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Abstract: We consider a control system defined by a linear time-varying differential equation of
n-th order with uncertain bounded coefficients. The problem of exponential stabilization of the
system with an arbitrary given decay rate by linear static state or output feedback with constant gain
coefficients is studied. We prove that every system is exponentially stabilizable with any pregiven
decay rate by linear time-invariant static state feedback. The proof is based on the Levin’s theorem
on sufficient conditions for absolute non-oscillatory stability of solutions to a linear differential
equation. We obtain sufficient conditions of exponential stabilization with any pregiven decay rate
for a linear differential equation with uncertain bounded coefficients by linear time-invariant static
output feedback. Illustrative examples are considered.
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uncertain system
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1. Introduction

Consider a control system defined by an ordinary differential equation with time-varying
coefficients of n-th order

x(n) + p1(t)x(n−1) + . . . + pn(t)x = u, (1)

where x ∈ R is the state variable, u ∈ R is the control input, t ∈ R+ := [0,+∞). We suppose
that the functions pi(t) are measurable but exact values of these functions at time moments t are
unknown, we know only that the functions are bounded on R+ and lower and upper bounds (αi and
βi) are known:

αi ≤ pi(t) ≤ βi, t ∈ R+, i = 1, n. (2)

Functions pi(t) can be arbitrary, in particular, they can vary fast or slowly. Denote x =

(x, ẋ, . . . , x(n−1)). We consider a problem of feedback stabilization for system (1). One needs to
construct a function u(t, x), u(t, 0) = 0, such that, for system (1) closed-loop by u = u(t, x), the zero
solution is exponentially stable and has a given decay rate. The stated problem essentially relates to
the problems of robust stabilization.

Let us assume that pi(t) are time-invariant (and hence, are known), i.e., pi(t) ≡ pi(= αi = βi).
In that case, the stabilization problem is trivial. In fact, we construct

vi = pi − φi, (3)
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where φi ∈ R, i = 1, n, are chosen such that the polynomial

λn + φ1λn−1 + . . . + φn (4)

is stable (i.e., Re λj < −θ < 0 for all roots λj, j = 1, n, of (4)). Then system (1) closed-loop by the control

u(x) = v1x(n−1) + . . . + vnx (5)

has the form
x(n) + φ1x(n−1) + . . . + φnx = 0, (6)

and the zero (and hence, every) solution of (6) is exponentially stable.
Now, assume that pi(t) are time-varying. Then we can not construct the control by using (3)

because pi(t) are unknown. Let the feedback control law have the form (5), where vi are constant.
The closed-loop system has the form

x(n) + (p1(t)− v1)x(n−1) + . . . + (pn(t)− vn)x = 0. (7)

We study the following problem: construct constants v1, . . . , vn ∈ R such that all solutions of (7)
are exponentially stable with a given decay of rate. This problem is non-trivial due to the following
reasons. For studying this problem, we need use some sufficient conditions for exponential stability
of linear time-varying systems. The problem of obtaining some sufficient conditions for (asymptotic,
exponential) stability of linear time-varying systems

ẋ = A(t)x, t ∈ R+, x ∈ Rn, (8)

is one of the important and difficult problems in the theory of differential equations and control
theory [1]. In contrast to systems with constant coefficients (A(t) ≡ A), the condition Re λj < 0,
j = 1, n, fulfilled for the eigenvalues of the matrix of the system (8) is neither a sufficient nor a necessary
condition for the asymptotic stability of the system (8) (see, e.g., [2], ([3], § 9)). Some sufficient
conditions for asymptotic and exponential stability of linear time-varying systems (8) and linear
time-varying differential equations

x(n) + q1(t)x(n−1) + . . . + qn(t)x = 0 (9)

were obtained in [1–11]. The following theorem take place.

Theorem 1. Suppose the functions qi(t) are measurable and bounded on R+ and the following inequalities hold:

0 < σi ≤ qi(t) ≤ ωi, t ∈ R+, i = 1, n. (10)

Let the polynomial

P1(λ) = λn + ω1λn−1 + σ2λn−2 + ω3λn−3 + . . . , (11)

P2(λ) = λn + σ1λn−1 + ω2λn−2 + σ3λn−3 + . . . (12)

have only real roots. Then all solutions of (9) are exponentially tends to 0 as t→ +∞.

Theorem 1 was proved by A.Yu. Levin in [6]. Note that these roots (of the polynomials (11)
and (12)) are negative necessarily due to positivity of σi, ωi, i = 1, n. Next, it follows from the proof of
Theorem 1 [6] that every solution x(t) of (9) along with its derivatives up to (n− 1)-th order has the
form O(e−νnt) as t→ +∞, where −νn < 0 is the largest of the roots of polynomials (11), (12).
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By using standard replacement y1 = x, y2 = x′, . . . , yn = x(n−1), one can rewrite the control
system (1), (5) in the form

ẏ = A(t)y + Bu, (13)

u = Vy. (14)

Here A(t) is the companion matrix for the polynomial with the coefficients pi(t), B =

col[0, . . . , 0, 1], V = [vn, . . . , v1].
A large number of papers are devoted to the problems of robust asymptotic stability and

stabilization for linear systems. We note here the famous works [12–18] and recent works [19–22].
The problems of stabilization of uncertain linear systems using linear matrix inequalities were studied
in [23–33].

Uncertain systems (13), (14) were studied in [34–37] and in other works of A.H. Gelig and
I.E. Zuber. In particular, it follows from results of [34] that system (13) is exponentially stabilizable
by feedback control (14). This result is supplemented and developed in this paper. The difference
between this result and the results obtained in the work is as follows. Firstly, we achieve exponential
stabilization of (7) not only with some decay rate as it follows from [34] but with an arbitrary pregiven
decay rate. Secondly, in contrast to [34], which uses the Second Lyapunov Method (Method of
Lyapunov Function), we apply, in some sense, the First Lyapunov Method (which uses the roots of
characteristic polynomial) and non-oscillation theory. Thirdly, we extend these stabilization results to
systems with static output feedback control.

In this work, using Theorem 1, we prove results on exponential stabilization with any pregiven
decay rate by linear stationary static state or output feedback for a control system defined by a linear
time-varying differential equation of the n-th order with uncertain coefficients.

2. Preliminary Results

Theorem 2. For any η > 0 for any n ∈ N there exist polynomials

f (λ) = λn + δ1λn−1 + γ2λn−2 + δ3λn−3 + . . . , (15)

g(λ) = λn + γ1λn−1 + δ2λn−2 + γ3λn−3 + . . . (16)

such that the following properties hold:
(i) 0 < γi ≤ δi − 1, i = 1, . . . , n;
(ii) the roots −ai, i = 1, . . . , n, of f (λ) and the roots −bi, i = 1, . . . , n, of g(λ) are real (and hence,

negative);
(iii) the following inequalities hold:

0 > −η ≥ −a1 > −b1 > −b2 > −a2 > −a3 > −b3 > . . . > −a2`−1 > −b2`−1 > −b2` > −a2`

(if n is even and n = 2`);
(17)

0 > −η ≥ −b1 > −a1 > −a2 > −b2 > −b3 > −a3 > . . . > −a2` > −b2` > −b2`+1 > −a2`+1

(if n is odd and n = 2`+ 1).
(18)

Proof. At first, suppose that the theorem is proved for any η ≥ 1. Let us construct, for η = 1,
the polynomials (15), (16) providing properties (i), (ii), (iii), and denote them by f1(λ), g1(λ). Now,
let η ∈ (0, 1). Then, let us set f (λ) := f1(λ), g(λ) := g1(λ). Hence, conditions (i), (ii) are satisfied.
Since −η > −1, condition (iii) holds as well. Thus, without loss of generality, one can assume that
η ≥ 1.

Let us give the proof by induction on n. The statements that we have to prove are different for odd
and even numbers n: for even n, we need to ensure inequalities (17), in addition to (i) and (ii), and
for odd n, we need to ensure inequalities (18). Therefore, the induction base as well as the induction
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hypothesis and the induction step should depend on whether the number n is even or odd. That is
why we should check the induction base for n = 1 and n = 2.

Let n = 1. For any η ≥ 1, we set γ1 := η, δ1 := η + 1. Then the polynomials f (λ) = λ + δ1 and
g(λ) = λ + γ1 have the roots −a1 = −δ1 and −b1 = −γ1 respectively. Obviously, conditions (i), (ii),
and inequalities (18) are satisfied.

Let n = 2. For any η ≥ 1, we set

a1 := η, a2 := 5η, b1 := 2η, b2 := 3η, (19)

f (λ) := (λ + a1)(λ + a2), g(λ) := (λ + b1)(λ + b2). (20)

Then
δ1 = 6η, γ1 = 5η, δ2 = 6η2, γ2 = 5η2. (21)

By (19), (20), condition (ii) and inequality (17) are satisfied. By (21) and the inequality η ≥ 1,
condition (i) is satisfied. The induction base is proved.

Let us put forward the induction hypothesis. Suppose that the assertion of the theorem is true for
n = k. Then, let us prove that the assertion of the theorem is true for n = k + 1. We will carry out the
induction step for even and odd k separately.

By the induction hypothesis, there exist polynomials

f (λ) = λk + δ1λk−1 + γ2λk−2 + . . . , (22)

g(λ) = λk + γ1λk−1 + δ2λk−2 + . . . (23)

such that

0 < γi ≤ δi − 1, i = 1, k, (24)

f (λ) =
k

∏
i=1

(λ + ai), g(λ) =
k

∏
i=1

(λ + bi), ai, bi ∈ R, ai, bi > 0, i = 1, k, (25)

0 > −η ≥ −a1 > −b1 > −b2 > −a2 > . . . > −a2`−1 > −b2`−1 > −b2` > −a2` (if k = 2`), (26)

0 > −η ≥ −b1 > −a1 > −a2 > −b2 > . . . > −a2` > −b2` > −b2`+1 > −a2`+1 (if k = 2`+ 1). (27)

Let us prove that there exist polynomials

F(λ) = λk+1 + ∆1λk + Γ2λk−1 + ∆3λk−2 + . . . , (28)

G(λ) = λk+1 + Γ1λk + ∆2λk−1 + Γ3λk−2 + . . . (29)

such that

0 < Γi ≤ ∆i − 1, i = 1, k + 1, (30)

F(λ) =
k+1

∏
i=1

(λ + Ai), G(λ) =
k+1

∏
i=1

(λ + Bi), Ai, Bi ∈ R, Ai, Bi > 0, i = 1, k + 1, (31)

0 > −η ≥ −B1 > −A1 > −A2 > −B2 > . . . > −A2` > −B2` > −B2`+1 > −A2`+1

(if k = 2`),
(32)

0 > −η ≥ −A1 > −B1 > −B2 > −A2 > . . . > −A2`+1 > −B2`+1 > −B2`+2 > −A2`+2

(if k = 2`+ 1).
(33)
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We assume that δ0 := 1, γ0 := 1. Set

C1 := max
i=1,`

{
δ2i−1 − γ2i−1 + 1

δ2i−2
,

1
δ2`

}
, C2 := max

j=1,`

δ2j − γ2j + 1
δ2j−1

, N := max
j=1,`

γ2j−1

δ2j−1
(34)

for the case if k = 2`, and

C1 := max
i=1,`+1

δ2i−1 − γ2i−1 + 1
δ2i−2

, C2 := max
j=1,`

{
δ2j − γ2j + 1

δ2j−1
,

1
δ2`+1

}
, N := max

j=1,`+1

γ2j−1

δ2j−1
(35)

for the case if k = 2`+ 1. Then C1 > 0, C2 > 0, 0 < N < 1. Consider lines

y = x + C1, x = Ny + C2. (36)

They intersect at the point M0(x0, y0) with the coordinates x0 =
C1N + C2

1− N
> 0, y0 =

C1 + C2

1− N
> 0.

Consider the set Ω0 = {(x, y) ∈ R2 : y ≥ x + C1, x ≥ Ny + C2}. The set Ω0 is a cone, with a vertex
at the point M0, located in the first quadrant of the xOy-plane and bounded by half-lines (36) where

x ≥ x0. The ray m = {(x, y) ∈ R2 : x− x0 =
1 + N

2
(y− y0), x ≥ x0} is contained in Ω0. Consider the

inequality system 
y ≥ x + C1,

x ≥ Ny + C2,

x > ak.

(37)

The solution of system (37) is the set Ω1 = Ω0 ∩ {x > ak}. The set Ω1 is non-empty. In particular,
the point M1(x̂, ŷ) lying on the ray m with x̂ = max{x0 + 1, ak + 1} is contained in Ω1. Calculating ŷ,

we obtain that ŷ =
2

1 + N
max{1, ak − x0 + 1}+ y0.

Set

Ai := bi, Bi := ai, i = 1, k, (38)

Ak+1 := ŷ, Bk+1 := x̂, (39)

F(λ) :=
k+1

∏
i=1

(λ + Ai), G(λ) :=
k+1

∏
i=1

(λ + Bi). (40)

Then condition (31) is satisfied. Next, since x̂ > ak, it follows that

Bk < Bk+1. (41)

Next, since (x̂, ŷ) is a solution of (37), we have

Ak+1 = ŷ ≥ x̂ + C1 > x̂ = Bk+1. (42)

Thus, it follows from inequalities (41), (42), equalities (38) and induction hypothesis (26), (27) that
inequalities (32) are satisfied if k = 2`, and inequalities (33) are satisfied if k = 2`+ 1.

Let us prove inequalities (30). From the definition (40) of the polynomials F(λ), G(λ) and
equalities (38), (25) we obtain that

F(λ) = g(λ)(λ + Ak+1), G(λ) = f (λ)(λ + Bk+1). (43)
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Substituting (22), (23) and (28), (29) into (43) and opening the brackets, we obtain equalities

∆2i−1 = Ak+1δ2i−2 + γ2i−1, Γ2i−1 = Bk+1γ2i−2 + δ2i−1, i = 1, `,

∆2`+1 = Ak+1δ2`, Γ2`+1 = Bk+1γ2`,

∆2j = Bk+1δ2j−1 + γ2j, Γ2j = Ak+1γ2j−1 + δ2j, j = 1, `,

for the case if k = 2`, and equalities

∆2i−1 = Ak+1δ2i−2 + γ2i−1, Γ2i−1 = Bk+1γ2i−2 + δ2i−1, i = 1, `+ 1,

∆2j = Bk+1δ2j−1 + γ2j, Γ2j = Ak+1γ2j−1 + δ2j, j = 1, `,

∆2`+2 = Bk+1δ2`+1, Γ2`+2 = Ak+1γ2`+1,

for the case if k = 2`+ 1. The inequalities Γi > 0, i = 1, k + 1, are satisfied due to inequalities (24) and
the inequalities Ak+1 > 0, Bk+1 > 0. The inequalities

Γi ≤ ∆i − 1, i = 1, k + 1, (44)

are equivalent to the inequality system
γ2i−1 + Ak+1δ2i−2 ≥ Bk+1γ2i−2 + δ2i−1 + 1, i = 1, `,

Ak+1δ2` ≥ Bk+1γ2` + 1,

γ2j + Bk+1δ2j−1 ≥ Ak+1γ2j−1 + δ2j + 1, j = 1, `,

(45)

for the case if k = 2`, and are equivalent to the inequality system
γ2i−1 + Ak+1δ2i−2 ≥ Bk+1γ2i−2 + δ2i−1 + 1, i = 1, `+ 1,

γ2j + Bk+1δ2j−1 ≥ Ak+1γ2j−1 + δ2j + 1, j = 1, `,

Bk+1δ2`+1 ≥ Ak+1γ2`+1 + 1,

(46)

for the case if k = 2`+ 1. System (45) is equivalent to the inequality system

Ak+1 ≥ Bk+1
γ2i−2

δ2i−2
+

δ2i−1 − γ2i−1 + 1
δ2i−2

, i = 1, `,

Ak+1 ≥ Bk+1
γ2`
δ2`

+
1

δ2`
,

Bk+1 ≥ Ak+1
γ2j−1

δ2j−1
+

δ2j − γ2j + 1
δ2j−1

, j = 1, `.

(47)

System (46) is equivalent to the inequality system

Ak+1 ≥ Bk+1
γ2i−2

δ2i−2
+

δ2i−1 − γ2i−1 + 1
δ2i−2

, i = 1, `+ 1,

Bk+1 ≥ Ak+1
γ2j−1

δ2j−1
+

δ2j − γ2j + 1
δ2j−1

, j = 1, `,

Bk+1 ≥ Ak+1
γ2`+1
δ2`+1

+
1

δ2`+1
.

(48)

For the case if k = 2`, the following inequalities hold:

γ2i
δ2i
≤ 1, i = 0, `;

γ2j−1

δ2j−1
≤ N, j = 1, `.
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For the case if k = 2`+ 1, the following inequalities hold:

γ2i
δ2i
≤ 1, i = 0, `;

γ2j−1

δ2j−1
≤ N, j = 1, `+ 1.

Thus, it follows from definitions (34), (35) that to satisfy inequalities (47) (for the case if k = 2`)
and inequalities (48) (for the case if k = 2`+ 1) it is sufficient to satisfy inequalities{

Ak+1 ≥ Bk+1 + C1

Bk+1 ≥ NAk+1 + C2.
(49)

By (39), inequalities (49) hold because (x̂, ŷ) ∈ Ω0. Therefore, inequalities (44) are satisfied.
Hence, (30) are satisfied. Thus, the induction step is proved. The theorem is proved.

3. Time-Invariant Stabilization by Static State Feedback

Definition 1. We say that system (1) is exponentially stabilizable with the decay rate θ > 0 by linear stationary
static state feedback (5) if there exist constants v1, . . . , vn ∈ R such that every solution x(t) of the closed-loop
system (7) is exponentially stable with the decay rate θ, i.e., x(t) along with its derivatives up to (n− 1)-th
order has the form O(e−θt) as t→ +∞.

Theorem 3. System (1) is exponentially stabilizable with an arbitrary pregiven decay rate θ > 0 by linear
stationary static state feedback (5).

Proof. Let an arbitrary θ > 0 be given. Denote ρi := βi − αi, i = 1, n, where αi, βi are from (2). We have
ρi ≥ 0, i = 1, n. We set L := max{1, ρ1,

√
ρ2, . . . , n

√
ρn}. Then

L ≥ 1 > 0, L ≥ ρ1, L2 ≥ ρ2, . . . , Ln ≥ ρn. (50)

Set η := θ/L. Then η > 0. Let us construct the polynomials (15), (16) according to Theorem 2 so
that properties (i), (ii), (iii) are satisfied. Then the roots −ai and −bi (i = 1, n) of the polynomials f (λ)
and g(λ) are real and the following inequalities hold:

− ai ≤ −η, −bi ≤ −η, i = 1, n. (51)

Let us construct the polynomials P1(λ), P2(λ) by formulas (11), (12) where ωi = δiLi, σi = γiLi,
i = 1, n. Then P1(λ) and P2(λ) have the roots −ci := −aiL and −di := −biL (i = 1, n) respectively.
These roots are real and by virtue of (51) the following inequalities hold:

− ci ≤ −θ, −di ≤ −θ, i = 1, n. (52)

We set vi := αi − γiLi, i = 1, n, in (5) and consider the closed-loop system (7). System (7) has the
form (9) where qi(t) = pi(t)− vi, i = 1, n. Taking into account inequalities (2), (50) and property (i),
for every i = 1, n for all t ∈ R+, we have

0 < σi = γiLi = αi − αi + γiLi ≤ pi(t)− vi =: qi(t) ≤
≤ βi − αi + γiLi = ρi + γiLi ≤ Li(1 + γi) ≤ δiLi = ωi.

Thus, inequalities (10) hold. Applying Theorem 1 and inequalities (52), we obtain that the
closed-loop system (7) is exponentially stable with the decay rate θ. The theorem is proved.
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Example 1. Let n = 2. Consider a control system (1):

x′′ + p1(t)x′ + p2(t)x = u, t ∈ R+, x ∈ R, u ∈ R. (53)

Suppose that p1(t), p2(t) satisfy conditions α1 ≤ p1(t) ≤ β1, α2 ≤ p2(t) ≤ β2, t ∈ R+. Suppose, for
simplicity, that ρ1 := β1 − α1 ≤ 1, ρ2 := β2 − α2 ≤ 1 (one can achieve this by replacing time x̃(t) = x(µt)).
Let θ > 0 be an arbitrary number. One needs to construct the controller u = u(x) in (53) where

u(x) = v1x′ + v2x (54)

with constant numbers v1, v2 such that the closed-loop system

x′′ + (p1(t)− v1)x′ + (p2(t)− v2)x = 0 (55)

is exponentially stable with the decay rate θ. Without loss of generality, we suppose that θ ≥ 1. For constructing
(54) we use the proof of Theorem 3. We have L = 1. Set η := θ. Then η ≥ 1. Let us construct the polynomials
(15), (16) according to Theorem 2: f (λ) := λ2 + 6ηλ + 5η2, g(λ) := λ2 + 5ηλ + 6η2. Then γ1 = 5η,
γ2 = 5η2, δ1 = 6η, δ2 = 6η2. Due to η ≥ 1, condition (i) holds. Next, the equalities P1(λ) = f (λ),
P2(λ) = g(λ) hold. The gain coefficients constructed by Theorem 3 have the form

v1 = α1 − 5θ, v2 = α2 − 5θ2. (56)

Let us substitute (56) into (54). The closed-loop system (55) take the form

x′′ + (s1(t) + 5θ)x′ + (s2(t) + 5θ2)x = 0, t ∈ R+. (57)

Here

0 ≤ s1(t) := p1(t)− α1 ≤ β1 − α1 = ρ1 ≤ 1 = L,

0 ≤ s2(t) := p2(t)− α2 ≤ β2 − α2 = ρ2 ≤ 1 = L2.

All solutions of (57) are exponentially stable with the decay rate θ. Let us check it.
The substitution z1 = x, z2 = x′ reduces Equation (57) to the system

ż = A(t)z, t ∈ R+,

z =

[
z1

z2

]
, A(t) =

[
0 1

−(s2(t) + 5θ2) −(s1(t) + 5θ)

]
.

(58)

Let us show that system (58) is exponentially stable with the decay rate θ. The substitution

z(t) = e−θty(t). (59)

reduce system (58) to the system

ẏ = B(t)y, t ∈ R+,

y =

[
y1

y2

]
, B(t) =

[
θ 1

−(s2(t) + 5θ2) −(s1(t) + 4θ)

]
.

(60)
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Let us show that system (60) is Lyapunov stable. Set S =

[
7θ2 2θ

2θ 1

]
. Then S > 0 in the sense of quadratic

forms. Next, we have

BT(t)S + SB(t) =

[
−6θ3 − 4θs2(t) −4θ2 − 2θs1(t)− s2(t)

−4θ2 − 2θs1(t)− s2(t) −4θ − 2s1(t)

]
. (61)

Here and throughout, T is the transposition. Let us find the principal minors of (61). We obtain

∆1 = −2θ(3θ2 + 2s2(t)) < 0, ∆2 = −4θ − 2s1(t) < 0,

∆1,2 = det(BT(t)S + SB(t)) = 8θ4 − 4θ3s1(t) + 8θ2s2(t)− 4θ2s2
1(t) + 4θs1(t)s2(t)− s2

2(t).

We have

8θ4 − 4θ3s1(t)− 4θ2s2
1(t) = 4θ3(θ − s1(t)) + 4θ2(θ2 − s2

1(t)) ≥ 0,

8θ2s2(t)− s2
2(t) = s2(t)(8θ2 − s2(t)) ≥ 0.

Hence ∆1,2 ≥ 0. Thus, (61) is negative-semidefinite. Therefore, system (60) is stable. Hence, all solutions
of (60) are bounded as t→ +∞. Then, by (59), ‖z(t)‖ = O(e−θt), t→ +∞, as required.

As an example of numerical simulation, consider system (53) with p1(t) =
t

1 + t2 , p2(t) = −
1

1 + t2 :

x′′ +
t

1 + t2 x′ − 1
1 + t2 x = u. (62)

We have α1 := −1/2 ≤ p1(t) ≤ 1/2 =: β1, α2 := −1 ≤ p1(t) ≤ 0 =: β2, ρ1 := β1 − α1 = 1,
ρ2 := β2 − α2 = 1. The free system (i.e., system (62) with u = 0) has a general solution

x(t) = C1t + C2

√
t2 + 1

and, obviously, is unstable. Let us set θ := 1, η := θ = 1. The gain coefficients (56) have the form

v1 = α1 − 5θ = −11/2, v2 = α2 − 5θ2 = −6.

The closed-loop system (57) take the form

x′′ +
(

11
2

+
t

1 + t2

)
x′ +

(
6− 1

1 + t2

)
x = 0. (63)

System (63) is exponentially stable with the decay rate θ = 1. Some graphs of the solutions to system (63)
are shown in Figure 1.
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Figure 1. Graphs of the solutions to (63).

4. Time-Invariant Stabilization by Static Output Feedback

Consider a linear control system defined by a linear differential equation of n-th order with
time-varying uncertain coefficients satisfying (2); the input is a stationary linear combination of m
variables and their derivatives of order ≤ n− p; the output is a k-dimensional vector of stationary
linear combinations of the state x and its derivatives of order ≤ p− 1:

x(n) +
n

∑
i=1

pi(t)x(n−i) =
m

∑
τ=1

n

∑
l=p

blτw(n−l)
τ , x ∈ R, blτ ∈ R, t ∈ R+, (64)

yj =
p

∑
ν=1

cνjx(ν−1), j = 1, k, cνj ∈ R, (65)

w = col(w1, . . . , wm) ∈ Rm is an input vector; y = col(y1, . . . , yk) ∈ Rk is an output vector. Let the
control in (64), (65) have the form of linear static output feedback

w = Uy. (66)

We suppose that the gain matrix U is time-invariant. The closed-loop system has the form

x(n) + q1(t)x(n−1) + . . . + qn(t)x = 0, t ∈ R+, (67)

where the coefficients qi(t) of (67) depends on pi(t), blτ , cνj, U. On the basis of system (64), (65),
we construct the n×m-matrix B = {blτ}, l = 1, n, τ = 1, m, and the n× k-matrix C = {cνj}, ν = 1, n,
j = 1, k, where blτ = 0 for l < p and cνj = 0 for ν > p. Denote by J the matrix whose entries of the first
superdiagonal are equal to unity and whose remaining entries are zero; we set J0 := I. By Sp Q denote
the trace of a matrix Q.

Definition 2. We say that system (64), (65) is exponentially stabilizable with the decay rate θ > 0 by linear
stationary static output feedback (66) if there exists a constant m× k-matrix U such that every solution x(t) of
the closed-loop system (67) is exponentially stable with the decay rate θ.

Theorem 4. Suppose that linear stationary output feedback (66) bring system (64), (65) to the closed
system (67). Then the coefficients qi(t), i = 1, n, of (67) satisfy the equalities

qi(t) = pi(t)− ri,
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where
ri = Sp (CT Ji−1BU), i = 1, n. (68)

The proof of Theorem 4 is identical to the proof of Theorem 1 [38].
Let us introduce the mapping vec that unwraps an n× m-matrix H = {hij} row-by-row into

the column vector vec H = col (h11, h12, . . . , h1m, . . . , hn1, . . . , hnm). For any k×m-matrices X, Y, the
obvious equality holds:

Sp (XYT) = (vec X)T · (vec Y). (69)

Let us construct the k×m-matrices

CT J0B, CT JB, . . . , CT Jn−1B (70)

and the mk× n-matrix
P = [vec (CT J0B), . . . , vec (CT Jn−1B)].

Denote r = col (r1, . . . , rn) ∈ Rn, ψ = vec (UT). Equalities (68) represent a linear system of n
equations with respect to the coefficients of the matrix U. Taking into account (69), one can rewrite
system (68) in the form

PTψ = r. (71)

Suppose that matrices (70) are linearly independent. Then rank P = n. Hence, the system of
linear equations (71) is solvable for any vector r ∈ Rn. In particular, system (71) has the solution
ψ = P(PT P)−1r.

By Theorem 3, for any pregiven θ > 0 there exists a constant vector r = col (r1, . . . , rn) such that
system (67) with qi(t) = pi(t)− ri is exponentially stable with the decay rate θ. Resolving system (71)
for that r with respect to ψ and constructing U by the formula U =

(
vec−1 ψ

)T , we find the gain matrix
of feedback (66) exponentially stabilizing system (64), (65) with the decay rate θ. Thus, the following
theorem is proved.

Theorem 5. System (64), (65) is exponentially stabilizable with an arbitrary pregiven decay rate θ > 0 by
linear stationary static output feedback (66) if matrices (70) are linearly independent.

Example 2. Let n = 3. Consider a control system

x′′′ + p(t)x = w′1 + w1 − w′2 + w2, t ∈ R+, x ∈ R, w = col (w1, w2) ∈ R2, (72)

y1 = x− x′, y2 = x + x′, y = col (y1, y2) ∈ R2. (73)

System (72), (73) has the form (64), (65) where n = 3, m = k = p = 2. Suppose that p(t) is an arbitrary
measurable function satisfying the condition 0 ≤ p(t) ≤ 1. Let θ > 0 be an arbitrary number. One needs
to construct feedback control (66), where U = {uij}2

i,j=1, with constant uij, i, j = 1, 2, providing exponential
stability of the closed-loop system with the decay rate θ. Without loss of generality, we suppose that θ ≥ 1.
By Theorem 4, the closed-loop system has the form

x′′′ − r1x′′ − r2x′ + (p(t)− r3)x = 0, (74)

where ri have the form (68), and

B =

0 0
1 −1
1 1

 , C =

 1 1
−1 1
0 0

 .
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At first, let us construct a constant vector r = col (r1, r2, r3), providing exponential stability of (74).
For constructing r we use the proof of Theorem 3. We have α1 = β1 = 0, α2 = β2 = 0, α3 = 0, β3 = 1.
Then ρ1 = 0, ρ2 = 0, ρ3 = 1, L = 1. Set η := θ. Using the proof of Theorem 2, we construct the
polynomials (15), (16) such that properties (i), (ii), (iii) are satisfied:

f (λ) :=(λ + 2η)(λ + 3η)(λ + 14η) = λ3 + 19ηλ2 + 76η2λ + 84η3,

g(λ) :=(λ + η)(λ + 5η)(λ + 12η) = λ3 + 18ηλ2 + 77η2λ + 60η3.

Then γ1 = 18η, γ2 = 76η2, γ3 = 60η3, δ1 = 19η, δ2 = 77η2, δ3 = 84η3. Conditions (i), (ii), (iii)
hold. Coefficients r1, r2, r3 have the form

r1 = −18θ, r2 = −76θ2, r3 = −60θ3. (75)

Let us substitute (75) into (74). The closed-loop system (74) take the form

x′′′ + 18θx′′ + 76θ2x′ + (p(t) + 60θ3)x = 0. (76)

All solutions of (76) are exponentially stable with the decay rate θ. Let us check it.
The substitution z1 = x, z2 = x′, z3 = x′′ reduces Equation (76) to the system

ż = A(t)z, t ∈ R+, (77)

z =

z1

z2

z3

 , A(t) =

 0 1 0
0 0 1

−(p(t) + 60θ3) −76θ2 −18θ

 .

Let us show that the system (77) is exponentially stable with the decay rate θ. The substitution

z(t) = e−θty(t). (78)

reduce the system (77) to the system

ẏ = B(t)y, t ∈ R+, (79)

y =

y1

y2

y3

 , B(t) =

 θ 1 0
0 θ 1

−(p(t) + 60θ3) −76θ2 −17θ

 .

Let us show that system (79) is Lyapunov stable. Set S =

9000θ4 2580θ3 150θ2

2580θ3 804θ2 46θ

150θ2 46θ 3

. Let us find the

successive principal minors si, i = 1, 2, 3, of S. We have s1 = 9000θ4 > 0, s2 = det

[
9000θ4 2580θ3

2580θ3 804θ2

]
=

579,600θ6 > 0, s3 = det S = 208,800θ6 > 0. Then S > 0 in the sense of quadratic forms. Next, we have

BT(t)S + SB(t) =

−300θ2 p(t) −46θp(t) −3p(t)
−46θp(t) −224θ3 −10θ2

−3p(t) −10θ2 −10θ

 . (80)
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Let us find the principal minors of (80). We obtain

∆1 = −300θ2 p(t) ≤ 0, ∆2 = −224θ3 < 0, ∆3 = −10θ < 0,
∆1,2 = 67,200θ5 p(t)− 2116θ2 p2(t) = 4θ2 p(t)(16,800θ3 − 529p(t)) ≥ 0,

∆1,3 = 3000θ3 p(t)− 9p2(t) = 3p(t)(1000θ3 − 3p(t)) ≥ 0, ∆2,3 = 2140θ4 > 0,
∆1,2,3 = det(BT(t)S + SB(t)) = −642,000θ6 p(t) + 20,416θ3 p2(t) = −16θ3 p(t)(40,125θ3 − 1276p(t)) ≤ 0.

Hence, (80) is negative-semidefinite. Thus, the system (79) is stable. Hence, all solutions of (79) are
bounded as t→ +∞. Then, by (78), ‖z(t)‖ = O(e−θt), t→ +∞, as required.

Next, let us construct matrices (70) and P. We obtain P =


−1 0 1
1 −2 1
1 2 1
−1 0 1

. Obviously, rank P = 3 and

matrices (70) are linearly independent. Resolving system (71) where ri has the form (75), we obtain

ψ = col [9θ/2− 15θ3,−9θ/2 + 19θ2 − 15θ3,−9θ/2− 19θ2 − 15θ3, 9θ/2− 15θ3].

Thus, the gain matrix has the form

U =

[
9θ/2− 15θ3 −9θ/2− 19θ2 − 15θ3

−9θ/2 + 19θ2 − 15θ3 9θ/2− 15θ3

]
. (81)

We obtain that feedback (66) with the matrix (81) exponentially stabilizes the system (72), (73) with the
decay rate θ.

As an example of numerical simulation, consider system (72), (73) where

p̂(t) =

{
1, t ∈ [0, 1),

0, t ∈ [1, 2),
p(t) = p̂(t− 2k), t ∈ [2k, 2(k + 1)), k ∈ Z.

We have 0 ≤ p(t) ≤ 1. The function p(t) is ω-periodic with the period ω = 2. The free system

x′′′ + p(t)x = 0, x ∈ R, (82)

is equivalent to the system of differential equations

ż =

 0 1 0
0 0 1

−p(t) 0 0

 z, z ∈ R3. (83)

System (83) is ω-periodic. Since system (83) is piecewise constant, the monodromy matrix Φ(ω) for
system (83) can be found explicitly. Calculating approximately eigenvalues λ1, λ2, and λ3 of Φ(ω), we obtain
λ1,2 ≈ 0.418± 2.167i, λ3 ≈ 0.205. Hence, |λ1| = |λ2| > 1. Thus, system (83) (and hence, Equation (82)) is
unstable. Let us set θ := 1, η := θ = 1. The gain matrix (81) has the form

U =

[
−21/2 −77/2
−1/2 −21/2

]
.

The closed-loop system (76) take the form

x′′′ + 18x′′ + 76x′ + (p(t) + 60)x = 0. (84)

System (84) is exponentially stable with the decay rate θ = 1. Some graphs of the solutions to system (84)
are shown in Figure 2.
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Figure 2. Graphs of the solutions to (84).

5. Conclusions

We examined the problem of exponential stabilization with any pregiven decay rate for a linear
time-varying differential equations with uncertain bounded coefficients by means of stationary linear
static feedback. We have received sufficient conditions for the solvability of this problem by state and
output feedback. For this purpose, the first Lyapunov method and the Levin theorem on non-oscillatory
absolute stability were used. We plan to extend these results to systems of differential equation
including systems with delays. A further development of these results may be their extension to
systems (64), (65), (66), when blτ and (or) cνj depend on t. So far this question remains open.

Author Contributions: All authors contributed equally to this manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian Federation in
the framework of state assignment No. 075-00232-20-01, project 0827-2020-0010 “Development of the theory and
methods of control and stabilization of dynamical systems” and by the Russian Foundation for Basic Research
(project 20–01–00293).

Acknowledgments: The research was performed using computing resources of the collective use center of IMM
UB RAS “Supercomputer center of IMM UB RAS”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aeyels, D.; Peuteman, J. Uniform asymptotic stability of linear time-varying systems. In Open Problems
in Mathematical Systems and Control Theory; Blondel, V., Sontag, E.D., Vidyasagar, M., Willems, J.C., Eds;
Springer: London, UK, 1999; pp. 1–5. [CrossRef]

2. Ilchmann, A.; Owens, D.H.; Prätzel-Wolters, D. Sufficient conditions for stability of linear time-varying
systems. Syst. Control Lett. 1987, 9, 157–163. [CrossRef]

3. Bylov, B.F.; Vinograd, R.E.; Grobman, D.M.; Nemytskii, V.V. Theory of Lyapunov Exponents; Nauka: Moscow,
Russia, 1966.

4. Demidovich, B.P. Lectures on the Mathematical Stability Theory; Nauka: Moscow, Russia, 1967.
5. Zhu, J.J. A necessary and sufficient stability criterion for linear time-varying systems. In Proceedings of the

28th Southeastern Symposium on System Theory, Baton Rouge, Louisiana, USA, 31 March–2 April 1996;
pp. 115–119. [CrossRef]

6. Levin, A.Y. Absolute nonoscillatory stability and related questions. St. Petersburg Math. J. 1993, 4, 149–161.
7. Ragusa, M.A. Necessary and sufficient condition for a VMO function. Appl. Math. Comput. 2012, 218,

11952–11958. [CrossRef]

http://dx.doi.org/10.1007/978-1-4471-0807-8
http://dx.doi.org/10.1016/0167-6911(87)90022-3
http://dx.doi.org/10.1109/SSST.1996.493482
http://dx.doi.org/10.1016/j.amc.2012.06.005


Mathematics 2020, 8, 853 15 of 16

8. Zhou, B. On asymptotic stability of linear time-varying systems. Automatica 2016, 68, 266–276. [CrossRef]
9. Wan, J.-M. Explicit solution and stability of linear time-varying differential state space systems. Int. J. Control

Autom. Syst. 2017, 15, 1553–1560. [CrossRef]
10. Vrabel, R. A note on uniform exponential stability of linear periodic time-varying systems. IEEE Trans.

Autom. Control 2020, 65, 1647–1651. [CrossRef]
11. Zhou, B.; Tian, Y.; Lam, J. On construction of Lyapunov functions for scalar linear time-varying systems.

Syst. Control Lett. 2020, 135, 104591. [CrossRef]
12. Kharitonov, V.L. The asymptotic stability of the equilibrium state of a family of systems of linear differential

equations. Differ. Uravn. 1978, 14, 2086–2088.
13. Petersen, I.R. A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 1987, 8,

351–357. [CrossRef]
14. Zhou, K.; Khargonekar, P.P. Robust stabilization of linear systems with norm-bounded time-varying

uncertainty. Syst. Control Lett. 1988, 10, 17–20. [CrossRef]
15. Khargonekar, P.P.; Petersen, I.R.; Zhou, K. Robust stabilization of uncertain linear systems: Quadratic

stabilizability and H∞ control theory. IEEE Trans. Autom. Control 1990, 35, 356–361. [CrossRef]
16. Xie, L.; de Souza, C.E. Robust H∞ control for linear systems with norm-bounded time-varying uncertainty.

IEEE Trans. Autom. Control 1992, 37, 1188–1191. [CrossRef]
17. Zhabko, A.P.; Kharitonov, V.L. Necessary and sufficient conditions for the stability of a linear family of

polynomials. Autom. Remote Control 1994, 55, 1496–1503.
18. Kharitonov, V.L. Robust stability analysis of time delay systems: A survey. Annu. Rev. Control 1999, 23,

185–196. [CrossRef]
19. Sadabadi, M.S.; Peaucelle, D. From static output feedback to structured robust static output feedback:

A survey. Annu. Rev. Control 2016, 42, 11–26. [CrossRef]
20. Blanchini, F.; Colaneri, P. Uncertain systems: Time-varying versus time-invariant uncertainties. In Uncertainty

in Complex Networked Systems. Systems and Control: Foundations and Applications; Başar, T., Ed.; Birkhäuser:
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