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Abstract: In this study, we establish new sufficient conditions for oscillation of solutions of
second-order neutral differential equations with distributed deviating arguments. By employing
a refinement of the Riccati transformations and comparison principles, we obtain new oscillation
criteria that complement and improve some results reported in the literature. Examples are provided
to illustrate the main results.
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1. Introduction

This study is concerned with creating new oscillation criteria for the second-order non-linear
neutral differential equation with distributed deviating arguments

(
r (t)

(
z′ (t)

)α
)′

+
∫ b

a
q (t, s) f (x (σ (t, s)))ds = 0, (1)

where t ≥ t0 and

z (t) := x (t) +
∫ d

c
p (t, s) x (τ (t, s))ds.

Throughout this paper, we assume that:

(H1) α is a quotient of add positive integers;
(H2) r ∈ C (I, (0, ∞)) , p ∈ C (I × [c, d] , [0, ∞)) , q ∈ C (I × [a, b] , [0, ∞)) , q (t, s) is not zero on any

half line [t∗, ∞)× [a, b] , t∗ ≥ t0,
∫ d

c p (t, s)ds < 1 and∫ ∞

t0

r−1/α (s)ds = ∞; (2)

(H3) τ, σ ∈ C (I,R) , τ (t, s) ≤ t, σ (t, s) ≤ t and limt→∞ τ (t, s) = limt→∞ σ (t, s) = ∞;
(H4) f ∈ C (R,R) and there exists a constant k > 0 such that f (x) ≥ kxα for x 6= 0.

By a solution of (1), we mean a function x ∈ C1 ([t, ∞),R) , tx ≥ t0, which has the property
r (t) (z′ (t))α ∈ C1 ([t0, ∞),R) , and satisfies (1) on [tx, ∞). We consider only those solutions x of (1)
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which satisfy sup{|x (t)| : t ≥ tx} > 0, for all t > tx. If x is neither eventually positive nor eventually
negative, then x is called oscillatory; otherwise it is called non-oscillatory. The equation itself is called
oscillatory if all its solutions oscillate.

In a differential equation with neutral delay, the highest-order derivative appears both with and
without delay. In addition to the theoretical importance, the qualitative study of neutral equations has
great practical importance. In fact, the neutral equations arise in the study of vibrating masses attached
to an elastic bar, in problems concerning electric networks containing lossless transmission lines (as in
high-speed computers), and in the solution of variational problems with time delays, see [1,2].

Over the past decades, the issue of studying the oscillation properties for delay/neutral differential
equations has been a very active research area see [1–19].

For some related works, Sun et al. [13] and Dzurina et al. [5] obtained some oscillation criteria for

(r(t)|x′(t)|α−1x′(t))′ + q(t)|x[σ(t)]|α−1x[σ(t)] = 0. (3)

Xu et al. [15,16] and Liu et al. [8] extended the results of [5,13] to (3) with neutral term. Sahiner [12]
obtained some general oscillation criteria for neutral delay equations(

r (t) (x (t) + p (t) x (t− τ0))
′
)′

+ q (t) f (x (σ (t))) = 0,

In [14], Wang established some general oscillation criteria for equation

(
r (t) (x (t) + p (t) x (t− τ0))

′
)′

+
∫ b

a
q (t, s) x (σ (t, s))ds = 0, (4)

by using Riccati technique and averaging functions method. Xu and Weng [17] and Zhao and Meng [19],
established some oscillation criteria for (4), which complemented and extended the results in [12,14].
In 2011, Baculikova and Dzurina [3] investigated the properties of delayed equations(

r (t)
(
(x (t) + p (t) x (τ (t)))′

)α)′
+ q (t) xβ (σ (t)) = 0. (5)

They are provided some comparison theorems which compare the second-order (5) with the
first-order differential equations.

It is known that the determination of the signs of the derivatives of the solution is necessary and
significant effect before studying the oscillation of delay differential equations. The other essential
thing is to establish relationships between derivatives of different orders. Depending on improving
the relationship between the neutral function z and its first derivative z′, we create new and improved
criteria for oscillation of solutions of Equation (1). During this study, we use Riccati transformations
and comparison principles to obtain the different criteria for oscillation of (1). Examples are provided
to illustrate the main results.

2. Preliminary Results

For convenience, we denote that

U (t) :=
∫ b

a
q (t, s)

[
1−

∫ d

c
p (σ (t, s) , v)dv

]α

ds,

ηt0 (t) :=
∫ t

t0

r−1/α (u)du, η̃t0(t) := ηt0 (t) +
k
α

∫ t

t0

ηt1 (u) ηα
t0
(σ(u, a))U (u)du,

η̂ (t) := exp
(
−α

∫ t

σ(t,a)

du
η̃t0(u)r1/α (u)

)
,
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R (t) = α/ (r (t))1/α , Q (t) := kU (t) η̂ (t) and G (t) :=
∫ ∞

t
Q (s)ds.

The following lemmas mainly help us to prove the main results:

Lemma 1. Let g (x) = Ax− Bx(α+1)/α where A, B > 0 are constants. Then g attains its maximum value on
R at x∗ = (αA/ ((α + 1) B))α and

max
x∈r

g = g (x∗) =
αα

(α + 1)α+1
Aα+1

Bα
. (6)

Lemma 2. [3] If x is a positive solution of (1) on [t0, ∞), then there exists a t1 ≥ t0 such that

z (t) > 0, z′ (t) > 0,
(

r (t)
(
z′ (t)

)α
)′
≤ 0, (7)

for t ≥ t1.

Lemma 3. Let x be a positive solution of Equation (1). Then the function z satisfies(
r (t)

(
z′ (t)

)α
)′
≤ −kU (t) (z (σ (t, a)))α , (8)

z (t) ≥ η̃t1 (t) r1/α (t) z′ (t) (9)

and (
r (t)

(
z′ (t)

)α
)′
≤ −kU (t) η̂ (t) zα (t) . (10)

Proof. Assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0 for
t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 2, we have (7) holds. Thus, by definition of z (t), we obtain

x (t) = z (t)−
∫ d

c
p (t, v) x (τ (t, v))dv

≥ z (t)−
∫ d

c
p (t, v) z (τ (t, v))dv

≥ z (t)
[

1−
∫ d

c
p (t, v)dv

]
,

which, with (1), implies that

(
r (t)

(
z′ (t)

)α
)′
≤ −k

∫ b

a
q (t, s) zα (σ (t, s))

[
1−

∫ d

c
p (σ (t, s) , v)dv

]α

ds.

Since z′ (t) > 0 and ∂
∂s σ (t, s) > 0, we obtain z (σ (t, s)) > z (σ (t, a)) and so(

r (t)
(
z′ (t)

)α
)′
≤ −kU (t) zα (σ (t, a)) .

Applying the chain rule and simple computation, it is easy to see that

ηt1 (t)
(

r (t)
(
z′ (t)

)α
)′

= α
(

r1/α (t) z′ (t)
)α−1

ηt1 (t)
(

r1/α (t) z′ (t)
)′

= −α
(

r1/α (t) z′ (t)
)α−1 d

dt

(
z (t)− ηt1 (t) r1/α (t) z′ (t)

)
. (11)

Combining (8) and (11), we obtain
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d
dt

(
z (t)− ηt1 (t) r1/α (t) z′ (t)

)
≥ k

α
ηt1 (t)

(
r1/α (t) z′ (t)

)1−α
U (t) zα (σ (t, a)) .

Integrating this inequality from t1 to t, we have

z (t) ≥ ηt1 (t) r1/α (t) z′ (t) +
k
α

∫ t

t1

ηt1 (u)U (u)
(

r1/α (u) z′ (u)
)1−α

zα (σ(u, a))du. (12)

From the monotonicity of r1/α (t) z′ (t), we have

z (t) = z (t1) +
∫ t

t1

1
r1/α (u)

(
r1/α (u) z′ (u)

)
du ≥ ηt1 (t) r1/α (t) z′ (t) .

Thus, from the fact that
(

r1/α (t) z′ (t)
)′
≤ 0, (12) becomes

z (t) ≥ ηt1 (t) r1/α (t) z′ (t)

+
k
α

∫ t

t1

ηt1 (u)U (u)
(

r1/α (u) z′ (u)
)1−α

ηα
t1
(σ(u, a))

[
r (σ(u, a))

(
z′ (σ(u, a))

)α
]

du.

≥ ηt1 (t) r1/α (t) z′ (t) +
k
α

∫ t

t1

(
r1/α (u) z′ (u)

)1−α
ηt1 (u) ηα

t1
(σ(u, a))U (u)

[
r1/α (u) z′ (u)

]α
du

≥ r1/α (t) z′ (t)
[

ηt1 (t) +
k
α

∫ t

t1

ηt1 (u) ηα
t1
(σ(u, a))U (u)du

]
.

≥ η̃t1(t)r
1/α (t) z′ (t) ,

or
z′ (t)
z(t)

≤ 1
η̃t1(t)r1/α (t)

.

Integrating the latter inequality from σ (t, a) to t, we get

z (σ (t, a))
z (t)

≥ exp
(
−
∫ t

σ(t,a)

du
η̃t1(u)r1/α (u)

)
.

which with (8), gives (
r (t) (z′ (t))α)′

zα (t)
≤ −kU (t)

(
z (σ (t, a))

z (t)

)α

≤ −kU (t) η̂ (t) .

The proof is complete.

Lemma 4. Let x be a positive solution of equation (1). If we define the function

Ψ (t) = φ (t) r (t)
(

z′ (t)
z (t)

)α

, (13)

then

Ψ′ (t) ≤
φ′+ (t)
φ (t)

Ψ(t)− kφ(t)U (t) η̂ (t)− α

(φ (t) r (t))1/α
Ψ(α+1)/α (t) . (14)

Proof. Assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0 for
t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 3, we have (10) holds. Thus, from the definition of
Ψ (t), we obtain Ψ (t) > 0 for t ≥ t1. Differentiating (13), we arrive at
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Ψ′ (t) =
φ′ (t)
φ (t)

Ψ (t) + φ (t)
(r (t) z′ (t))′

zα (t)
− αφ (t) r (t)

(
z′ (t)
z(t)

)α+1

.

From (10) and (13), we deduce that

Ψ′ (t) ≤
φ′+ (t)
φ (t)

Ψ(t)− kφ(t)U (t) η̂ (t)− α

(φ (t) r (t))1/α
Ψ(α+1)/α (t) .

The proof is complete.

3. Main Results

In this section, we establish the oscillation criteria for the solutions of (1).

Theorem 1. If the first-order delay differential equation

ω′ (t) + kη̃α
t1
(σ (t, a))U (t)ω (σ (t, a)) = 0 (15)

is oscillatory, then (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0
for t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 3, we have (8) and (9) hold. Using (8) and (9), one can
see that ω (t) = r (t) (z′ (t))α is a positive solution of the first order delay differential inequality

ω′ (t) + kη̃α
t1
(σ (t, a))U (t)ω (σ (t, a)) ≤ 0.

In view of ([11] Theorem 1), the associated delay equation (15) also has a positive solution, we
find a contradiction. The proof is complete.

Corollary 1. If

lim sup
t→∞

∫ t

σ(t,a)
η̃α

t1
(σ (u, a))U (u)du >

1
k

,
∂

∂t
σ (t, s) ≥ 0 (16)

or

lim inf
t→∞

∫ t

σ(t,a)
η̃α

t1
(σ (u, a))U (u)du >

1
ke

, (17)

then (1) is oscillatory.

Proof. It is well known that (16) or (17) ensures oscillation of (15), see ([7] Theorem 2.1.1).

Lemma 5. Assume that σ is strictly increasing with respect to t for all s ∈ (a, b). Suppose for some δ > 0 that

lim inf
t→∞

∫ t

σ(t,a)
η̃α

t1
(σ (u, a))U (u)du ≥ δ (18)

and (1) has an eventually positive solution x. Then,

w (σ (t, a))
w (t)

≥ θn (δ) , (19)

for every n ≥ 0 and t large enough, where w (t) := r (t) (z′ (t))α,

θ0 (u) := 1 and θn (u) := exp (ρθn−1 (u)) . (20)
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Proof. Assume that (1) has a positive solution x on [t0, ∞). Then, we can expect the existence of
a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0 for t ≥ t1, v ∈ [c, d] and s ∈ [a, b].
Proceeding as in the proof of Theorem 1, we deduce that ω is a positive solution of first order delay
differential equation (15). In a similar way to that followed in proof of Lemma 1 in [18], we can prove
that (19) holds.

Theorem 2. Assume that σ is strictly increasing with respect to t for all s ∈ (a, b) and (18) holds for some
δ < 0. If there exists a function ϕ ∈ C1(I, (0, ∞)) such that

lim
t→∞

sup
∫ t

t1

(
kϕ (u)U (u)−

(ϕ′+ (u))α+1 r (σ (u, a))

(α + 1)α+1 θn (δ) ϕα (u) (σ′(u, a))α

)
= ∞, (21)

for some sufficiently large t ≥ t1and for some n ≥ 0, where θn(δ) is defined as (20) and ϕ′+(t) =

max {0, ϕ′(t)} , then (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0
for t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 3, we have (8) holds. It follows from Lemma 5 that
there exists a t ≥ t1 large enough such that

z′ (σ (t, a))
z′ (t)

≥
(

θn (δ) r (t)
r (σ (t))

)1/α

. (22)

Define the function

Φ(t) := ϕ(t)r(t)
(

z′(t)
z (σ (t, a))

)α

. (23)

Then, Φ(t) > 0 for t ≥ t1. Differentiating (23), we get

Φ′(t) =
ϕ′(t)
ϕ(t)

Φ(t) + ϕ(t)
(r(t)(z′(t))α)′

zα (σ (t, a))
− αϕ(t)r(t)

(
z′(t)

z (σ (t, a))

)α ( z′ (σ (t))
z (σ (t, a))

)
σ′ (t, a) .

From (8), (22) and (23), we obtain

Φ′ (t) ≤ −kϕ (t)U (t) +
ϕ′+ (t)
ϕ(t)

Φ (t)− αθ1/α
n (δ) σ′ (t, a)

(ϕ (t) r (σ (t, a)))1/α
Φ(α+1)/α (t) . (24)

Using Lemma 1 with A = ϕ′+ (t) /ϕ (t) and B = αθ1/α
n (δ) / (ϕ (t) r (σ (t)))−1/α, (24) yield

Φ′ (t) ≤ −kϕ (t)U (t) +
ϕ′+ (t)α+1 r (σ (t, a))

(α + 1)α+1 θn (δ) ϕα (t) (σ′ (t, a))α
.

Integrating this inequality from t1 to t, we have

∫ t

t1

(
kϕ (u)U (u)−

(ϕ′+ (u))α+1 r (σ (u, a))

(α + 1)α+1 θn (δ) ϕα (u) (σ′ (u, a))α

)
du ≤ Φ (t) ,

then we find a contradiction with condition (21). The proof is complete.

Theorem 3. Assume that there exists a function φ ∈ C1 (I, (0, ∞)) such that

lim
t→∞

sup
∫ t

t1

(
kφ (u)U (u) η̂ (u)−

r (u) (φ′+ (u))α+1

(α + 1)α+1 φα (u)

)
du = ∞. (25)
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for some sufficiently large t ≥ t1, where φ′+ (t) = max {0, ψ′ (t)} , then (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0
for t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. From Lemma 3, we have (8)–(10) hold. Next, using Lemma 4,
we arrive at (14). Using Lemma 1 with A = φ′+ (t) /φ (t) and B = α (φ (t) r (t))−1/α, (14) becomes

Ψ′ (t) ≤ −kφ(t)U (t) η̂ (t) +
r (t) (φ′+ (t))α+1

(α + 1)α+1 φα (t)
.

Integrating this inequality from t1 to t, we have

∫ t

t1

kφ (u)U (u) η̂ (u)−
r (u)

(
φ′+ (u)α+1

)
(α + 1)α+1 φα (u)

du ≤ Ψ (t) ,

This is the contrary with condition (25). The proof is complete.

By different method, we establish new oscillation results for Equation (1).

Theorem 4. Assume that ∫ ∞

t0

Q (t)dt = ∞, (26)

then, Equation (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0, x (τ (t, v)) > 0 and x (σ (t, s)) > 0
for t ≥ t1, v ∈ [c, d] and s ∈ [a, b]. Consider the function Ψ defined as in (13), it follows from Lemma 4
that (14) holds. Set φ (t) := 1, (14) becomes

Ψ′ (t) + Q (t) + R (t)Ψ
α+1

α (t) ≤ 0 (27)

or
Ψ′ (t) + Q (t) ≤ 0. (28)

Integrating (28) from t3 to t and using (26), we arrive at

Ψ (t) ≤ Ψ (t3)−
∫ t

t3

Q (t)ds→ ∞ as t→ ∞,

which is a contradiction with the fact that Ψ (t) > 0 and therefore the proof is complete.

Definition 1. Let {yn (t)}∞
n=0 be a sequence of functions defined as

yn (t) =
∫ ∞

t
R (s) y

α+1
α

n−1 (s)ds + y0 (t) , t ≥ t0, n = 1, 2, 3, .... (29)

and
y0 (t) = G (t) , t ≥ t0,

where yn (t) ≤ yn+1 (t) , t ≥ t0.

Lemma 6. Assume that x is a positive solution of (1). Then Ψ (t) ≥ yn (t) such that Ψ (t) and yn (t) are
defined as in (13) and (29), respectively. Moreover, there exists a positive function y (t) on [T, ∞) such that
limn→∞ yn (t) = y (t) for t ≥ T ≥ t0 and
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y (t) =
∫ ∞

t
R (s) y

α+1
α (s)ds + y0 (t) , t ≥ T. (30)

Proof. Let x be a positive solution of (1). Proceeding as in the proof of Theorem 4, we arrive at (27).
By integrating (27) from t to t′, we obtain

Ψ
(
t′
)
−Ψ (t) +

∫ t′

t
Q (s) ds +

∫ t′

t
Ψ

α+1
α (s) R (s)ds ≤ 0.

This implies

Ψ
(
t′
)
−Ψ (t) +

∫ t′

t
Ψ

α+1
α (s) R (s)ds ≤ 0.

Then, we conclude that ∫ ∞

t
Ψ

α+1
α (s) R (s)ds < ∞ for t ≥ T, (31)

otherwise, Ψ(t′) ≤ Ψ(t) −
∫ t′

t Ψ
α+1

α (s) R(s)ds → −∞ as t′ → ∞, which is a contradiction with
Ψ(t) > 0. Since Ψ(t) > 0 and Ψ′(t) > 0, it follows from (27) that

Ψ (t) ≥ G (t) +
∫ ∞

t
Ψ

α+1
α (s) R (s)ds = y0 (t) +

∫ ∞

t
Ψ

α+1
α (s) R (s)ds, (32)

or
Ψ (t) ≥ G (t) := y0 (t) .

Hence, Ψ(t) ≥ yn(t), n = 1, 2, 3, .... Since {yn(t)}∞
n=0 increasing and bounded above, we get

thatyn → y as n → ∞. Using Lebesgue’s monotone convergence theorem, we see that (29) turns
into (30) as n→ ∞.

Theorem 5. Assume that

lim inf
t→∞

1
y0 (t)

∫ ∞

t
y

α+1
α

0 (s) R (s)ds >
α

(α + 1)
α+1

α

, (33)

then, (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0 for t ≥ t1. Proceeding as in the
proof of Lemma 6, we arrive at (32). From (32), we find

Ψ(t)
y0(t)

≥ 1 +
1

y0(t)

∫ ∞

t
y

α+1
α

0 (s) R (s)
(

Ψ(s)
y0(s)

) α+1
α

ds. (34)

If we consider µ = in ft≥T (Ψ(t)/y0(t)), then obviously µ ≥ 1. Using (33) and (34), we see that

µ ≥ 1 + α

(
µ

α + 1

) α+1
α

or
µ

α + 1
≥ 1

α + 1
+

α

α + 1

(
µ

α + 1

) α+1
α

,

which contradicts the expected value of µ and α, therefore, the proof is complete.
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Theorem 6. If there exist some yn(t) such that

lim sup
t→∞

yn(t)
(∫ t

t0

r−
1
α (s)ds

)α

> 1, (35)

then, (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0 for t ≥ t1. Let Ψ(t) defined as
in (13). Then,

1
Ψ (t)

=
1

r (t)

(
z (t)
z′ (t)

)α

=
1

r (t)

(
z (T) +

∫ t
T r−1/α (s) r1/α (s) z′ (s)ds

z′ (t)

)α

≥ 1
r (t)

(
r1/α (t) z′ (t)

∫ t
T r−1/α (s)ds

z′ (t)

)α

=

(∫ t

T
r−1/α (s)ds

)α

, (36)

for t ≥ T. Thus, it follows from (36) that

Ψ (t)
(∫ t

t0

r−1/α (s)ds
)α

≤

∫ t
t0

r−1/α (s)ds∫ t
T r−1/α (s)ds

α

,

and so

lim sup
t→∞

Ψ (t)
(∫ t

t0

r−
1
α (s)ds

)α

≤ 1,

which contradicts (35). The proof is complete.

Corollary 2. If there exist some yn(t) such that either

∫ ∞

t0

Q (t) exp
(∫ t

t0

y
1
α
n (s)R (s)ds

)
dt = ∞ (37)

or ∫ ∞

t0

R (t) y
1
α
n (t)y0(t) exp

(∫ t

t0

R (s) y
1
α
n (s)ds

)
dt = ∞, (38)

then (1) is oscillatory.

Proof. Suppose the contrary that (1) has a non-oscillatory solution x on [t0, ∞). Without loss of
generality, we assume that there exists a t1 ≥ t0 such that x (t) > 0 for t ≥ t1. From Lemma 6, we get
that (30) holds. Using (30), we have

y′ (t) = −R (t) y
α+1

α (t)−Q (t)

≤ −R (t) y
1
α
n (t) y (t)−Q (t) . (39)

Hence, ∫ t

T
Q (s) exp

(∫ s

T
y

1
α
n (u)R (u)du

)
ds ≤ y (T) < ∞,

which contradicts (37).
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Next, let M (t) =
∫ ∞

t R (s) y
α+1

α (s)ds. Then, we obtain

M′ (t) = −R (t) y
α+1

α (t)

≤ −R (t) y
1
α
n (t) y (t)

= −R (t) y
1
α
n (t) (M (t) + y0 (t)) .

Therefore, we find ∫ ∞

T
R (t) y

1
α
n (t)y0(t) exp

(∫ t

T
R (s) y

1
α
n (s)ds

)
dt < ∞,

which contradicts (38). The proof is complete.

4. Examples

Example 1. Consider the differential equation

((
(x (t) + p0x (τ0t))′

)α)′
+
∫ 1

λ

q0

tα+1 xα (ts)ds = 0, (40)

where λ, τ0 ∈ (0, 1). It is easy to verify that

U (t) =
q0

tα+1 (1− λ) [1− p0]
α , ηt0 (t) = t and η̃t0(t) = Mt,

where
M := 1 + λα q0

α
(1− λ) [1− p0]

α .

Using Corollary 1, we see that (40) is oscillatory if

(
Mαλαq0 (1− λ) [1− p0]

α) ln
1
λ
>

1
e

or
α (M− 1) Mα ln

1
λ
>

1
e

. (41)

Next, we note that R (t) = α,

η̂t1 (t) = λ1/M , Q (t) =
N

tα+1 λα/M , G (t) =
Nλα/M

α

1
tα+1 ,

where N = q0 (1− p0)
α (1− λ). From Theorem 5, (40) is oscillatory if(

N
α

λα/M
)1/α

>
α

(α + 1)(α+1)/α
.

Remark 1. Consider a particular case of (40), namely,(
x (t) +

1
2

x (τ0t)
)′′

+
q0

t2 x (λt) = 0, (42)

From the results in Example 1, Equation (42) is oscillatory if

λ
q0

2

(
1 +

1
2

λq0

)
ln

1
λ
>

1
e

. (43)
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Applying Corollary 2 in [3], we see that (42) is oscillatory if

q0λ ln
1

2λ
>

2
e

. (44)

Obviously, in the case where λ = 1/3, conditions (43) and (44) reduce to q > 1.588 and q > 5.443,
respectively. Thus, a new criterion improve some related results in [3].

Example 2. Consider the differential equation(
x (t) +

∫ 1

0

1
2

x
(

t− x
3

)
dx
)′′

+
∫ 1

0

( q0

t2

)
x
(

t− s
2

)
ds = 0, (45)

where q0 > 0. It is easy to verify that
U (t) =

q0

t2 , ηt0 (t) = t

and

η̃t0 = t +
q0

4

∫ t

t0

dx = t
(

1 +
q0

4

)
.

Using Corollary 1, if
q0

4

(
1 +

q0

4

)
ln 2 >

1
e

,

then (45) is oscillatory.

5. Conclusions

The growing interest in the oscillation theory of functional differential equation is due to the many
applications of this theory in many fields, see [1,2]. In this work, we used comparison principles and
Riccati transformation techniques to obtain new oscillation criteria for neutral differential Equation (1).
Our new criteria improved a number of related results [3,4,14]. Further, we extended and generalized
the recent works [9,10].
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