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Abstract: A tensor-based general order full-discretization method is enhanced with the capacity
to handle multiple discrete delays and helix effects leading to a unique automated algorithm
in the stability analysis of milling process chatter. The automated algorithm is then exploited
in investigating the effects of interpolation order of chatter states and helix-induced terms on
the convergence of milling stability lobes. The enhanced capacity to handle the distributed helix
effects is based on a general order formulation of the Newton-Coates integral quadrature method.
Application to benchmark milling models showed that high order methods are necessary for
convergence of the low speed domain of stability lobes while all the numerically stable orders
converge in the high speed domain where the ultra-high order methods are prone to numerical
instability. Also, composite numerical integration of the helix-induced integrand beyond the usual
zero-th order method leads to higher accuracy of stability lobes especially in the low speed domain.

Keywords: milling chatter; full-discretization; semi-discretization; polynomial tensor; multi-discrete
delay; high order interpolation; Newton-Coates integral quadrature

1. Introduction

The flutes of technically used milling tools have helix shapes which help to minimize impacts
with the workpiece hence, at face value, mitigates chatter and improves machined surface quality.
Helix shape also plays positive roles in chip evacuation by inducing axial chip motions. In addition to
helix shape, other shape/geometric effects have been introduced in milling tools to possibly induce
destructive interference that passively mitigates chatter. Such techniques of chatter suppression
which have attracted research attention for several decades include: inter-flute non-uniformity of
pitch [1], inter-flute non-uniformity of both pitch and helix angles [2], cutting edge serration of helix
tools [3], inter-flute non-uniformity of helix angle [4] and on-flute helix angle variation [5]. In order to
highlight the aim and novelty of the current work, the rest of this section surveys the computational
techniques applied so far in the stability analysis of milling dynamics of non-uniform pitch helix
tools (helix tools with multiple discrete delays). An analytical frequency domain approach based
on zero-th order Fourier coefficients was used for identification of the stability lobes of milling with
non-uniform pitch helix tools and for establishment of an optimal method for pitch angles selection [1].
The method is an update of the zero-th order method proposed in [6]. The same method was used
in [7] for establishing pitch angles that maximize stability limits for given chatter frequency, spindle
speed, and number of cutting edges. The cluster treatment of characteristic roots was applied to
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the stability analysis of milling with non-uniform pitch helix tools in [8], and the arising results reflected
the same level of accuracy as the method in [1]. Adaptations of the first order semi-discretization
method [9] and temporal-finite element method [10] in stability prediction of non-uniform pitch
tools at low radial immersion have been compared and validated with time-domain simulations [2].
The semi-discretization method predicted stability lobes adequately across all radial immersions ranges
while the temporal finite element method performed better only in the low radial immersion range.
In [11], an adaptation of the first order semi-discretization method was used to identify the stability
lobes of non-uniform pitch helix tools, and comparison to the method of [1,7] showed some predictive
improvement. The first order full-discretization method [12] was updated for stability prediction of
non-uniform pitch helix tools considering runout in [13]. The results showed a noticeable region of
improved prediction relative to the method in [1].

Zero-th order and first order semi-discretization methods, which were based on Ackermann’s
approach to control systems with multiple discrete delays, were used for stability lobes identification
of helix tools with non-uniform pitch [14]. While the first method showed marginal predictive accuracy
relative to [1], the second method showed a noticeable region of improved prediction that was validated
with time-domain simulations. A variable-step trapezoidal rule was used to predict the stability
lobes of non-uniform pitch helix tools in [15]. Using time-domain simulations, a comparison of
the predictive capacity of the numerical integration method with the frequency domain method in [1]
and the full-discretization method in [13] showed improved predictive accuracy. Based on the frequency
method in [1], a design procedure for optimizing pitch non-uniformity towards minimizing a novel
chatter index called “regeneration factor” was present in [16]. The approach in [17] was an adaptation
of the first order semi-discretization for non-uniform pitch helix tools which showed a noticeable
region of improved prediction relative to the method in [1]. A combined implicit subspace iteration
and zero-th order semi-discretization has been proposed for stability analysis of non-uniform pitch
helix tools [18]. The results compared well with those in [14,19]. Semi-third order full-discretization
method (“semi” is used here because one and third order interpolations of the current and delayed
states were used) has been adapted for stability identification of multiple discrete delay tools due to
pitch non-uniformity [20]. Consistent with most of the earlier-mentioned semi- and full-discretization
methods, this semi-third order full-discretization method revealed a noticeable region of improved
prediction relative to [1]. In [21], the combined effect of inter-flute non-uniformities of both pitch
and helix angles was investigated with an updated first order semi-discretization method. Their results
agreed closely with the method of the work [2]. A novel methodology for the design of variable pitch
tool geometry that enhances stable sub-domains was established in [22]. The arising enhancements
due to the designs were verified with the semi-discretization and the frequency domain methods.

From the computational viewpoint, the following gaps regarding the time domain approaches,
which form the foundation of the novelty of this work, are identified;

• Low order interpolation methods have been applied in handling milling states thus accuracy
optimization has not been investigated holistically. In this regard, only [20] so far ventured
further by exploiting a single case—involving third order interpolation of the delayed
state—in the domain of hyper-first order methods.

• Stability analyses are mostly done manually thus needing re-analysis when interpolation
parameters change.

• The distributed cutting force on helix tools has been mostly handled as zero-th order variations
on discrete depth segments of the tools. Here again, re-analysis is needed when interpolation
order of the variations change.

Time-domain methods of milling stability analysis require the protocol of temporal discretization,
chatter states interpolation, monodromy matrix construction, and critical eigenvalue tracking. The first
three steps are symbolic analyses which are traditionally done manually while the last step is usually
a computerized numerical analysis. Any change on the interpolation order will require re-analysis
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of the four steps. This protocol is hard enough for the cases of low order interpolation of the cutting
states of the simplest milling models let alone high order interpolation of the complex milling models
with multiple discrete delays and helix effects. It is proposed to generalize and automatize the four
steps for chatter stability analysis of non-uniform pitch tools subjected to helix effects in order to avoid
case by case manual analysis/re-analysis, and to allow easy investigation of the effect of interpolation
orders of the states and helix-induced integrand on stability lobes accuracy. The methods in [23,24]
provided the framework for the first least squares based attempt in [25] on partial generalization of
monodromy matrix of the full-discretization methods for arbitrary order approximation of the current
state (linear approximation was maintained on the delayed state thus the reference to the method as
partial generalization). A complete generalization for the single delay milling model without helix
effects was attained in [26] using polynomial tensor representation of cutting states. A major adaptation
is needed to extend the method of [26] to take care of the more advanced cases having multiple discrete
delays due to non-uniformity of pitch and distributed force due to helix angle. It is aimed here to
develop the upgraded generalization and automate it to enable for the first time an investigation of
the effects of interpolation parameters of milling states and helix force variation on computational
accuracy of stability lobes.

This paper is organized as follows. The current section is the introduction which surveys
the related works and specifies the novelty of this work. Section 2 presents a modelling of
the regenerative dynamics of milling subjected to multi-delay and helix effects. Section 3 presents
a novel general order full-discretization algorithm for the stability lobes identification of the developed
model. A novel representation of the helix-induced integral with tensor-based general order
Newton-Coates composite quadrature approach is formulated in Section 4 for implementation
in the programming of the algorithm of Section 3. Section 5 presents numerical simulation of
error and stability results, and discusses the effects of interpolation parameters on computational
convergence of stability lobes. The conclusions in Section 6 summarize the key results and their
implications, and point out the future potential of the research.

2. Regenerative Dynamics of Milling with Multi-Delay and Helix Effects

Real milling tools are usually compliant in both the feed (x) and feed-normal (y) directions,
see Figure 1. Thus, the directional total motions of a compliant node are x(t) = vt + xt (t) + zx (t)
and y (t) = yt (t) + zy (t) where zx (t) and zy (t) are the directional regenerative components and xt (t)
and yt (t) are the directional periodic motions. Another characteristic of real milling is the helix shape
of the cutting edge which helps in chip removal and shock mitigation. This means that the axial depth
of cut w is the integral of differential depths; w =

∫ w
0 dz where z is the axial coordinate of a general

point on the cutting edge. Therefore, x and y components of the cutting force on the tool are integrated
from the resolved differential normal (thrust) dFn,j (t, z) and tangential dFt,j (t, z) forces. The scenarios
of the force system and geometry for the uniform pitch (single delay) milling tool and the non-uniform
pitch (multiple delays) milling tool are shown in planar view in Figure 1. The x and y components of
cutting force on the tool become

Fx(t) =
N

∑
j=1

(∫ w

0
gj(t, z) sin θj(t, z)dFn,j(t) +

∫ w

0
gj(t, z) cos θj(t, z)dFt,j(t, z)

)
, (1)

Fy(t) =
N

∑
j=1

(∫ w

0
gj(t, z) cos θj(t, z)dFn,j(t)−

∫ w

0
gj(t, z) sin θj(t, z)dFt,j(t, z)

)
. (2)
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Figure 1. The cutting forces and geometry of milling.

The effect of the helix profile of the cutting edge is to induce a lag angle which is seen from
Figure 2 to be given over a differential depth dz by dα = 2 tan β

D dz. In Figure 2, ACEG represents
a cylindrical segment of the surface traced by the tool which is occupied by the cutting edge segment
AE. The angular displacement of the j-th cutting edge for j = 1, 2, . . . , N is therefore given as

θj (t, z) =
πΩ
30

t− 2
tan β

D
z, for j = 1, (3)

θj (t, z) =
πΩ
30

t− 2
tan β

D
z +

j−1

∑
f=1

ψ f , for j = 2, 3, . . . , N, (4)

where β is the helix angle. Though the directional forces given in Equations (1) and (2) drive
the responses of the tool only in x and y directions, the differential forces from which they are integrated
are functions of axial coordinate z due to the lag angle introduced via the angular displacement θj (t, z).
The screen function gj (t, z) which switches on and off the cutting action of the j-th cutting edge
according to whether it is cutting or not is given by

gj (t, z) = 0.5
(
1 + sign(sin

(
θj (t, z)− arctan℘

)
− sin (θs − arctan℘))

)
, (5)

where ℘ = (sin θs − sin θe)/(cos θs − cos θe). The start angle θs and end angle θe of the tooth action
are given as θs = 0 and θe = arccos(1− 2ρ) for up-milling and as θs = arccos(2ρ− 1) and θe = π for
down-milling, where the radial immersion is given as ρ = B/D for a tool of diameter D subjected to
radial depth of cut B.

The non-linear cutting force law reads

dFt,j (t, z) = Ct( fa,x sin θj (t, z) + fa,y cosj (t, z))γdz, (6)

dFn,j (t, z) = χdFt,j (t, z) . (7)



Mathematics 2020, 8, 1003 5 of 19

In the equations, Ct is the tangential cutting coefficient associated with the workpiece material
properties and tool shape, χ is the ratio of thrust to tangential force and γ is the feed exponent
in the cutting force law. The directional feeds fa,x and fa,y are given as fa,x = (x (t) − x

(
t− τj

)
)

and fa,y = (y (t)− y
(
t− τj

)
) where τj = 30ψj/πΩ is the time interval between the j-th and (j− 1)-th

cutting edges and ψj is the j-th pitch angle or angle between the j-th and (j− 1)-th cutting edges.
Inserting Equations (6) and (7) in Equations (1) and (2) gives

Fx (t) = Ct

N

∑
j=1

∫ w

0
gj (t, z) QT (t, z) (χ sin θj (t, z) + cos θj (t, z))dz, (8)

Fy (t) = Ct

N

∑
j=1

∫ w

0
gj (t, z) QT (t, z) (χ cos θj (t, z)− sin θj (t, z))dz, (9)

where the total feed function QT (t, z) is given by

QT (t, z) = (vτjsj +
(

∆xt,τj + ∆zx,τj

)
sj +

(
∆yt,τj + ∆zy,τj

)
cj)

γ. (10)

Figure 2. Angular lag dα due to the helix profile of the cutting edge over an axial depth segment of dz.

The abbreviations used in Equation (10) are as follows; ∆xt,τj = xt (t) − xt
(
t− τj

)
,

∆zx,τj = zx (t) − zx
(
t− τj

)
, ∆yt,τj = yt (t)− yt

(
t− τj

)
, ∆zy,τj = zy (t)− zy

(
t− τj

)
, sj = sin θj (t, z)

and cj = cos θj (t, z). The linear Taylor series approximation of QT (t, z) about vτjsj is

QT (t, z) =
(
vτjsj

)γ
+ γ(

(
∆xt,τj + ∆zx,τj

)
sj +

(
∆yt,τj + ∆zy,τj

)
cj)
(
vτjsj

)γ−1 . (11)

The non-regenerative feed function QP (t, z) is obtained by setting ∆zx,τj and ∆zy,τj in Equation (11)

to zero giving QP (t, z) =
(
vτjsj

)γ
+ γ

(
∆xt,τj sj + ∆yt,τj cj

) (
vτjsj

)γ−1. The regenerative feed function
QR (t, z) = QT (t, z)−QP (t, z) becomes

QR (t, z) = γ
(

∆zx,τj sj + ∆zy,τj cj

) (
vτjsj

)γ−1 . (12)
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Replacing QT (t, z) in Equations (8) and (9) with QR (t, z) gives the directional regenerative forces

Rx = Ctγ
(
vτj
)γ−1

N

∑
j=1

∫ w

0
gj (t, z) sγ−1

j

(
∆zx,τj sj + ∆zy,τj cj

) (
χsj + cj

)
dz, (13)

Ry = Ctγ
(
vτj
)γ−1

N

∑
j=1

∫ w

0
gj (t, z) sγ−1

j

(
∆zx,τj sj + ∆zy,τj cj

) (
χcj − sj

)
dz. (14)

By Newton’s third law, these regenerative forces equally excite the tool and the workpiece,
meaning that the linear second-order model of either the tool or the workpiece, depending on which is
flexible, can be constructed as

Mz̈ (t) + Cż (t) + Kz (t) =

(
N

∑
j=1

BHHj (t)CH

) (
z (t)− z

(
t− τj

))
, (15)

where
Hj(t) = Ctγ(vτj)

γ−1
∫ w

0
hj(t, z)dz, (16)

hj(t, z) = gj(t, z)sγ−1
j

[
χs2

j + sjcj χsjcj + c2
j

χsjcj − s2
j χc2

j − sjcj

]
, (17)

and z(t) ∈ Rnd is the state, M ∈ Rnd×nd is the mass matrix, C ∈ Rnd×nd is the damping matrix,
K ∈ Rnd×nd is the stiffness matrix. The matrices BH ∈ Rnd×2 and CH ∈ R2×nd serve to project H(t)
which is 2-dimensional to the nd-dimensional response. For the case of the tool or rigid workpiece
mounted on flexible clamps, only point responses in the feed and feed-normal directions are possible

thus z(t) = {zx(t) zy(t)}T , z(t− τj) = {zx(t− τj) zy(t− τj)}T , M =

[
mx 0
0 my

]
, C =

[
cx 0
0 cy

]
,

K =

[
kx 0
0 ky

]
and BH = CH =

[
1 0
0 1

]
where the directional modal parameters are represented

as kx, mx and cx for the feed direction and as ky, my and cy for the feed normal-direction. For the case
of a flexible workpiece, the matrices M, C and K are the assemblages of the elemental global mass
matrices. Equation (15) is transformed to the first-order form with the substitutions x1(t) = z(t)
and x2(t) = ż(t) to give

ẋ(t) = Ax(t) + B(t)x(t)−
N

∑
j=1

Bj(t)x(t− τj), (18)

where x(t) = {x1(t) x2(t)}T ∈ R2nd and A ∈ R2nd×2nd , B(t) ∈ R2nd×2nd and Bj(t) ∈ R2nd×2nd are
given as

A =

[
0 I

−M−1K −M−1C

]
, (19)

B(t) =

[
0 0

M−1 ∑N
j=1 BHHj(t)CH 0

]
, (20)

Bj(t) =

[
0 0

M−1BHHj(t)CH 0

]
. (21)

Equation (18) is a periodic multiple discrete delay model with period T = 60/Ω.
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3. A Generalized Stability Analysis Considering Multiple Discrete Delays and the Helix
Tool Angle

The period T of the system is divided into k equal discrete time intervals [ti, ti+1] where
i = 0, 1, 2, . . . , (k − 1) and ti = i T

k = i∆t = i(ti+1 − ti). Each τj is discretized

into kj ≈ floor(
τj+0.5∆t

∆t ) intervals of size ∆t where k = ∑N
j=1 kj. This means that

i = 0, 1, . . . , k1 − 1, k1, k1 + 1, . . . , k1 + k2 − 1, k1 + k2, . . . , ∑N−1
f=1 k f , (∑

N−1
f=1 k f ) + 1, . . . , (∑N

f=1 k f )−1.
Equation (18) is integrated between the limits ti and ti+1 to become

xi+1 = eA∆txi +
∫ ti+1

ti

eA(ti+1−t)B(t)x(t)dt−
N

∑
j=1

∫ ti+1

ti

eA(ti+1−t)Bj(t)x(t− τj)dt. (22)

The state x(t) is replaced with the polynomial tensor aT(t)T−1Sv of order (degree) pc, where a(t)
is the vector of polynomial basis. The numerical matrices T ∈ R(pc+1)×(pc+1) and S ∈ R(pc+1)×(pc+1),
and the vector of discrete milling states v ∈ R2nd×(pc+1) are given as

Tmn = (∆t)m+n−2
1

∑
l=−pc+1

lm+n−2, (23)

Smn = (n− pc)
m−1(∆t)m−1, (24)

vm = xi+m−pc . (25)

In a similar vein, the delayed states x(t− τj) are replaced with polynomial tensors aT(t)T−1
τj

Sτj vτj

of order pd, where Tτj ∈ R(pd+1)×(pd+1), Sτj ∈ R(pd+1)×(pd+1) and vτj ∈ R2nd×(pd+1) are given as

Tτj ,mn = (∆t)m+n−2
pd

∑
l=0

lm+n−2, (26)

Sτj ,mn = (n− 1)m−1(∆t)m−1, (27)

vτj ,m = xi+m−1−kj
. (28)

Adapting the method of generalized solution for the non-helix single discrete delay system
presented in [26] to the current case of multiple discrete delay, the generalized solution of Equation (22)
upon insertion of Equations (23) to (28) will read

xi+1 = P(pc)
i F0xi + P(pc)

i Ic − P(pc)
i

N

∑
j=1

Id,j, (29)

where

Ic =
q=0

∑
q=1−pc

(
Gpc ,pc+qBi + Gpc ,2pc+1+qBi+1

)
xi+q, (30)

and

Id,j =
q=pd

∑
q=0

(
Dpd ,1+qBj,i + Dpd ,pd+2+qBj,i+1

)
xi+q−kj

. (31)
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The matrices P(pc)
i , F0, Gpc ,pc+q, Gpc ,2pc+1+q, Dpd ,1+q and Dpd ,pd+2+q are still exactly the same as

for the single delay case in [26,27] but additional complication arises from the fact that the dimension
of the discrete map is now determined by km = max(k) which is the largest element of the vector
k = {k1 k2 · · · kN}T having the discretization integers k j as the elements. The dimension
is 2(km + 1) such that a transition from state yi = {xi xi−1 xi−2 · · · xi−km}T to the state

yi+1 = {xi+1 xi xi−1 · · · xi+1−km}T is constructed as yi+1 = M(pc ,pd)
i yi, where

M(pc ,pd)
i = M(pc)

i +
N

∑
j=1

M
(kj ,pd)

i . (32)

It must be noted that while M(pc)
i results from the manipulation of current state in Equation (29),

M
(kj ,pd)

i results from the manipulation of the j-th delayed state in the equation. The Ic in Equation (30)

shows that there are pc current discrete states. Therefore, the current state transition matrix M(pc)
i is

given as

M(pc)
i =


M(i,pc)

1,1 M(i,pc)
1,2 · · · M(i,pc)

1,pc−1 M(i,pc)
1,pc

· · · 0 0 · · · 0 0
I 0 · · · 0 0 · · · 0 0 · · · 0 0
0 I · · · 0 0 · · · 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 0 · · · I 0

 , (33)

where, according to [26], the top-most pc submatrices are given as

M(i,pc)
1,1 = P(pc)

i (F0 + Gpc ,pc Bi + Gpc ,2pc+1Bi+1), (34)

M(i,pc)
1,1−q = P(pc)

i (Gpc ,pc+qBi + Gpc ,2pc+1+qBi+1), for q = −1, −2, . . . , 1− pc. (35)

Each of Id,j in Equation (29) has pd + 1 delayed discrete states. The coefficients of the states occupy
the top-most pd + 1 locations from k j + 1− pd to k j + 1 in the j-th delayed state transition matrix

M(kj ,pd) given as

M
(k j ,pd)
i =



f jN
(i,pd)
1,1 f jN

(i,pd)
1,2 · · · f jN

(i,pd)
1,pd

· · · f jN
(i,pd)
1,km+1−pd

f jN
(i,pd)
1,km+2−pd

· · · f jN
(i,pd)
1,km+1

0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 · · · 0 0 · · · 0


. (36)

If mcn = 1, 2, . . . , km + 1 denotes the column number in M
(kj ,pd)

i , then to ensure proper positioning
of the top-most submatricies associated with the delayed sate in the 2(km + 1)-dimensional discrete
transition matrix, the screening parameter f j introduced in Equation (36) is defined as

f j =

{
1 for mcn = k j + 1− pd, k j + 2− pd, . . . , k j + 1,

0 otherwise.
(37)

At the columns where f j = 1, the top-most sub-matrices in M
(kj ,pd)

i are given as

N(i,pd)
1,kj+1−q = −P(pc)

i (Dpd ,1+qBj,i + Dpd ,pd+2+qBj,i+1), for q = pd, pd − 1, . . . , 0. (38)
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Since the discrete transition is carried out on every of the k equal discrete time intervals [ti, ti+1]

to cover the spindle period T of the system, the monodromy matrix for the system is constructed as

Ψ(pc, pd) =
k−1

∏
i=0

M(pc ,pd)
i . (39)

It must be noted that non-uniform pitch lengthens the span of discrete transition and is thus
extending the computational time. The models and discrete map established above can still apply to real
helix tool milling with uniform pitch having single discrete delay τ = 60/NΩ when the simplification
τj = τ is made for all j, but unnecessary computational time is incurred. The model for such tools
is ẋ(t) = Ax(t) + B(t)x(t)− B(t)x(t− τ) where A and B(t) are as given in Equations (19) and (20).
Thus, the unified algorithm for stability analysis of single delay milling presented in [26] is applicable
once the integrated specific force variation matrix Hj(t) as given in Equation (16) is used in place of
the corresponding quantity in [26].

4. General Order Tensor-Based Interpolation and Integration of Helix-Induced hj(t, z)

The level of accuracy in handling the helix-induced integrand hj(t, z) will affect the overall
accuracy of the stability lobes of helix tools. It has been argued in [15] that the use of numerical
integration in handling the integral is contributory to the higher accuracy recorded relative to the
semi- and full-discretization methods. Most of the earlier works such as described in [2] approximate
the corresponding integral as a constant (zero-th order variation) within every depth element of
the tool. Here, a general order polynomial tensor variation of the helix-induced integrand is applied
such as to investigate the effect of variation of order on the accuracy of stability lobes. In other words,
the Newton-Coates integral quadrature approach is generalized for use in automatic integration of
hj(t, z) for formation of B(t) and Bj(t) at every discrete time step of the generalized discrete mapping
presented above for stability analysis.

The numerical integration requires discretization of the axial depth of cut w into K depth intervals
[zq, zq+1], where q = 0, 1, 2, . . . , K− 1 and ∆z = w

K = zq+1 − zq. Then, ph-steps numerical integration
rules are generated

A(ph) =
∫ zq+1

zq−ph+1

hj(t, z)dz =
∫ ∆z

(−ph+1)∆z
hj(t, z)dz. (40)

The helix-induced integrand hj(t, z) is then interpolated with general order polynomial tensors
according to Equations (23) to (25). The integration is implemented to give the general order
Newton-Coates integral quadrature method

A(ph) =
q+1

∑
l=q−ph+1

Cl−(q−ph+1)hl(t). (41)

The K/ph steps of numerical integration rules are summed to generate the composite numerical
integration methods which are represented generally as

A(0)
c = C0 ∑

l=1:1:K
hl(t) ≈ C0 ∑

l=0:1:K−1
hl(t), for ph = 0, (42)

A(1)
c = C0h0(t) + 2C1 ∑

l=1:1:K−1
hl(t) + C1hK(t), for ph = 1, (43)

and for ph ≥ 2

A(ph)
c = C0h0(t) + ∑

r=1:1:ph−1
Cr

(
∑

l=r:ph :K−ph+r
hl(t)

)
+ 2Cph ∑

l=ph :ph :K−ph

hl(t) + Cph hK(t), (44)
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where Cr = Cph−r for r = 0, 1, 2, . . . , ph, and these coefficients are exactly the coefficients
in the interpolation results from Equations (40) and (41). For illustration, the row vectors of
the coefficients Cph = {C0 C1 C2 · · · Cph} for the zero-th to the sixth order integration methods
are given as

C0 = {∆z} , (45)

C1 =

{
∆z
2

∆z
2

}
, (46)

C2 =

{
∆z
3

4∆z
3

∆z
3

}
, (47)

C3 =

{
3∆z

8
9∆z

8
9∆z

8
3∆z

8

}
, (48)

C4 =

{
14∆z

45
64∆z

45
8∆z
15

64∆z
45

14∆z
45

}
, (49)

C5 =

{
95∆z
288

125∆z
96

125∆z
144

125∆z
144

125∆z
96

95∆z
288

}
, (50)

C6 =

{
41∆z
140

54∆z
35

27∆z
140

68∆z
35

27∆z
140

54∆z
35

41∆z
140

}
. (51)

These coefficients, which derive from zero-th to hexic order polynomial tensor interpolation of
hj(t, z), are compared for accuracy in the following numerical simulations.

5. Numerical Simulation and Discussions

The application of the presented generalized algorithm for identifying the stability boundaries
of chatter of a 1DOF tool and a 2DOF tool is demonstrated here. The test cases are drawn from
literature [14]. More complicated models of the tool are possible but are not in the focus of this
algorithmically oriented contribution. In addition to achieving a fully automated algorithm for stability
analysis of the milling model considering the complications of helix and multiple delay effects,
attention is additionally focused on exploiting the developed algorithm in assessing the sensitivity
of computational precision on interpolation orders of states, and also the sensitivity of precision on
the method of handling the distributed regenerative force.

5.1. Two Degree of Freedom Tool

The values in [14] for the parameters of a 2DOF tool are adopted for numerical simulation
here. The parameters of the 2DOF tool are close to that originally established experimentally in [1]
and are summarized in Table 1. The parameters are used to study the effect of interpolation order of
chatter states and helix-induced integrand on the convergence rate and computational precision of
the spectral radii Ψ(pc, pd) and, thus, the precision of the stability lobes of the adopted milling
process. By virtue of the choice of modal parameters provided in Table 1, the mass matrix is

used in the form M =

[
kx/ω2

nx 0
0 ky/ω2

ny

]
while the damping matrix is used in the form

C = 2

[
ζxkx/ωnx 0

0 ζyky/ωny

]
. A feed speed v = 0.0025 m/s is used in all the simulations.
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Table 1. Parameters of benchmark 2DOF tool.

Parameter Symbol Value Unit

number of flutes N 4 -

tool diameter D 19.05 mm

helix angle β 30 deg

tool pitch b {70 110 70 110} deg

down-milling radial immersion ρ 0.5 -

power force law exponent γ 1 -

tangential cutting coefficient Ct 697.00× 106 N/m2

thrust to tangential force ratio χ 255.799/697 -

natural frequency ωnx 563.60 Hz
ωny 516.21

modal stiffness kx 18,792,624.40 N/m
ky 12,613,387.75

modal damping ratio ζx 5.5801% -
ζy 2.5004%

5.1.1. Convergence with Interpolation Orders

The effects of the interpolation orders of the current state pc and the delayed state pd on the spectral
radii computation error (SRCE) is investigated at the process parameter coordinate of spindle speed
and axial depth of cut (1000 rpm, 6 mm) by treating the error as a bivariate function of pc and pd.
The percentage error is given on a logarithmic scale to base ten as

SRCE = log10

∣∣∣∣100
µSR(k)− µESR

µESR

∣∣∣∣ , (52)

where the computed spectral radius µSR(k) at a low value of k = 160 is compared to the so-called
exact spectral radius µESR computed at a high value of k = 400 designated kR. The error surface for
the process parameter point (1000 rpm, 6 mm) is presented in Figure 3a which shows a gradual rise
with approach of either the current state order pc or the delayed state order pd to zero and sudden
rise, when either one of the orders crosses a threshold large value, numerical instability being more
sensitive to pc than pd. A planar view of the error surfaces is shown in Figure 3b with a colour bar to
show that the domain of minimal error for the simulated point is defined by the order ranges pc ≤ 13
and pd ≤ 16. A magnified view of the undulating base of the SRCE surface which is seen to have
several local minima is shown in Figure 3c. The global minimum for the considered process parameter
point (1000 rpm, 6 mm) occurs at (pc, pd) = (1, 3), and the other six local minima in ascending order
are (pc, pd) = (7, 1), (1, 10), (1, 9), (7, 2), (1, 2) and (7, 8). The local minima of other process parameter
points occur at somewhat different order combinations but on statistical basis, pc in the neighborhood
of 7 and pd in the neighborhood of 2 give the best results for the studied milling system.
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Figure 3. Spectral radii computation error at (1000 rpm, 6 mm).

5.1.2. Stability Lobes Identification

Eigenvalues are computed on a 200 by 200 gridded plane of the spindle speed range
[1000, 10,000] rpm and appropriate axial depth of cut ranges, and used for tracking the stability
boundary curves under the criterion of neutral stability. The computational flow for tracking of stability
lobes using the established algorithm is explained using a flowchart in the Appendix A. For simplicity
of the flowchart, the loop for numerical integration needed for computing Hj(t) and the loop needed
for summing B(t) from all the cutting edges are not shown. A reference stability lobe is computed
using p = 3 and k = 320 as a benchmark for the rest of the stability lobes which are computed using
k = 160. The stability lobes of the square unification orders p = 1 to 14 (that is, the cases for which
p = pc = pd) are plotted in Figure 4. Figure 4a shows a full scale plot of the stability lobes for
the lower orders p = 1 to 7 while Figure 4b shows the results for the higher orders p = 8 to 14. It can be
seen that at p = 14, the method fails at the high speed. The failure continues to extend to the lower
speed at higher p values. A magnification of a low speed portion of the stability lobes in Figure 4c
shows that high order interpolation is needed for accuracy in the low speed domain since the stability
lobes for p = 5 to 14 converged more to the reference compared to the methods from p = 1 to 4.
The orders p = 5 and 6 are the most accurate for this case. This result agrees with Figure 3a,b for
convergence of spectral radius of an isolated process parameter coordinate with order p. Figures 5
and 6 are generated to study the effects of independent variations of pc and pd on the convergence of
the stability lobes of the studied multi-delay and helix milling model. Figure 5 shows the results for
a variation of pc from 0 to 14 (Figure 5a shows results for pc = 0 to 7 while Figure 5b shows results
for pc = 8 to 14), when pd is fixed at 3. For a study of the effects of variation of pd, Figure 6 shows
the stability lobes from the variation of pd from 0 to 14 (Figure 6a shows results for pd = 0 to 7 while
Figure 6b shows results for pd = 8 to 14), when pc is fixed at 3. From comparing Figures 5 and 6, it can
be seen that while pc = 0 is too erroneous to appear on the full computational plane, pd = 0 is accurate
enough to appear on the computational plane. These results agree with the trends of spectral radii
computation error in Figure 3a,b. Comparison of Figures 5b and 6b (especially the cases of pc = 14
and pd = 14), shows that the high speed numerical instability stems more from high pd than from high
pc. Also, a comparison of Figures 5c and 6c shows that pc plays a higher role in convergence of stability
lobes than pd. In fact, the best low speed convergence during variation of pd occurred here when
pd = 2 meaning that high order interpolation of the delayed state is not advisable. This is obverse
to the conclusion deducible from Figure 5c that high pc is needed for convergence (here, pc ≥ 4).
The enlarged view of a high speed portion of each of stability lobes in Figures 4–6 are given in Figure 7.
The figure shows that at high speed, stability lobes of all the numerically stable maps for orders greater
than one converge. It is noteworthy that in a part of the high speed lobes, pc = 1 resulted in the highest
convergence, highlighting that the most accurate stability lobe is multi-order in the sense that it should
be built from different sub-ranges computed from different combinations of interpolation orders that
are most accurate for the sub-ranges.
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Figure 4. Stability lobes of the system under square unification maps for p = 1 to 14. (a) Lower order
cases; (b) Higher order cases; (c) Low speed portion of the cases in (a,b).
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Figure 5. Stability lobes from the variation of pc from 0 to 14 with pd fixed at 3. (a) Lower order cases;
(b) Higher order cases; (c) Low speed portion of the cases in (a,b).
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Figure 6. Stability lobes from the variation of pd from 0 to 14 with pc fixed at 3. (a) Lower order cases;
(b) Higher order cases; (c) Low speed portion of the cases in (a,b).
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Figure 7. A high speed magnification of the stability lobes of the system under square unification maps
for p = 1 to 14. (a) From Figure 4; (b) From Figure 5; (c) From Figure 6.
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The effect of interpolation order ph of the helix-induced integrand hj(t, z) on convergence of
the stability lobes of the studied system is investigated by generating the stability lobes for ph = 0 to 6
using the parameters pc = pd = 3, K = 24 and k = 160. The reference stability diagram is computed
using pc = pd = 3, K = 24 and k = 320. As seen in Figure 8a for the lower speed range, the most
accurate stability lobes occurred at ph = 1, 2, 4 to 6 while the worst results occurred at ph = 0 and 3.
Therefore, against the usual practice in earlier works of using zero-th order composite numerical
integration to handle the helix-induced integral, the generalized composite numerical integration
presented here, which allows automatic higher order treatment of the integral, leads to higher accuracy.
The effect of ph is the same in the high speed range as seen in Figure 8b. The results in Figure 9 show
that the number of discretization intervals K of axial depth of cut does not have a significant effect
on accuracy of the stability lobes. Therefore, in light of the need for reduced computational time
without increasing inaccuracy, the computational parameters recommended for the studied system are
pc = 5 or 6, pd = 2, ph = 1 and K = 6.
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Figure 8. Stability lobes of the system for different integration orders of the helix-induced
integrand ph = 0 to 6.
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Figure 9. Stability lobes of the system for different discretization intervals K of axial depth of cut.

5.2. Single Degree of Freedom Tool

Here, single degree of freedom tool chatter is considered in the feed direction. This simply implies
that in Equations (19) to (21), M = mx, K = kx, C = cx, 0 = 0, I = 1, BH = 1, CH = 1,
Hj(t) = Hj(t) = − Ctγ(vτj)

(γ−1)
∫ w

0 hj(t, z)dz and hj(t, z) = gj(t, z)sγ−1
j (χs2

j + sjcj). A benchmark
single degree of freedom tool with parameters summarized in Table 2 is adopted from [14] for numerical
investigation here. A computational grid of 200 by 200 for the process parameter plane of spindle speed
range [500, 5000] rpm and axial depth range of [0, 80] mm is adopted. Stability boundary curves are tracked
on the plane at the discretization parameter k = 200. The curves for the cases of p = pc = pd = 1 to 13,
where are plotted in Figure 10a on the full axes. Computational accuracy is judged relative to the reference
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curve (red) computed using p = 3 at discretization level of k = 400. The matlab command, trapz, for
numerical integration is used here to handle the helix induced integral. It can be seen that both the profile
and the parameter range of the stability boundary curves agree with the results for the same system in [14,18].
A low speed range and a higher speed range of the curves are given in Figures 10b,c. It is seen that the first
order method clearly stands out from the rest in terms of error. It can be seen from Figure 10a that the ultra-high
orders p > 10 are not appropriate in the high speed range while it can be seen from Figures 10b,c that the first
order method is not appropriate in the low speed range. A stable island in Figure 10a (which is also seen
in the equivalent result in [14]) is selected for validation with time domain simulations. The process parameter
coordinate (1000 rpm, 55 mm) which is labeled B lies within the stable island thus expected to be stable
while the coordinate (1000 rpm, 4 mm) which is labeled C and the coordinate (1000 rpm, 70 mm) which is
labeled A lie below (and also below the main stability curve) and above the B, and are expected to be stable
and unstable. The results in Figure 11 confirm the expectations thus validating the stability curve. The matlab
integrator dde23 was used to generate the time domain regenerative responses. The parameters used
in the simulation are k = 500, K = 24, x(t = 0) = {10−6 0}T and ph = 2. By the virtue of the computerized
generalization, the recommendations which may be different for other systems and process parameter ranges
can be automatically revised.

Table 2. Parameters of benchmark 1DOF tool.

Parameter Symbol Value Unit

number of flutes N 4 -

tool diameter D 20 mm

helix angle β 30 deg

tool pitch b {85 95 85 95} deg

radial immersion ρ 1 -

power force law exponent γ 1 -

tangential cutting coefficient Ct 793.99× 106 N/m2

thrust to tangential force ratio χ 0.1378 -

natural frequency ωnx 227.66 Hz

modal stiffness kx 10.39× 106 N/m

modal damping ratio ζx 3.23% -
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Figure 10. Stability lobes of the 1DOF system under square unification maps for p = 1 to 13.
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(c) Time domain simulation of point B
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(d) Time domain simulation of point A
Figure 11. The stability curve showing the points of time domain simulation labeled A, B and C.

6. Conclusions

In this work, an algorithm based on the arbitrary order full-discretization method and arbitrary
order Newton-Coates integral quadrature is developed and implemented for fully automated
identification of the stability lobes of multiple delay milling processes with helix effects. Because
of the flexibility provided by the generalized algorithm, the study is able to asses the influence of
interpolation orders of the cutting states and the helix-induced variation on the identification accuracy
of the stability lobes of case studies of 1DOF and 2DOF milling systems. It is found that high order
interpolation (p = 5 to 14) is needed for accuracy in the low speed domain. With respect to the separate
effects of pd and pc on the stability lobes precision, it is found that high speed numerical instability
stems more from high pd than high pc while pc is more influential in the overall convergence of stability
lobes than pd. High order interpolation of the delayed state is not advisable for the studied 2DOF case
as the best low speed convergence during the variation of pd occurred when pd = 2. Stability lobes of
all the numerically stable interpolation orders greater than one converge at high speed. It is concluded
that the most accurate stability lobe is multi-order in the sense that it should be built from different
sub-ranges computed from different combinations of interpolation orders that are most accurate for
the sub-ranges. Increasing the order of interpolation ph of the helix induced function can lead to rise
and fall of accuracy in the range of the variation of ph. The number of discretization intervals K of
axial depth of cut does not have a significant effect on accuracy of the stability lobes. Recalling that
the model presented equally applies to the chatter vibration of flexible workpiece, this work lays
a solid mathematical and numerical ground for the stability analysis of flexible workpiece chatter
subjected to multiple discrete delays and helix effects.
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Appendix A

pc, pd, ph, N, D, β,
b, ρ, γ, Ct, χ, ωnx,
ωny, kx, ky, ζx, ζy
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w
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Mpc
i , M

kj ,pd
i

is i = k− 1?i = i + 1

Ψ(pc, pd) is w = max(w)?

w = w + ∆w

is Ω = max(Ω)?Ω = Ω + ∆Ω

stability diagram

no

yes

no

yes

no

yes

Figure A1. Computational flow for tracking of stability lobes.
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