−T2

( f (c), f (d)), θ+T1
(c, d) = θ+T2

( f (c), f (d)) for all c, d ∈ S1.

Next theorem shows that, if an IVFDG is complete then its underlying competition graph and
undirected graph are homomorphic to each other.

Theorem 3. An IVFCG of a complete IVFDG
−→
Z = (S, L,

−→
T ) is homomorphic to underlying undirected graph

of
−→
Z .

Proof. An IVFCG has same vertex set as that of IVFDG
−→
Z with their respective fuzzy membership values.

So, there exist at least one homomorphism f : S(IVFC(
−→
Z ))→ S(

−→
Z ) such that, θ−L (c) = θ−L ( f (c)), θ+L =

θ+L ( f (c)) for all c ∈ S. Since
−→
Z is complete, θ−T ( f (c), f (d)) = θ−L ( f (c)) ∧ θ−L ( f (d)) and θ+T ( f (c), f (d)) =

θ+L ( f (c))∧ θ+L ( f (d)). As f−(∆+( f (c))∩∆+( f (d))) ≤ 1, θ−T′(c, d) = (θ−L ( f (c))∧ θ−L ( f (d))) f−(∆+( f (c))∩
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∆+( f (d))) ≤ θ−L ( f (c)) ∧ θ−L ( f (d)) = θ−T ( f (c), f (d)). Similarly, θ+T′(c, d) ≤ θ+T ( f (c), f (d)). Hence, the
result follows.

Remark 1. Although an IVFCG is homomorphic to an underlying undirected graph of a complete IVFDG, there
does not exist any isomorphism between them. As, for every triangular orientation of three vertices c, d, w (a complete
graph of three or more vertices must consists of it) there exists at most one edge say, c, d between them. Hence,
θT′(c, w) = [0, 0] 6= θT( f (c), f (w)).

Interval-Valued FKCG and m-Step Competition Graphs

Here, we introduce two particular types of competition graphs called IVF k-competition graphs and
m-step competiton graphs.

Definition 15. Let k be a non-negative integer. The IVFKCG IVFCk(
−→
Z ) of an IVFDG

−→
Z = (S, L,

−→
T ) is

an undirected FG IVFCk(
−→
Z ) = (S, L, T′) which has the same fuzzy vertex set as that of

−→
Z and has a fuzzy

edge between two vertices c, d ∈ S in IVFCk(
−→
Z ) if and only if s(∆+(c) ∩ ∆+(d)) > k. The edge membership

value between c and d in IVFCk(
−→
Z ) is θ−T′(c, d) = k′−k

k′ (θ−L (c) ∧ θ−L (d))h
−(∆+(c) ∩ ∆+(d)) and θ+T′(c, d) =

k′−k
k′ (θ+L (c) ∧ θ+L (d))h

+(∆+(c) ∩ ∆+(d)) where, k′ = s(∆+(c) ∩ ∆+(d)).

Theorem 4. Let
−→
Z = (S, L,

−→
T ) be an IVFDG. If s(∆+(c) ∩ ∆+(d)) = 2k, then the edge (c, d) is independent

strong in IVFCk(
−→
Z ).

Proof. By the Definition of IVFKCG the edge membership value of an edge (c, d) in IVFCk(
−→
Z ) is

θ−T (c, d) = k′−k
k′ (θ−L (c)∧ θ−L (d))h

−(∆+(c)∩∆+(d)) and θ+T (c, d) = k′−k
k′ (θ+L (c)∧ θ+L (d))h

+(∆+(c)∩∆+(d))
where, k′ = s(∆+(c) ∩ ∆+(d)). Then θ−T (c, d) = k′−k

k′ (θ−L (c) ∧ θ−L (d))h
−(∆+(c) ∩ ∆+(d)) > k′−k

k′ (θ−L (c) ∧
θ−L (d)) = 0.5(θ−L (c) ∧ θ−L (d)) as h−(∆+(c) ∩ ∆+(d)) > 0. Therefore, θ−T (c,d)

θ−L (c)∧θ−L (d)
> 0.5. Hence, (c, d) is an

independent strong edge.

Definition 16. The IVFMCG of an IVFDG
−→
Z = (S, L,

−→
T ) is denoted by IVFCm(

−→
Z ) and is defined by

IVFCm(
−→
Z ) = (S, L, T′) where the membership value of the edge (c, d) is θT′(c, d) = [θ−T′(c, d), θ+T′(c, d)], where

θ−T′(c, d) = (θ−L (c) ∧ θ−L (d))h
−(∆+

m(c) ∩ ∆+
m(d)) and θ+T′(c, d) = (θ+L (c) ∧ θ+L (d))h

+(∆+
m(c) ∩ ∆+

m(d)).

Example 2. An example of interval-valued fuzzy 2-step CG of the IVFDG of Figure 5a is shown in Figure 5b.
In Figure 5a, the vertices c and q have 2-step common neighbourhood c and therefore, the vertices c and q has

an edge in interval-valued fuzzy 2-step CG as shown in Figure 5b.
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c [0.6, 0.7] q [0.7, 0.9]
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[0.4, 0.5][0.5, 0.6]

[0.4, 0.6][0.3, 0.6]

v

v v

v v
c [0.6, 0.7] q [0.7, 0.9]

a [0.5, 0.7] b [0.5, 0.6]

c [0.8, 0.9]

(a) IVFDG (b) Interval-valued fuzzy 2-step CG

[0.18, 0.35]

Figure 5. An example of interval-valued fuzzy 2-step CG.

Definition 17. Let
−→
Z = (S, L,

−→
T ) be an IVFDG. Let d be a common vertex of m-step fuzzy out-neighbourhoods

of vertices c1, c2, · · · , cn, n being any positive integer. The m-step vertex d ∈ S is said to be independent strong
vertex if θ−m (

−→
ci, d) > 0.5 for all l = 1, 2, . . . , n. The strength of the vertex d is denoted by sm(d) and is defined by

sm(d) = [s−m(d), s+m(d)] where s−m =
∑n

l=1 θ−m (
−→
ci, d)

n
and s+m =

∑n
l=1 θ+m (

−→
ci, d)

n
.

Theorem 5. If a vertex (prey) d of
−→
Z is independent strong, then s−m(d) > 0.5, but the converse is not

necessarily true.

Proof. Let
−→
Z = (S, L,

−→
T ) be an IVFDG. Let d be a common vertex of m-step fuzzy out-neighbourhoods

of the vertices c1, c2, · · · , cn, n being any positive integer. As the vertex d is independent strong then

θ−m (
−→
ci, d) > 0.5 for all l = 1, 2, . . . , n. Therefore, s−m(d) =

θ−m (
−−→
c1, d) + θ−m (

−−→
c2, d) + · · ·+ θ−m (

−−→
cn, d)

n
>

0.5 + 0.5 + · · ·+ 0.5
n

= 0.5.

Conversely let, s−m(d) > 0.5. Now, s−m(d) is the average of n real numbers which is greater than 0.5
does not always mean that each n number is greater than 0.5.

Theorem 6. If all vertices (preys) of
−→
Z are independent strong, then all the edges of IVFCm(

−→
Z ) are

independent strong.

Proof. Let all the vertices of
−→
Z = (S, L,

−→
T ) are independent strong. Let IVFCm(

−→
Z ) = (S, L, T′)

where θT′(c, d) = [θ−T′(c, d), θ+T′(c, d)] = [(θ−L (c) ∧ θ−L (d))h
−(∆+

m(c) ∩ ∆+
m(d)), (θ

+
L (c) ∧ θ+L (d))h

+(∆+
m(c) ∩

∆+
m(d))] be an IVFMCG of IVFDG

−→
Z . If ∆+

m(c) ∩ ∆+
m(d) be empty set then there does not exists any edge

between c and d in IVFCm(
−→
Z ). If ∆+

m(c) ∩ ∆+
m(d) be non-empty then obviously h−(∆+

m(c) ∩ ∆+
m(d)) > 0.5

as all the edges of
−→
Z are independent strong and hence (θ−L (c) ∧ θ−L (d))h

−(∆+
m(c) ∩ ∆+

m(d)) > 0.5 which
implies that all the edges of IVFCm(

−→
Z ) are independent strong.

Theorem 7. The IVFCm(
−→
Z ) of

−→
Z = (S, L,

−→
T ) has no edge if m > |S|.

Proof. If m > |S|, the number of vertices in
−→
Z then it is obvious that there can not exist any fuzzy directed

path of length m between any two vertices c, d of S. Then ∆+
m(c) ∩ ∆+

m(d) is a null set. Hence membership
value of each pair of vertices is zero which means there can not have any edge in IVFCm(

−→
Z ).
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4. An Application of IVFCG in Manufacturing Industries

Every manufacturing industry has several production company and markets to sell the product.
Any production company produces their products as per market demands. They are also liable to transport
the products to the market so that the end user can use their product within a reasonable time. They wish
to deliver with minimum cost as much as they can. Market has the time-bound factor to get the production
from company within a reasonable cost. Market has various opportunities to choose the company as
well as company can choose market for their sake. So, there is fair competition between companies.
The problem is to find out which companies are in competition and the strengths of their competition to
achieve markets that they serve, considering all the cases of production, demands and the time that they
can spare. This problem can be modeled as an IVFCG by considering the following correspondences:

• Companies and markets are treated as vertices.
• The membership values of vertices that are taken as companies is a sub-interval of [0, 1].

The significance of this interval number is that every company has a minimum and maximum
capability to produce the product. We have assigned a grade to each power of capabilities within the
min-max range. So, the interval becomes a fuzzy interval number.

• Similarly, assigning grade for demands that the market has, each vertex associated to a fuzzy
interval number.

• The company and market are connected, that is, they have an edge if they both have the same
time tenure to transport or take the product. A grade is assigned to each time within the tenure.
This membership grade is also a fuzzy interval number.

Assuming the company and market have higher membership values than that of their shared time,
i.e., membership value of each edge is less than the minimum of membership values of all the vertices,
the problem is well-defined for an IVFCG model.

To find the strength of competitions among companies in manufacturing industries, the calculation
flow is shown as a flowchart in the Figure 6. To explain the problem, in particular, let us consider the
following example.

Three companies namely, C1, C2 and C3 produces certain product. Each company has a capability to
produce 20–70%, 87–98% and 90–100% of demands respectively. Each of these shadowiness in capability
of production can be corresponded to interval-valued fuzzy numbers as [0.2, 0.7], [0.87, 0.98] and [0.9, 1]
respectively, in fuzzy sense. There are two markets M1 and M2. They have also 90–100% and 85–95%
demands in market respectively. Amount of demands are also shadowy. These can be corresponded
to interval-valued fuzzy numbers as [0.9, 1] and [0.85, 0.95] respectively. Similarly, the interval-valued
fuzzy numbers for transportation time corresponding to the edges (C1, M1), (C1, M2), (C2, M1), (C2, M2),
(C3, M1) and (C3, M2) can be taken as [0.1, 0.4], [0.2, 0.6], [0.85, 0.9], [0.75, 0.95], [0.8, 0.95] and [0.8, 0.9]
respectively. The relationship is shown in Figure 7. Note that this is an interval-valued fuzzy complete
bipartite graphs.
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Three companies namely, C1, C2 and C3 produces certain product. Each company has a capability
to produce 20%-70%, 87%-98% and 90%-100% of demands respectively. Each of these shadowiness in
capability of production can be corresponded to interval-valued fuzzy numbers as [0.2, 0.7], [0.87, 0.98]
and [0.9, 1] respectively, in fuzzy sense. There are two markets M1 and M2. They have also 90%-100%
and 85%-95% demands in market respectively. Amount of demands are also shadowy. These can be
corresponded to interval-valued fuzzy numbers as [0.9, 1] and [0.85, 0.95] respectively. Similarly, the
interval-valued fuzzy numbers for transportation time corresponding to the edges (C1, M1), (C1, M2),

Figure 6. Flowchart of the work flow to compute the strength of competitions among companies in
manufacturing industries.

Now, ∆+(C1) = {M1[0.1, 0.4], M2[0.2, 0.6]}
∆+(C2) = {M1[0.85, 0.9], M2[0.75, 0.95]}
∆+(C3) = {M1[0.8, 0.95], [0.8, 0.9]}

Then, h(∆+(C1) ∩ ∆+(C2))

= h({M1[0.1, 0.4], M2[0.2, 0.6]}) = [0.2, 0.6]

h(∆+(C1) ∩ ∆+(C3))

= h({M1[0.1, 0.4], M2[0.2, 0.6]}) = [0.2, 0.6]

h(∆+(C2) ∩ ∆+(C3))

= h({M1[0.8, 0.9], M2[0.75, 0.9]}) = [0.8, 0.9]
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Therefore, θT′(C1, C2) = [0.2× 0.2, 0.7× 0.6]

= [0.04, 0.42]

θT′(C1, C3) = [0.2× 0.2, 0.7× 0.6]

= [0.04, 0.42]

θT′(C2, C3) = [0.87× 0.8, 0.98× 0.9]

= [0.696, 0.882] w [0.70, 0.88]

The corresponding IVFCG of Figure 7 is shown in Figure 8. The membership value (degree) of
competition among the companies is shown in Table 2.

x x x

x x
U s� U + �

C1 C2 C3

M1 M2

Figure 7. The relationship between companies and markets.

x x x

x x

C1 C2 C3

M1 M2

[0.04, 0.42] [0.70, 0.88]

[0.04, 0.42]

Figure 8. IVFCG of Figure 7.

Table 2. Degree of Competition among the Companies.

Companies Degree of Competition Competition in %

C1, C2 [0.04, 0.42] [4, 42]
C2, C3 [0.70, 0.88] [70, 88]
C3, C1 [0.04, 0.42] [4, 42]

A complete analysis of the result is shown in the Table 3.
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Table 3. Analysis of the result obtained in the problem of manufacturing industries.

Description of the Result Result Obtained Analysis of the Result

Highest degree of
competition among
companies

[0.70, 0.88] This result shows that the companies
have at least 70% and at most
88% competitions in the market
(Computations made using the
formula stated in Definition 1)

Independent strength of
competition between the
companies C2 and C3

[
0.70

min{0.87,0.9} , 0.88
min{0.98,1}

]
=

[0.80, 0.90] > [0.5, 0.5]

The height of interval-valued fuzzy
set ∆+(C2) ∩ ∆+(C3) is [0.8,0.9]
which is greater than [0.5, 0.5].
So there is a strong competition
between the two companies C2 and
C3 (Refer Theorem 2)

The diagrammatic representation is shown in Figure 9.

Figure 9. Competition among three companies.

5. Implications

In the case of any kind of competitive interconnected system, each competitor verifies the ability
and capability of his opponent. The observations we present are useful in determining the capabilities
and capabilities of all competitors present in such systems. The strength and intensity of competition
between any two competitors can be determined within an interval. As a result, although the strength
of competition is correct, it is within an interval, so the scope of application of the method is wide.
Theoretically, it has been shown the cases when and where the strength of a competitor becomes higher.

6. Conclusions

There are many works have been done on fuzzy competition graphs and its extensions. After the work
of FCG, we feel the importance of IVFCG as many real problems like time-bound network-based technology,
neurology, ecology, market demand, etc. demands the uses of such type of modelling introduced in this
paper. There is a great deal to handle with homomorphism and isomorphism of IVFCG products that
have done by proving them in this paper. The proposed method of IVFCG is much more useful for the
analysis of any network related to competition. This method is very useful for solving real-world problems.
Here interval-valued fuzzy set is used instead of a general fuzzy set. One of the biggest problems in the
world of this civilization is the constant competition of the manufacturing industries. Here, the competitive
strength of the manufacturing industries determined and described the position of a company in the
market. But, the problem of manufacturing industries is even bigger. There is a need to solve various
problems starting from economic problems to business communication, business relations etc. However,
many real problems can occur where a relationship is bipolar, for example, let’s say two companies produce
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two types of products in a market where there is no competition but great cooperation. For example,
if one company produces petrol-powered cars and the other company produces petrol, there should be no
competition between them. In all these cases the problem can be solved by using bipolar fuzzy set in the
case of Competition graphs. There are also opportunities to solve various real problems using intuitionistic
fuzzy sets.
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