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Abstract: In this work, we consider a multilayer shallow water model with variable density.
It consists of a system of hyperbolic equations with non-conservative products that takes into
account the pressure variations due to density fluctuations in a stratified fluid. A second-order finite
volume method that combines a hydrostatic reconstruction technique with a MUSCL second order
reconstruction operator is developed. The scheme is well-balanced for the lake-at-rest steady state
solutions. Additionally, hints on how to preserve a general class of stationary solutions corresponding
to a stratified density profile are also provided. Some numerical results are presented, including
validation with laboratory data that show the efficiency and accuracy of the approach introduced
here. Finally, a comparison between two different parallelization strategies on GPU is presented.

Keywords: multilayer shallow-water; variable pressure; density-stratified fluid; hydrostatic
reconstruction; GPU parallelization

1. Introduction

Shallow-water (or Saint–Venant) type systems are among the most widely used models to study
geophysical flows (see [1,2]). However, these types of models have a main limitation or drawback:
the consideration of an averaged horizontal velocity while neglecting the vertical components.
In order to overcome this limitation, multilayer shallow water models have been developed in
recent years. This multilayer approach allows for capturing complex vertical effects and profiles
that single layer shallow water models cannot (see [3–5]). These multilayer models have been applied
by several authors for different geophysical problems, like tsunamis ([6–10]), flooding events ([11–15]),
or storm-surges ([16–18]).

One possible approach to introduce multilayer shallow water models is the one described by
Audusse et al. in [19]. There, the domain is discretized in the vertical direction with an a priori
arbitrary number of layers. In each layer, similar assumptions as in the classical shallow water
framework are made: the velocity is averaged in the vertical direction, vertical effects are neglected,
and the pressure is assumed hydrostatic. In order to allow mass and momentum exchange between
layers, an approximation of the vertical flux in the layer is incorporated into the model through
non-conservative terms (see [20,21] or [4]). In this way, we are able to obtain a detailed vertical profile
of the velocity. Recent developments in multilayer shallow water models concern the local change of
the number of layers according to the presence of relevant vertical effects (see [22]).

Another approach to capture complex vertical profiles, but avoiding fully 3D models while
calculating the free surface directly, are the so-called σ-coordinate models ([23]). In those models, as in
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the multilayer approach, the free surface is defined as a function of the horizontal coordinates. In this
way, the free surface is always located at the upper boundary and can be derived from the standard
free surface conditions. This simplification provides a new set of models that allows turbulence, solute
transport, and also short wave propagation (see [24–26]).

A further step in the development of the multilayer shallow-water models is given by the
derivation of multilayer shallow water models with non-hydrostatic pressure (see [27,28] or [29]).
These models include effects due to the vertical acceleration of the fluid that are derived from the
Boussinesq-type wave equations. By doing so, the dispersive properties of the model are enhanced
and simulation of more physical effects becomes possible at the cost of a greater computational effort.

While multilayer shallow-water models can satisfactorily capture vertical stratification due to
velocity, they fail to provide an adequate solution when the stratification is due to general changes in
density, like the ones due to variations in temperature and/or salinity. The examples of density driven
currents in natural geophysical flows are numerous. One classical example is at the Strait of Gibraltar,
where two currents, one from the Atlantic Ocean and the other from the Mediterranean Sea, meet.
These two flows are different in terms of temperature and salinity. The water from the Mediterranean
sea has more salinity due to greater evaporation. Thus, the Mediterranean flow is denser and tends
to flow under the current from the Atlantic Ocean. Capturing the vertical profile in this situation is
impossible for standard shallow water equations, and it is necessary to apply a model that takes into
account these buoyancy effects.

In this framework, several authors have proposed multilayer shallow water models with variable
density. In [30,31], for instance, the differences in density are due to suspended sediment. In [32],
the authors propose a multilayer shallow water model that takes into account density variations due
to a given tracer such as the temperature.

Here, we shall consider a similar model to the one presented in [32]. The main differences concern
the derivation, where we propose a slightly different approximation of the exchange terms between
layers, and especially in the numerical discretization of the model. Moreover, we also propose a
parallel implementation on GPUs.

The model considered is quite different from other approximations that assume immiscible layers
(see [33,34]) or consider the water entrainment as an heuristic-dependent source term (see [35]). Here,
we allow the density variations to circulate freely between the layers. Let us remark that the layers are
just a means of capturing a complex vertical profile and do not correspond to physical layers.

Concerning the numerical approximation of shallow water type models, a relevant issue is the
exact preservation of some equilibrium states. In particular, in the simulation of geophysical flows,
an important problem consists of a perturbation of these equilibrium states. The design of numerical
schemes that are well-balanced, that is, that preserve the stationary solutions of the model exactly, is
of great importance for the long-term numerical stability of the simulation. The exact preservation
of these stationary solutions, especially for the shallow water equations, is a relevant research topic
(see [36–38], or [39], and the references therein ).

In this work, we propose a path-conservative numerical scheme based on a modified hydrostatic
reconstruction ([40]) combined with a second order reconstruction procedure. The well-balanced
properties of the scheme are also discussed.

The paper is organized as follows. In Section 2, we describe the governing equations of the
problem, we provide a general formulation for the multilayer approach, we give the general expression
of the multilayer model and we present some relevant stationary solutions. Section 3 is dedicated to
introduce the second-order numerical scheme used to discretize the multilayer system. The proposed
numerical scheme is a well-balanced path-conservative second order numerical scheme based on a
modified hydrostatic reconstruction. Moreover, hints on how to preserve a general class of stationary
solutions corresponding to a stratified density profile are also given. In Section 4, we present some
numerical tests, including comparison between the model and a laboratory experiment. Section 5
summarizes some conclusions. Finally, in Appendix A, a study of performance and computational



Mathematics 2020, 8, 848 3 of 42

cost for different parallelization strategies is addressed and in Appendix B, a thorough description of
the model derivation is provided.

2. Governing Equations and Model

The free surface Navier–Stokes equation in a d-dimensional space (d = 2, 3) are considered.
We denote by v = (u, w) the velocity function with u ∈ Rd−1 the horizontal components of the
velocity and w the vertical one. We will consider two continuity equations: one corresponding to an
incompressible flow with constant density ρ0 and the other corresponding to the advected flow with
variable density, ρ,

∇ · v = 0,

∂tρ +∇ · (ρ v) = 0, (1)

∂t(ρ v) +∇ · (ρv⊗ v) = −g ρk +∇ · Σ,

where k = (0, 1)T , g is the constant gravity function, ρ is the total density of the fluid, and the total
stress tensor is given by Σ = −pI + T , with I the identity tensor, p the pressure term, and T the tensor
corresponding to the viscous terms,

T =

(
TH Txz

T′xz Tzz

)
. (2)

We shall decompose the total density ρ as the sum of a reference density, denoted by ρ0, and the
corresponding variation from that reference density, denoted by ρ1,

ρ = ρ0 + ρ1. (3)

If we now divide (1) by ρ0, we obtain the following system:

∇ · v = 0,

∂t(θ) +∇ · (θ v) = 0, (4)

∂t(θ v) +∇ · (θv⊗ v) = −g θk +
1
ρ0
∇ · Σ,

with
θ =

ρ

ρ0
= 1 +

ρ1

ρ0
. (5)

We shall now consider a multilayer shallow water approach to system (4). In the multilayer
approach, the fluid domain ΩF(t) is divided along the vertical dimension into a set of M ∈ N∗ layers
of thickness hα(t, x) with M + 1 smooth interfaces Γα+ 1

2
(t), which shall be described as (see Figure 1):

Γα+ 1
2
(t) =

{
(x, z) ∈ ΩF(t), such that z = zα+ 1

2
(t, x)

}
, α = 0, 1, . . . , M.

The layers will be then described as

Ωα(t) =
{
(x, z) ∈ ΩF(t), such that zα− 1

2
(t, x) < z < zα+ 1

2
(t, x)

}
, α = 1, . . . , M.

We shall denote by zB = z 1
2

and zS = zM+ 1
2

the bottom and the free-surface, respectively. Let us
define hα = zα+ 1

2
− zα− 1

2
as the thickness of each layer. The total height of the fluid column is then

given by h = zS − zB =
M

∑
α=1

hα.
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Figure 1. Sketch of the multilayer approach.

Following the usual approach in multilayer shallow water models, we consider the horizontal
velocity and relative density fluctuations to be independent of the vertical variable z:

v|Ωα(t) := vα := (uα, wα)
′, θ|Ωα

:= θα, p|Ωα
:= pα,

where uα is the horizontal velocity and wα is the vertical one. We also assume that both wα and pα are
linear in z inside each layer. Moreover, we suppose that pressure is also continuous at the interfaces
and hydrostatic pressure is assumed, so that

pα(t, x, z) = pα+ 1
2
+ θα g (zα+ 1

2
− z), (6)

with

pα+ 1
2
(t, x) = pS(t, x) + g

M

∑
β=α+1

θβhβ(t, x). (7)

Here, the component pα+ 1
2

is the hydrostatic pressure at Γα+ 1
2
(t) and pS denotes the pressure

at the free surface. Therefore, the unknowns of the system are the depths of the layers, the density
fluctuation, and the horizontal velocities in each layer. Remark that ∂zwα = −∇ · uα and therefore it
is not considered as an unknown. As it is usual in multilayer shallow water type systems, we shall

consider lα ∈ (0, 1), α = 1, . . . , M such that
M

∑
α=1

lα = 1. Then, the layer thickness is assumed to be

proportional to the total depth, so that hα = lαh.
There is no hope for such a particular set

(
vα, θα, pα

)
to be a solution of the complete equations in

the layer Ωα(t). Instead, we shall consider a reduced weak formulation with particular test functions.
A detailed derivation of the vertical integration procedure can be found in [20,30], or [4]. A thorough
derivation of this specific model is given in Appendix B. For the sake of simplicity, from now on, we
will suppose d = 2 and merely present the final version of the model, where the horizontal viscosity
terms have been neglected

∂th + ∂x

(
h

M

∑
β=1

lβuβ

)
= 0,

∂t(hθα) + ∂x(hθαuα) =
1
lα

(
θα+ 1

2
Gα+ 1

2
− θα− 1

2
Gα− 1

2

)
,

∂t(hθαuα) + ∂x(hθαu2
α) + ghθα∂xη (8)

+gh

(
M

∑
β=α+1

lβ(θβ − θα)∂xh

)
+ gh

M

∑
β=α+1

lβh∂xθβ +
1
2

glαh2∂xθα

=
1
lα

(
uα+ 1

2
θα+ 1

2
Gα+ 1

2
− uα− 1

2
θα− 1

2
Gα− 1

2

)
,
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where η = h + b is the free surface and Gα± 1
2

α = 1, . . . , M− 1, are the mass exchange terms between
layers, defined by

Gα+ 1
2
=

α

∑
β=1

lβ

(
∂th + ∂x(huβ)

)
=

α

∑
β=1

lβ

(
∂x(huβ)− ∂x

(
h

M

∑
γ=1

lγuγ

))
. (9)

We will also consider no mass exchange at the bottom and the free surface, that is, G 1
2
= GM+ 1

2
= 0.

In addition, θα+ 1
2

and uα+ 1
2

are some approximation of u and θ at the interfaces Γα+ 1
2
, α = 1, . . . , M− 1.

Typically,

uα+ 1
2
=

uα+1 + uα

2
, θα+ 1

2
=

θα+1 + θα

2
, α = 1, . . . , M− 1,

with u 1
2
= u1, uM+ 1

2
= uM and θ 1

2
= θ1, θM+ 1

2
= θM.

System (8) may be rewritten in the following form:



∂th + ∂x

(
h

M

∑
β=1

lβuβ

)
= 0,

∂t(hθα) + ∂x(hθαuα) =
1
lα

(
θα+ 1

2
Gα+ 1

2
− θα− 1

2
Gα− 1

2

)
,

∂t(hθαuα) + ∂x(hθαu2
α) + ghθα∂xη +

glα
2

(h∂x(hθα)− hθα∂xh) (10)

+g
M

∑
β=α+1

lβ

(
h∂x(hθβ)− hθα∂xh

)
=

1
lα

(
uα+ 1

2
θα+ 1

2
Gα+ 1

2
− uα− 1

2
θα− 1

2
Gα− 1

2

)
.

Note that pressure terms have been rewritten and reduce to

Pα := g
lα
2

∂x(h2θα) + h∂x pα+ 1
2
+ ghθα∂xzα− 1

2

= ghθα∂xη +
glα
2

(h∂x(hθα)− hθα∂xh) + g
M

∑
β=α+1

lβ

(
h∂x(hθβ)− hθα∂xh

)
.

One can easily check that system (10) has non-trivial stationary solutions. Here, we are interested
in the particular stationary solutions that satisfy uα = 0, α = 1, . . . , M. For this particular case, one can
distinguish two families of stationary solutions: the one corresponding to the choice of a constant
relative density function θα = K, α = 1, . . . , M, and the more general case where θα is not constant.

In the first case, the stationary solution reduces to the well-known lake-at-rest stationary solutions,
characterized in this case by

uα = 0, θα = K1, η = h + b = K2, (11)

where K1 ≥ 1 and K2 are two given constants.
For the second more general case, we shall consider smooth stationary solutions. Then, given two

known smooth functions b(x) and h(x) ≥ 0, the stationary solutions are characterized as the regular
solutions of the following ODE system:

lα
2
(θα)

′ +
M

∑
β=α+1

lβ(θβ)
′ = −1

h

(
θα(h + b)′ +

M

∑
β=α+1

lβ(θβ − θα)h′
)

, α = 1, . . . , M. (12)

Note that the ODE (12) can be solved by an iterative procedure: starting from α = M, where the
equation only depends on θM,

(θM)′ =
2

hlM
(h + b)′θM,
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and then continue to solve downwards on α so that once that θM, θM−1, . . . , θα+1 have been calculated,
(12) corresponds to a scalar ODE for θα that may be solved.

Note that there exists a trivial class of stationary solutions for the original system (4),
which corresponds to a stratified fluid with constant free surface, that is,

u = 0, η(x) = b(x) + h(x) = K, θ(z) = θsur f ace + α(η − z). (13)

Unfortunately, these types of solutions are not an exact solution of (12). Therefore, they are not
stationary solutions for the multilayer system (10), except for the case of constant bottom b(x) = cst.
This is due to the particular choice of the vertical discretization used in the multilayer approach.
The layers are proportional to the total thickness and the variables have been averaged inside the layer.
As a result, averaging of stratified solutions does not result in a stratified solution (space independent of
θ) for the multilayer system, unless the bottom and free surface are constant.

Nevertheless, stationary stratified solutions (13) may be approximated in the multilayer
framework by the following set of stationary solutions:

uα = 0, η(x) = b(x) + h(x) = K,

θM(x) = θ̄M ≥ 1,

θα(x) = θ̄α h2(M−α)(x) +
M

∑
β=α+1

S2(M−β)(M− α + 1)θ̄β h2(M−β)(x),

(14)

with

Sβ(α) = (β + 1) · A β+2
2 +1

(α)

Ap(k) =

{
1 if p ≥ k,

(p− 1)∏
k−p
γ=2(1 + (p− 2)Cγ) if p < k,

Cγ = Cγ−1 −
1

Qγ

Qγ = Qγ−1 + i + 1

C0 = Q0 = 1

Here, θ̄α are given constants that should be properly chosen to determine a physical stable solution.
The stationary solutions (14) have been obtained from (12) by the iterative procedure

described before.
Figures 2 and 3 show a particular realization of these types of stationary solutions. In particular,

we see the vertical distribution of θα(x), α = 1, . . . , M, along a given channel for the values M = 5,
M = 10, M = 50, and M = 100. We see from the pictures that (14) converges to (13) as M→ +∞.
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Figure 2. Solution of the ODE (12) for an stratified fluid with M = 5 (left) and M = 10 (right).
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Figure 3. Solution of the ODE (12) for an stratified fluid with M = 50 (left) and M = 100 (right).

The study of the hyperbolicity of the proposed model (10) is not an easy task. The model is
hyperbolic for the case M = 1 but remains an open question in general. Nevertheless, numerical
simulations show that the eigenvalues of the system are real. It is possible to give an upper and lower
bound for the largest and smallest wave speed, λmax, λmin, respectively. Following [31], the minimum
and maximum of the wave speeds are bounded by:

λmin ≥ ū−Ψ, λmax ≤ ū + Ψ (15)

where

Ψ =

√√√√2M− 1
2M

(
2

M

∑
α=1

(ū− uα)2 + gh
(

1 +
1
M

M

∑
β=1

(2β− 1)θβ

))
, (16)

and

ū =
1
M

M

∑
α=1

uα. (17)

3. Numerical Scheme

The full system (10) can be written in the form of an hyperbolic system with conservative fluxes
and non-conservative products as follows:

∂tw + ∂xFC(w) + P(w, η, ∂xw, ∂xη)− T(w, ∂xw) = 0, (18)

where w is the vector of the conserved variables,

w = (h | hθα | hθαuα)
T ∈ R2M+1. (19)

Remark that the Einstein notation is used to represent the block structures in the previous vector.
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We denote by FC(w) the advected or transport flux, given by

FC(w) =

(
h

M

∑
β=1

lβuβ

∣∣∣∣ hθαuα

∣∣∣∣ hθαu2
α

)T

∈ R2M+1. (20)

Here, P(w, η, ∂xw, ∂xη) corresponds to the pressure term, which depend on the relative density
and the free surface, and is defined by

P(w, η, ∂xw, ∂xη) = (0 | 0 | Pα) ∈ R2M+1, (21)

where

Pα = ghθα∂xη +
glα
2
(h∂xhθα − hθα∂xh) + g

M

∑
β=α+1

lβ(h∂xhθβ − hθα∂xh).

Finally, the terms T(w, ∂xw) correspond to the mass, density, and momentum exchange
between layers:

T(w, ∂xw) =(
0
∣∣∣ 1

lα
(θα+ 1

2
Gα+ 1

2
− θα− 1

2
Gα− 1

2
)
∣∣∣ 1

lα
(uα+ 1

2
θα+ 1

2
Gα+ 1

2
− uα− 1

2
θα− 1

2
Gα− 1

2
)

)T
∈ R2M+1. (22)

We recall that Gα+ 1
2

is described by (9).
We will consider a well-balanced second-order finite volume scheme where pressure terms are

discretized using the path-conservative framework introduced by Parés [41]. First, we describe the first
order solver and then present its extension to second order, which is done by means of a reconstruction
operator that preserves the well-balanced properties of the first order scheme.

Let us suppose, for simplicity, a uniform discretization of the domain in computational cells
Ii = [xi− 1

2
, xi+ 1

2
], with a constant length of ∆x = xi+ 1

2
− xi− 1

2
. We denote by wn

i the cell average
approximation of the solution at time tn = n∆t given by the numerical scheme:

wn
i ≈

1
∆x

∫ x
i+ 1

2

x
i− 1

2

w(x, tn) dx.

Let us also denote by zB,i the approximation of cell average of the bottom bathymetry at cell Ii,
that is,

zB,i ≈
1

∆x

∫ x
i+ 1

2

x
i− 1

2

zB(x) dx.

In what follows, for any variable f , we shall define its average at the intercell i + 1
2 as:

f ≡ f i+ 1
2
=

1
2
( fi + fi+1) . (23)

In particular, for a variable fα defined within the layer α, we shall write

fα ,i+ 1
2
=

1
2
( fα,i + fα,i+1) . (24)

The difference at the intercell i + 1
2 will be written as

∆ f ≡ (∆ f )i+ 1
2
= fi+1 − fi.
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We shall denote the average of a variable fα at the layer interface α + 1
2 by

〈 f 〉α+ 1
2
=

1
2
( fα+1 + fα) . (25)

In addition, at the bottom or free surface interfaces, we shall assume

〈 f 〉 1
2
= f1, 〈 f 〉M+ 1

2
= fM.

3.1. First Order HLL-Type Scheme

Following [42], we define a HLL-type scheme for (18) by

wn+1
i = wn

i −
∆t
∆x

(
D+

i− 1
2
(wn

i−1, wn
i , zB,i−1, zB,i) + D−

i+ 1
2
(wn

i , wn
i+1, zB,i, zB,i+1)

)
, (26)

where

D−
i+ 1

2
=

1
2

(
(1− α1,i+ 1

2
)Ei+ 1

2
− α0,i+ 1

2
(wi+1 −wi)

)
+ FC(wi),

D+
i+ 1

2
=

1
2

(
(1 + α1,i+ 1

2
)Ei+ 1

2
+ α0,i+ 1

2
(wi+1 −wi)

)
− FC(wi+1),

and
Ei+ 1

2
= FC(wi+1)− FC(wi) + Pi+ 1

2
− Ti+ 1

2
,

with

Pi+ 1
2
=



0

0

ghθα∆η +
glα
2
(h∆(hθα)− hθα∆h) + g

M

∑
β=α+1

lβ(h∆(hθβ)− hθα∆h)


.

Remark that in order to make the notation less cumbersome, we have neglected the subindex
i + 1

2 , so that here h stands for hi+ 1
2
, ∆h stands for (∆h)i+ 1

2
and so on.

The term Ti+ 1
2

corresponds to the approximation of the exchange between layers at the layer

interfaces on the intercell i + 1
2 ,

Ti+ 1
2
=



0

1
lα
(
〈
θ
〉

α+ 1
2

G̃α+ 1
2
−
〈
θ
〉

α− 1
2

G̃α− 1
2
)

1
lα
(〈u〉α+ 1

2

〈
θ
〉

α+ 1
2

G̃α+ 1
2
− 〈u〉α− 1

2

〈
θ
〉

α− 1
2

G̃α− 1
2
)


,

where again to simplify notation, we denote

〈
θ
〉

α+ 1
2
=
〈

θi+ 1
2

〉
α+ 1

2

=
1
2

(
θα+1,i+ 1

2
+ θα ,i+ 1

2

)
=

1
4
(θα+1,i + θα+1,i+1 + θα,i + θα,i+1) ,
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and analogously for 〈u〉α+ 1
2

.

Finally, G̃ 1
2
= ˜GM+ 1

2
= 0 and

G̃α+ 1
2
= ˜(Gα+ 1

2
)

i+ 1
2

=
α

∑
β=1

lβ

(
∆(huβ)− ∆

(
M

∑
γ=1

lγhuγ

))
1 ≤ α < M.

The coefficients α0,i+ 1
2

and α1,1+/2 are related with the numerical viscosity of the scheme and are
defined in terms of the upper and lower bounds of the maximum and minimum of the waves speeds
(see [42] for more details):

α0,i+ 1
2
=

λ+
i+ 1

2
|λ−

i+ 1
2
| − λ−

i+ 1
2
|λ+

i+ 1
2
|

λ+
i+ 1

2
− λ−

i+ 1
2

, α1,i+ 1
2
=
|λ+

i+ 1
2
| − |λ−

i+ 1
2
|

λ+
i+ 1

2
− λ−

i+ 1
2

,

where
λ±

i+ 1
2
= ūi+ 1

2
±Ψi+ 1

2
,

with

ūi+ 1
2
=

1
M

M

∑
α=1

uα ,i+ 1
2
,

and

Ψi+ 1
2
=

√√√√2M− 1
2M

(
2

M

∑
α=1

(ūi+ 1
2
− uα ,i+ 1

2
)2 + ghi+ 1

2

(
1 +

1
M

M

∑
β=1

(2β− 1)θβ ,i+ 1
2

))
.

3.2. Hydrostatic Reconstruction

The numerical scheme defined previously is not well-balanced in the sense that it cannot preserve
lake-at-rest steady states as the numerical viscosity term α0,i+1/2(wi+1 −wi) does not vanish. In order
to obtain a well-balanced scheme, we will combine it with a modified hydrostatic reconstruction
technique [43]. Given the states wn

i and wn
i+1, and zB,i and zB,i+1, we shall define the reconstructed

states at the interfaces wHR,±
i+ 1

2
and zB,1+/2. To do so, we consider

zB,i+ 1
2
= max (zB,i, zB,i+1) , (27)

and
hHR,−

i+ 1
2

=
(

hn
i + zB,i − zB,i+ 1

2

)
+

, hHR,+
i+ 1

2
=
(

hn
i+1 + zB,i+1 − zB,i+ 1

2

)
+

, (28)

where ( f )+ is the positive part of f . Using (28), we define

wHR,±
i+ 1

2
=

(
hHR,±

i+ 1
2

∣∣∣ hHR,±
i+ 1

2
θα,i

∣∣∣ hHR,±
i+ 1

2
θα,iuα,i

)T
∈ R2M+1. (29)

Note that in (28), the reconstructed heights have been defined as hHR = (·)+, that is, using
the positive part of the values therein. In [43], the authors show that the hydrostatic reconstruction
technique is positive provided that the underlying conservative scheme used is positive. To prove
this fact, the authors prove that it is essential to preserve the positivity of the reconstructed water
heights, which justifies the use of the positive part. Remark that in general, for smooth topographies,
one would have that the jumps of the bottom at cell interfaces are small and therefore the positive part
is not needed when h is positive. Nevertheless, in the presence of big gradients of the bottom, this is
needed in order to avoid non-physical negative water thickness.
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In order to maintain an easier notation, we denote by

θα,i = (θ1, . . . , θM)T
i , θα,iuα,i = (θ1u1, . . . , θMuM)T

i

the cell averages of the vectors θα and θαuα on the cell Ii.
Remark that the averages and differences (23)–(25) are now defined in terms of the reconstructed

variables, that is,

f =
1
2
( f HR+

i+ 1
2

+ f HR−
i+ 1

2
), ∆ f =

1
2
( f HR+

i+ 1
2
− f HR−

i+ 1
2
) (30)

and also

f+ =
f HR,+
i+ 1

2
+ fi+1

2
, f− =

fi + f HR,−
i+ 1

2

2
, (31)

and
∆ f+ = f HR,+

i+ 1
2
− fi+1, ∆ f− = fi − f HR,−

i+ 1
2

. (32)

Now, we can redefine the numerical scheme (26) in the following way:

wn+1
i = wn

i −
∆t
∆x

(
D+

i− 1
2
(wHR−

i− 1
2

, wHR+
i− 1

2
, zB,i− 1

2
, zB,i− 1

2
)

+D−
i+ 1

2
(wHR−

i+ 1
2

, wHR+
i+ 1

2
, zB,i+ 1

2
, zB,i+ 1

2
) + S+

i− 1
2
+ S−

i+ 1
2

)
, (33)

where D±
i+ 1

2
are defined in Section 3.1. We remark that the terms ghθα∆η in Pi+1/2, reduce now

to ghθα∆h.
Finally, the term S±

i+ 1
2

corresponds to the corrections due to the use of the hydrostatic

reconstruction and guarantee the consistency of the scheme as well as the well-balanced property:

S±
i+ 1

2
= P±

i+ 1
2
− T±

i+ 1
2
,

where

P±
i+ 1

2
=

(
0
∣∣∣ 0
∣∣∣ P±

α,i+ 1
2

)T
∈ R2M+1,

with

P±
α,i+ 1

2
= g

M

∑
β=α+1

lβh±∆±h(θβ,i+( 1
2±

1
2 )
− θα,i+( 1

2±
1
2 )
).

Remark 1. The term P±
α,i+ 1

2
comes from the evaluation of the integral of

P = ghθα∂xη +
glα
2

(h∂x(hθα)− hθα∂xh) + g
M

∑
β=α+1

lβ

(
h∂x(hθβ)− hθα∂xh

)
,

between the center of the cell and the intercell along the path that defines the reconstruction (see [40,44]). Thanks
to the definitions (29), we have that uα, θα, and η remain constant, which justifies the given definition for P±

α,i+ 1
2
.
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The term T±
i+ 1

2
is defined by

T±
i+ 1

2
=



0

1
lα

((
〈θ〉α+ 1

2

)
i+( 1

2±
1
2 )

G±
α+ 1

2
−
(
〈θ〉α− 1

2

)
i+( 1

2±
1
2 )

G±
α− 1

2

)

1
lα

((
〈u〉α+ 1

2
〈θ〉α+ 1

2

)
i+( 1

2±
1
2 )

G±
α+ 1

2
−
(
〈u〉α− 1

2
〈θ〉α− 1

2

)
i+( 1

2±
1
2 )

G±
α− 1

2

)


.

We recall that (
〈 f 〉α+ 1

2

)
i+( 1

2±
1
2 )

=
1
2

(
fα,i+( 1

2±
1
2 )
+ fα+1,i+( 1

2±
1
2 )

)
,

for any variable f .
In addition, finally, G±

α+ 1
2

are defined as

G±
α+ 1

2
=

α

∑
β=1

lβ∆−h

(
uβ,i+( 1

2±
1
2 )
−

M

∑
γ=1

lγuγ,i+( 1
2±

1
2 )

)
,

with G±1
2
= G±

M+ 1
2
= 0.

The resulting numerical scheme (33) is then first order accurate in space and time, well-balanced
for the stationary solution corresponding to water at rest and constant density and positive preserving
for the water high with the standard CFL− 1/2 restriction.

In fact, it is trivial to check that the scheme is well-balanced for the stationary solution
corresponding to water at rest: indeed, D±

i+ 1
2
= 0 as FC(w

HR,+
i+ 1

2
) = FC(w

HR,−
i+ 1

2
) = 0, Ti+ 1

2
= T±

i+ 1
2
= 0

and uα,i = 0, for all i and 1 ≤ α ≤ M. The discretization of the pressure terms, Pi+ 1
2

and P±i/2, is

also zero if θα,i are a constant value and ∆h = hHR,+
i+ 1

2
− hHR,−

i+ 1
2

= 0 as hHR,+
i+ 1

2
= hHR,−

i+ 1
2

in a water

at rest solution with constant relative density. Finally, the positivity of the numerical scheme is a
consequence of the fact that the scheme for the equation of the total thickness corresponds to a HLL
scheme, therefore positivity is granted under a suitable CFL condition.

3.3. Upwind Approximation of the Exchange Terms between Layers

The numerical scheme defined previously has a major drawback: we cannot ensure that θα ≥ 1
for 1 ≤ α ≤ M, which could result in non-physical solutions. In fact, if we consider the following
initial condition that corresponds to a dam break in relative density with M = 4 layers:

uα = 0, h(x, 0) = 1− 1
2

e−x2
, zB(x) =

1
2

e−x2
,

θα(x, 0) =

{
1 if x < 0,

1.01 if x ≥ 0,

(34)

the previous numerical scheme produces a numerical solution where θ2 is clearly below the unity,
which conflicts with (5). This is shown in Figure 4.

According to [32], this could be solved if the exchange terms between layers Ti+ 1
2

and T±
i+ 1

2
are

properly discretized. In what follows, we describe an upwind discretization of those terms.
The exchange terms between layers in (10) could be seen as the vertical flux between layers.

However, by writing this flux as non-conservative products, we lose information about the direction
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of these vertical fluxes, leading to non-physical solutions. In order to incorporate this directional
information, we perform an upwind approximation of the exchange terms between layers as proposed
in [32].

In particular, we propose to discretize them as follows:

Ti+ 1
2
=



0

1
lα

(
(θG)UP

α+ 1
2 ,i+ 1

2
− (θG)UP

α− 1
2 ,i+ 1

2

)

1
lα

(
(uθG)UP

α+ 1
2 ,i+ 1

2
− (uθG)UP

α− 1
2 ,i+ 1

2

)


,

where
(θG)UP

α+ 1
2 ,i+ 1

2
= 〈θ〉α+ 1

2 ,i+ 1
2

G̃α+ 1
2
− 1

2
|G̃α+ 1

2
|(θα+1,i+ 1

2
− θα ,i+ 1

2
),

(uθG)UP
α+ 1

2 ,i+ 1
2
= 〈uθ〉α+ 1

2 ,i+ 1
2

G̃α+ 1
2
− 1

2
|G̃α+ 1

2
|((uθ)α+1,i+ 1

2
− (uθ)α ,i+ 1

2
),

and

T±
i+ 1

2
=



0

1
lα

(
(θG)UP±

α+ 1
2
− (θG)UP±

α− 1
2

)

1
lα

(
(uθG)UP±

α+ 1
2
− (uθG)UP±

α− 1
2

)


,

where

(θG)UP±
α+ 1

2
= 〈θ〉α+ 1

2 ,i+( 1
2±

1
2 )

G±
α+ 1

2
− 1

2
|G±

α+ 1
2
|(θα+1,+( 1

2±
1
2 )
− θα,+( 1

2±
1
2 )
),

(uθG)UP±
α+ 1

2
= 〈uθ〉α+ 1

2 ,i+( 1
2±

1
2 )

G±
α+ 1

2
− 1

2
|G±

α+ 1
2
|((uθ)α+1,+( 1

2±
1
2 )
− (uθ)α,+( 1

2±
1
2 )
),

with (θG)UP
1
2 ,i+ 1

2
= (θG)UP

M+ 1
2 ,i+ 1

2
= (uθG)UP

1
2 ,i+ 1

2
= (uθG)UP

M+ 1
2 ,i+ 1

2
= 0, and (θG)UP±

1
2

= (θG)UP±
M+ 1

2
=

(uθG)UP±
1
2

= (uθG)UP±
M+ 1

2
= 0.

Note that this numerical treatment is equivalent to adding the following vertical diffusion terms
to the system:

∂z (hα|G|∂zθ) , and ∂z (hα|G|∂z(uθ)) .

Now, if we reproduce the previous numerical example, we obtain that θα ≥ 1, as it can be seen
in Figure 5.

Remark 2. Summing up all the equations for lαhθα, the terms in T±
i+ 1

2
cancel out. This means that, in fact,

the scheme reduces to a classical HLL scheme for the variable
M

∑
α=1

lαhθα. Therefore, by following the usual

arguments used for HLL, one could prove that
M

∑
α=1

lαθα ≥ 1. We could not formally prove that θα ≥ 1.

Nevertheless, the numerical experiments carried out verified that these properties are fulfilled.
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Figure 4. Simulation with M = 4 number of layers for a version of the code without an upwind
approximation. The relative density θα is shown.
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Figure 5. Simulation with M = 4 number of layers for a version of the code with an upwind
approximation. The relative density θα is shown.

3.4. Second Order Approximation

In order to achieve second order in space, we combine the previous first order numerical scheme
with a second order reconstruction operator at each cell, that is, at each time step tn and at each cell
Ii = [xi− 1

2
, xi+ 1

2
], we define a regular reconstruction function Rt

i(x) = w(x, t) + O(∆x2), x ∈ Ii. Rt
i(x)

is defined from the cell averages {wj(t), j ∈ Si}, where Si is called the stencil of the reconstruction
operator. We also use the standard notation:

lim
x→x+

i− 1
2

Rt
i(x) = w+

i− 1
2
(t), lim

x→x−
i+ 1

2

Rt
i(x) = w−

i+ 1
2
(t).
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Following [39], the natural extension of the first order numerical scheme (33) may be written
as follows:

w′i(t) = − 1
∆x

(
D+

i− 1
2
(t) + D−

i+ 1
2
(t)
)

, (35)

− 1
∆x

∫ x
i+ 1

2

x
i− 1

2

(
P(Rt

i , Rη,t
i , ∂xRt

i , ∂xRη,t
i )− T(Rt

i , ∂xRt
i)
)

dx,

where

D+
i− 1

2
(t) = D+

i− 1
2
(w−

i− 1
2
(t), w+

i− 1
2
(t), z−

B,i− 1
2
, z+

B,i− 1
2
),

D−
i+ 1

2
(t) = D−

i+ 1
2
(w−

i+ 1
2
(t), w+

i+ 1
2
(t), z−

B,i+ 1
2
, z+

B,i+ 1
2
).

In what follows, for the sake of simplicity, we shall drop the dependence on time.

Remark 3. The evaluation of the numerical scheme (33) on the reconstructed states w±
i− 1

2
, z±

B,i− 1
2

means that one

has to perform the hydrostatic reconstruction procedure (27)–(29) from the reconstructed states. More explicitly,
the hydrostatic reconstructed states become

zB,i+ 1
2
= max

(
z−

B,i+ 1
2
, z+

B,i+ 1
2

)
(36)

and

hHR,−
i+ 1

2
=

(
h−

i+ 1
2
+ z−

B,i+ 1
2
− zB,i+ 1

2

)
+

, hHR,+
i+ 1

2
=

(
h+

i+ 1
2
+ z+

B,i+ 1
2
− zB,i+ 1

2

)
+

. (37)

In the previous expression, the notation hHR = (·)+ denotes the positive part while z±
B,i+ 1

2
are

the reconstructed values of the bathymetry zB at xi+ 1
2

for the cells Ii+1 and Ii, respectively. That is,

we consider a reconstruction operator for the bottom RzB
i (x) = zB(x) + O(∆x2), x ∈ Ii and denote by,

lim
x→x+

i− 1
2

RzB
i (x) = z+

B,i− 1
2
, lim

x→x−
i+ 1

2

RzB
i (x) = z−

B,i+ 1
2
.

We shall denote the components of Ri = (Rh|Rhθ
α |Rhθu

α ).
According to [39], in order to preserve the well-balanced properties of the first order numerical

scheme, the reconstruction operators should be also well-balanced, that is, the reconstruction operators
should preserve the stationary solutions corresponding to water at rest with constant density.
More explicitly, for a lake-at-rest steady state solution, one should have

Rh
i + RzB

i = cst.

Therefore, the reconstruction operator RzB
i cannot be arbitrarily chosen. In practice, we consider a

reconstruction operator for the free surface Rη
i , defined from the cell averages of the surface {ηj, j ∈ Si}.

Then, define the bottom reconstruction operator by

RzB
i = Rη

i − Rh
i . (38)

This grants that the reconstruction operator satisfies

Rh
i (x) + RzB

i (x) = Rη
i (x),
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and the well-balanced property is achieved provided that Rη
i reduces to a constant whenever the states

ηj in the stencil are constant.
In this work, we use the MUSCL reconstruction operator (see [45]). In each cell Ii, we define a

piece-wise linear operator of the form

Ri(x) = wi + σi(x− xi), (39)

where σi is the vector which provides the slope of the reconstruction for each variable and xi is the
center of cell Ii. As usual, it is also necessary to provide a slope limiter to avoid spurious oscillations at
jump discontinuities, while keeping the second order accuracy when the solution is smooth. In this
work, we use an average limiter (avg), defined by

[σi]k = avg
(
[wi+1 −wi]k

∆x
,
[wi −wi−1]k

∆x

)
, (40)

where the subindex k refers the k-th component of the vector and the avg operator is defined as

avg(a, b) =


|a| b + a |b|
|a|+ |b| if |a|+ |b| > 0,

0 otherwise.
(41)

Let us detail the reconstruction procedure for the conserved variables and the bathymetry:

• First, we consider the reconstruction of the water depth h and free surface η that is Rh
i (x) and

Rη
i (x) and the reconstruction of the bathymetry is recovered by setting RzB(x) = Rη

i (x)− Rh
i (x).

In order to guarantee the positivity of the water depth during the reconstruction, we use the
technique introduced in [46].

• Next, we consider the reconstruction of the relative density θα at each cell, Rθα
i (x). Let us denote

by σθα
i the slope of the reconstruction of θα and σh

i the corresponding slope for the water depth.
Then, we define Rhθα

i (x) = (hθα)i + σhθα
i (x− xi) where

σhθα
i = θα,iσ

h
i + hiσ

θα
i .

Again, we follow [46] to guarantee that Rθα
i (x) ≥ 1, x ∈ Ii.

• Finally, we consider the reconstruction of the velocity uα at each cell. Let us denote by σuα
i the slope

of the reconstruction of uα at the cell Ii, then we define Rhθαuα
i (x) = (hθαuα)i + σhθαuα

i (x− xi) where

σhθαuα
i = uα,iσ

hθα
i + (hθα)iσ

uα
i .

Remark 4. The definition of σhθα
i and σhθαuα

i grants that

σhθα
i = ∂xRhθα

i = Rh
i (xi)∂xRθα

i + Rθα
i (xi)∂xRh

i ,

σhθαuα
i = ∂xRhθα

i = Ruα
i (xi)∂xRhθα

i + Rhθα
i (xi)∂xRuα

i .

The integral term in (35) is approximated by the middle point quadrature formula that results in:

1
∆x

∫ x
i+ 1

2

x
i− 1

2

(
P(Ri, Rη

i , ∂xRi, ∂xRη
i )− T(Ri, ∂xRi)

)
dx ≈ Pi − Ti,
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where

Pi =



0

0

g(hθα)iσ
η
i +

glα
2
(hiσ

hθα
i − (hθα)iσ

h
i ) + g

M

∑
β=α+1

lβ(hiσ
hθβ

i − (hθα)iσ
h
i )


.

Ti =



0

1
lα

(
θGα+ 1

2
− θGα− 1

2

)

1
lα

(
uθGα+ 1

2
− uθGα− 1

2

)


,

where
θGα+ 1

2
= 〈θ〉α+ 1

2 ,i Gα+ 1
2 ,i −

1
2
|Gα+ 1

2 ,i|(θα+1,i − θα,i), 1 ≤ α < M,

uθGα+ 1
2
= 〈uθ〉α+ 1

2 ,i Gα+ 1
2 ,i −

1
2
|Gα+ 1

2 ,i|((uθ)α+1,i − (uθ)α,i), 1 ≤ α < M,

with

Gα+ 1
2 i
=

α

∑
β=1

lβ

(
σ

huβ

i −
M

∑
γ=1

lγσ
huγ

i

)
,

and
σhuα

i = hiσ
uα
i + uα,iσ

h
i .

We shall consider θG 1
2
= uθG 1

2
= 0 and θGM+ 1

2
= uθGM+ 1

2
= 0.

Finally, the second order in time is achieved via a total variation diminish (TVD) Runge–Kutta
method (see [47]).

The second order numerical scheme is thus well-balanced for the stationary solution
corresponding to water at rest and constant density and positive preserving for the water depth.

4. Numerical Tests

In this section, we present several numerical simulations with the main objective to show the
capabilities of the model and of the numerical scheme previously presented. Unless stated otherwise,
the second order scheme is used. The first two numerical subsections will show the accuracy and
well-balanced properties of the scheme. Then, an academic test case with a smooth distribution of
relative density is shown in Section 4.3. The numerical strategy will be validated in Section 4.4, which
corresponds to a lock-exchange in density that generates a gravity current, where laboratory data are
available. In particular, the influence of the number of layers on the accuracy of the results will be
discussed. The numerical test presented in Section 4.5 also corresponds to a dam break problem in
density but with a non-constant bathymetry function, where we will show that the model is able to
reproduce the general behaviour of this type of problem. Finally, a 2D problem will be considered in
Section 4.6.
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4.1. Order of Accuracy Test

The objective of this numerical test is to check numerically the order of accuracy of the numerical
scheme. We consider a 5-layer simulation with an initial condition given by:

uα(x, 0) = 0, θα(x, 0) = 1 + 0.05e−4x2
, 1 ≤ α ≤ 5,

h(x, 0) = 1.0− 0.5e−x2
+ 0.1e−10x2

,

and the bathymetry is given by
zb(x) = 0.5e−x2

.

The CFL parameter is set to 0.5 and the final time is t = 0.5 s. Periodic boundary conditions
are set.

The errors and order of accuracy are shown in Tables 1 and 2 for h, hθ1, and hθ1u1 for a horizontal
discretization of 25, 50, 100, 200, and 400 volume cells for the first and second order schemes,
respectively. The numerical solutions are compared to a reference solution, which has been computed
with the same numerical scheme on a fine mesh of 3200 volume cells. Similar results are obtained for
hθα and hθαuα, for α > 1. Here, hθ1 has been chosen in particular due to the fact that the pressure term
for α = 1 is the most sophisticated one, as it depends on hθα, 1 ≤ α ≤ 5.

Figure 6 shows the free surface (left) and the velocities uα, 1 ≤ α ≤ 5 at the final time t = 0.5 s for
the second order scheme using the 200 cell mesh.

4 2 0 2 4
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Free surface

4 2 0 2 4
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Figure 6. Free surface (left) and velocities (right) at time t = 0.5 s for the second order scheme.

Table 1. Order of accuracy for the first order scheme.

h hθ1 hθ1u1

N. Cells Error Order Error Order Error Order

25 5.97 × 10−2 - 4.74 × 10−2 - 2.14 × 10−1 -
50 4.51 × 10−2 0.41 3.71 × 10−2 0.35 1.72 × 10−1 0.31

100 2.82 × 10−2 0.68 2.46 × 10−2 0.59 1.13 × 10−1 0.61
200 1.60 × 10−2 0.82 1.50 × 10−2 0.72 6.57 × 10−2 0.78
400 8.16 × 10−3 0.97 8.03 × 10−3 0.90 3.38 × 10−2 0.96

Table 2. Order of accuracy for the second order scheme.

h hθ1 hθ1u1

N. Cells Error Order Error Order Error Order

25 2.18 × 10−3 - 2.32 × 10−2 - 5.92 × 10−2 -
50 1.17 × 10−2 0.90 1.34 × 10−2 0.79 3.77 × 10−2 0.64

100 5.06 × 10−3 1.21 5.47 × 10−3 1.29 1.73 × 10−2 1.12
200 1.53 × 10−3 1.72 1.57 × 10−3 1.80 5.21 × 10−3 1.74
400 3.82 × 10−4 2.00 3.87 × 10−4 2.02 1.30 × 10−3 2.00
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4.2. Well-Balanced Test

In order to show the well-balance properties of the numerical scheme, we perform a numerical
simulation of a lake-at-rest steady test. We set the following bathymetry function,

b(x) =
1
2

e−x2
,

and a constant free surface η = 2. In this problem, the relative density is set to 1, and the initial velocity
is zero. Figure 7 (left) depicts the free surface and bathymetry at t = 150 s, unchanged with respect to
the initial condition. Figure 7 (right) shows a zoom on the surface and we can see that the model is
exact up to machine precision, even for long time simulations.
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Figure 7. Free surface and bathymetry (left) and zoom of the free surface (right) at time t = 150 s.

A more interesting situation corresponds to the stratified solution described by (14). Let us
consider here a particular solution of this family with three layers (1 ≤ α ≤ 3):

uα = 0, η(x) = 1, zb(x) = 1
2 e−x2

, h(x) = 1− zb(x),

θ1(x) = h(x)4 K3 + 3h(x)2 K2 + K1,

θ2(x) = h(x)2 K2 + K1,

θ3(x) = K1.

(42)

The constant values Ki are chosen in order to have a stable stratified profile in the vertical direction,
that is, θ3(x) ≤ θ2(x) ≤ θ1(x). Here, we consider K1 = 1.01, K2 = 0.02 and K3 = 0. Note that, if a
stratification expression like (13) is used, then the coefficients Ki tends to zero with the increasing of
the number of layers.

The numerical scheme described in Section 3 cannot preserve the steady state (42). Figure 8 shows
the free surface and velocities at t = 10 s when (42) is given as initial condition on the domain [−5, 5],
discretized with 200 cells.
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Figure 8. Free surface (left) and velocities (right) at time t = 10 s: solution obtained with the numerical
scheme (35).
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Nevertheless, it is possible to modify scheme (35) or (33) in order to improve their well-balanced
properties and, in particular, to preserve this stationary solution. Following [48], it is possible to modify
the reconstruction procedure in such a way that these particular solutions are preserved. Remark that
here we are focusing on preserving just this particular solution. The procedure is briefly described in
what follows. Future and ongoing works will aim at generalizing the technique so that the numerical
scheme is able to preserve a larger family of steady states.

Let us modify (35) in order to improve its well-balanced property and, in particular, to preserve
the stationary solution (42). We denote by we(x) this particular stationary solution. According to [48],
the first stage is to define a reconstruction operator that preserves we(x). The idea is quite simple:
first define the fluctuation with respect to we(x) that is at each cell and at each time step we compute
the quantities,

wn
f ,i(t) = wn

i −we(xi),

where xi is the center of the cell Ii. Note that we(xi) is the evaluation of the stationary solution at the
center of the cell that is a second order approximation of its cell average on the cell Ii. Next, we apply
the standard second order reconstruction previously described to the fluctuations wn

f ,i. Let us denote

these reconstructions by R f
i (x). Finally, the reconstruction for w is defined as follows:

Ri(x) = we(x) + R f
i (x).

Special care should be taken for the quadrature formula applied for the integral appearing in (35).
Again, we follow [48] in order to propose a quadrature formula that preserves the well-balanced
character of the reconstruction and, therefore, of the numerical scheme.

Now, if we apply (35) with the previous reconstruction procedure, the numerical scheme
also preserves the stationary solution (42). Figure 9 shows the errors for the relative density and
velocities at time t = 150 s when compared to the exact steady state and those are of the order of the
machine precision.
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Figure 9. Difference between the numerical solution at t = 100 s and the exact steady state solution for
the relative density θα (left) and velocities (right).

Now, let us consider a small perturbation on the stationary solution (42), where now we consider

η(x, 0) = 1 +
1

10
e−10 x2

,

as the initial free surface. The relative densities θα and velocities uα remain the same. The initial
free surface and relative densities are shown in Figure 10. We consider the same domain as
previously, discretized with the same number of cells. The relative densities and the free surface
are fixed as the right boundary condition, while open boundary conditions are considered on the
left. Figures 11 and 12 show the difference of the relative density with respect to the one given by the
steady state. As it can be seen, the relative density slowly converges to the stationary solution up to
machine precision (see Figure 12).
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Figure 10. Initial condition for a perturbation of a well-balanced steady state with M = 3 layers.
Free surface is on the left and relative densities on the right.
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Figure 11. Difference on the relative density between the perturbed and unperturbed steady state.
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Figure 12. Difference on the relative density between the perturbed and unperturbed steady state.

4.3. Simulation for a Smooth Distribution of Relative Density

We perform now a simulation with a smooth profile for the relative density θ. We fix the domain
[−4, 4], discretized with 800 volume cells and we choose M = 10 layers. The relative density θ is
initially equal in all the layers and given by

θα(t = 0, x) = 1 +
1

100
e−10 x2

,

while the bathymetry and the free surface are constant and equal to 0.5 and 1.5, respectively.
We consider open boundary conditions. The initial condition is shown in Figure 13. Figures 14–17
show the evolution of the relative density for different times. We see that the relative density tends
to go downwards and towards the sides, but, at different velocities, due to the difference of pressure
between layers, forming a shock (see Figure 16). Eventually, for large times, the solution becomes
stratified in layers (see Figure 17). A dual representation has been chosen for the relative density.
On the right-hand side of the figure, we show the graph of the relative density for a choice of some
layers, so that they are representative of the evolution of the problem. On the left-hand side, we show
the relative density within the layers through a heat map.
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Figure 13. Relative density initial condition.
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Figure 14. Evolution of the relative density at t = 2.5 s.
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Figure 15. Evolution of the relative density at t = 5 s.
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Figure 16. Evolution of the relative density at t = 10 s.
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Figure 17. Evolution of the relative density at t = 50 s.

4.4. Simulation of a Lock-Exchange in a Flat Channel

We propose now to perform the test corresponding to the experimental data presented in [35].
There, the authors propose a laboratory experiment in a 3 m long channel, where a gatebox of length
0.1 m is placed within the channel containing a fluid with density ρ1. The rest of the channel contains
a fluid of density ρ0, with ρ1 > ρ0 The gate box is opened and its fluid is released into the flume.
The density ρ0 is 1000 kg/m3while ρ1 is 1034 kg/m3. Thus, we consider

θ(x) =

{
1.034 if x ≤ 0.1,

1.0 if x > 0.1.
(43)

The initial height of the water is constant and equal to 0.3 m while the bathymetry is the constant
function b = 0.5. This initial condition is shown in Figure 18. We consider the domain in [0, 3]
discretized with 800 volume cells. We impose reflecting no-slip boundary conditions.

For the particular case of M = 40 layers, we show in Figures 19–25 the evolution of the density
distribution at different times. We observe how a shock is formed once the fluid in the gate box is
released. The propagation of this shock corresponds to the front position described earlier. The relative
density profile at the left boundary of the channel is not an effect of the numerical treatment of
the reflecting no-slip boundary conditions. A similar effect can be also observed in the laboratory
experiment performed in [35].

In [35], the authors obtain the position of the head of the gravity current with respect to time.
In Figures 26 and 27, we can see the comparison for the front position between the experimental data
and the results obtained with the numerical approach presented here. The numerical simulations
have been obtained using M = 15, 20, 30, and 40 layers. We see that the larger the number of layers,
the better agreement we have between experimental and numerical data. Even for M = 20, the results
are quite good, despite the fact that non-hydrostatic effects, usually present in such situations (see [49]),
are not taken into account.
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Figure 18. Initial condition.
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Figure 19. Evolution of the density driven current at t = 0.5 s.
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Figure 20. Evolution of the density driven current at t = 1 s.
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Figure 21. Evolution of the density driven current at t = 1.5 s.
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Figure 22. Evolution of the density driven current at t = 2.5 s.



Mathematics 2020, 8, 848 25 of 42

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.50

0.55

0.60

0.65

0.70

0.75

0.80
t = 5.000

1.000

1.005

1.010

1.015

1.020

1.025

1.030

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

t = 5.000

1

5

10

20

40

Figure 23. Evolution of the density driven current at t = 5 s.
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Figure 24. Evolution of the density driven current at t = 10 s.
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Figure 25. Evolution of the density driven current at t = 20 s.
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Figure 26. Evolution of the head of the gravity current over time. The left figure depicts the problem
with M = 15 number of layers while the right shows the case with M = 20.
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Figure 27. Evolution of the head of the gravity current over time. The left figure depicts the problem
with M = 30 number of layers while the right shows the case with M = 40.

4.5. Simulation of a Dam Break Problem with a Non Constant Bathymetry Function

We consider the domain [−5, 5] and a bathymetry function given by

zB(x) =
1
2

e−x2
, (44)

and a constant free surface η = 2 m. A dam break problem in the relative density is considered as an
initial condition by setting

θ(x) =

{
1.0 if x ≤ 0,

1.02 if x > 0.
(45)

We fix M = 30 as the number of layers and discretize the domain with 1000 volume cells.
Free-flow open boundary conditions are considered. The initial condition is shown in Figure 28 while
the evolution of the fluid is depicted in Figures 29–33 for different times. In this test, we also compare
the first and second order schemes. In particular, we observe a sharp transition of density over the
obstacle, especially in the second order case. This kind of profile is common in gravity currents over
obstacles (see [50]).
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Figure 28. Initial condition.
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Figure 29. Distribution of the relative density θ. The first row corresponds to the first order scheme
and the second row to the second order scheme.
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Figure 30. Distribution of the relative density θ. The first row corresponds to the first order scheme
and the second row to the second order scheme.
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Figure 31. Distribution of the relative density θ. The first row corresponds to the first order scheme
and the second row to the second order scheme.
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Figure 32. Distribution of the relative density θ. The first row corresponds to the first order scheme
and the second row to the second order scheme.
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Figure 33. Distribution of the relative density θ. The first row corresponds to the first order scheme
and the second row to the second order scheme.

4.6. Simulation of a Dam Break Problem in Two Dimensions

As we have said, although the models and numerical scheme are introduced for the 1D case
for the sake of simplicity, everything can be easily extended to the 2D case. To illustrate this fact,
we show here a 2D simulation. We fix the domain (x, y) ∈ [−5, 5]× [−1, 1] where non-constant bottom
is considered described by

zB(x, y) =
1
2

e−((x+2)2+y2) +
1
2

e−((x−2)2+y2).

A constant free surface equal to 2 meters is considered initially. The relative density distribution
is set as

θα(t = 0, x, y) =

{
1.0 if x ≤ 0,

1.02 if x > 0.
(46)

The domain discretized with 36,000 uniform cells with ∆x = 1/60 and ∆y = 1/30. We impose
reflecting no-slip boundary condition at the horizontal walls and free-flow boundary conditions at the
vertical ones. We use M = 15 layers. The initial condition can be seen in Figure 34 and time evolution
of the fluid is shown in Figures 35–38, where cuts for the y = 0 and x = −2 planes are considered.
Figures 39 and 40 also show the upper view of the density distribution for the layer 7. These results
are second order accurate.
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Figure 34. Initial condition for a cut in the planes y = 0 (upper row) and x = −2 (lower row).
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Figure 35. Distribution of θ for a cut in the plane y = 0 (upper row) and x = −2 (lower row).
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Figure 36. Distribution of θ for a cut in the plane y = 0 (upper row) and x = −2 (lower row).
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Figure 37. Distribution of θ for a cut in the plane y = 0 (upper row) and x = −2 (lower row).
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Figure 38. Distribution of θ for a cut in the plane y = 0 (upper row) and x = −2 (lower row).
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Figure 39. Upper view of θ distribution in layer 7.
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Figure 40. Upper view of θ distribution in layer 7.

The numerical simulations performed in this section show that the numerical Section 3 is
both robust and accurate, and that the model Section 2 is useful to better understand flows with
density fluctuations.
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5. Conclusions

We have presented a multilayer shallow water model with variable density. We propose first and
second order numerical schemes that preserve the stationary solutions corresponding to water at rest
with constant density. Some insight has been briefly given on how to modify the scheme in order to
preserve some stratified stationary solutions. The numerical scheme is also positive preserving for
the water height. According to the numerical experiments, it seems that it also satisfies the maximum
principle for θα. The numerical tests performed are promising, showing robustness and great agreement
with laboratory experimental data. The model used and the numerical strategy introduced here will
certainly help with a better understanding of density driven currents in geophysical flows.
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Appendix A. Parallelization on GPU

In this appendix, we will discuss how the numerical scheme discussed in Section 3 is implemented
on GPUs. Parallelizations on GPU are useful when dealing with large computational domains, as they
are able to provide a very significant speed-up with respect to a sequential version of the code. There
are different ways to develop GPU parallel codes. One method consists of developing the entire
code on CUDA (see [7] and the references therein). There are numerous examples in the literature
where different numerical schemes and models have been written directly in CUDA, obtaining
extremely good results from the computational efficiency point of view. Another way to develop
GPU parallel codes is to use OpenACC directives (see [51]). While CUDA is a well-known approach
to parallelize finite volume numerical schemes and has successfully been applied to solve large
problems (see for example [6]), OpenACC is a newer paradigm, offering a friendlier approach to
GPU-based parallelization.

Several authors have studied the results of parallelizing a code under CUDA and OpenACC (see
for example [52]). In general, the speed-ups obtained are favorable to CUDA, which has a greater
control over data management and load balancing. Nevertheless, OpenACC also presents some
advantages over CUDA. The main one is that the work needed on adapting a sequential code to
OpenACC is much less demanding than the one required for CUDA. When developing a CUDA code,
the construction of the accelerator kernel, the part of the code that will be executed by the GPU, requires
that the particular structure of the problem and the target accelerator hardware have to be taken into
account. This means that the performance of the CUDA code highly depends on its specific adaptation
to the architecture being used. It is not an easy task to develop a good performing CUDA code and
the acceleration gained depends mostly on the capabilities of the developer in adapting the particular
algorithm used. Contrary to CUDA, OpenACC merely needs to add some instructions in the form
of pragmas to the code. In this way, most of the burden of the parallelization of the code falls into the
compiler, which is the one who has to translate the information contained in the pragmas to build the
accelerator kernel, and not the developer. Therefore, it is not necessary to recode the whole program,
but rather instruct your compiler with enough and suitable hints in the code to generate a parallel
version. While it is true that some authors have achieved similar performance with OpenACC and
CUDA for some reference problems (see for instance [53]), this requires a heavy personalization of the
OpenACC version, potentially losing its accessibility, and getting closer to a CUDA implementation.
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Note that the usual work required to parallelize a sequential code in CUDA is also present
in OpenACC. However, the tools provided by OpenACC are friendlier than the ones provided by
CUDA. Specifically, OpenACC allows easy data transference to the accelerator hardware and an easy
parallelization of those loops susceptible to be parallelizable. In this sense, it is somehow similar to
OpenMP, the programming interface for parallelization on CPUs.

Comparisons have been made between OpenACC and CUDA version of the code for the one layer
and one-dimensional case. For the CUDA code, we follow the procedure described in [54]. The results
are shown in Figure A1 (left). As we can see, CUDA is two times faster than OpenACC. However,
OpenACC speed-ups are also very good and the effort required to obtain an OpenACC version from
the sequential code is much less demanding than the one required to obtain the CUDA version.

Figure A1 (right) shows a comparison of the elapsed real time for two different versions of the
code: a multi-CPU version and a GPU one (run on two different GPU architectures). We see that the
GPU implementation is better by far than the CPU one and offers great scalability. Nevertheless, one
should take into account that the elapsed real time is very sensitive to the GPU used.
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Figure A1. Speed up of OpenACC vs. CUDA (left). Running time of a OpenMP version vs. running
time of an OpenACC version in two different graphical processor units.

Appendix B. Model Derivation

As stated in Section 2, we consider a fluid domain ΩF(t) for a given time t ∈ [0, T], with T ∈ R+.
We denote by IF(t) the projection of ΩF(t) onto the horizontal plane. In the multilayer approach,
the fluid domain is divided along the vertical dimension into a set of M ∈ N∗ layers of thickness
hα(t, x) with M+ 1 interfaces Γα+ 1

2
(t) of equations zα+ 1

2
for α = 0, 1, . . . , M and x ∈ IF(t) (see Figure 1).

We assume that the interfaces Γα+ 1
2
(t) are smooth, concretely at least of class C1 in time and space.

We shall now consider a multilayer shallow water approach to system (1). In the multilayer
approach, the fluid domain ΩF(t) is divided along the vertical dimension into a set of M ∈ N∗ layers
of thickness hα(t, x) with M + 1 smooth interfaces Γα+ 1

2
(t), which shall be described as (see Figure 1):

Γα+ 1
2
(t) =

{
(x, z) ∈ ΩF(t), such that x ∈ IF(t) and z = zα+ 1

2
(t, x)

}
, α = 0, 1, . . . , M.

The layers will be then described as

Ωα(t) =
{
(x, z); such that x ∈ IF(t) and zα− 1

2
< z < zα+ 1

2

}
, α = 1, . . . , M. (A1)

We shall denote by zB = z 1
2

and zS = zM+ 1
2

and by ΓB(t) and ΓS(t), the bottom and the
free-surface interfaces, respectively. We also have hα = zα+ 1

2
− zα− 1

2
and zα = zB + ∑α

β=1 hβ for

α = 1, . . . , M. Then, the total height of the fluid column is given by h = zS − zB = ∑M
β=1 hβ. Moreover,

we have ∂ΩF(t) = ΓB(t) ∪ ΓS(t) ∪Θ(t), where Θ(t) is the inflow/outfow boundary which we assume
here to be vertical. The fluid domain is split as ΩF(t) = ∪M

α=1Ωα(t).



Mathematics 2020, 8, 848 35 of 42

We also set for a function f and α = 0, 1, . . . , N,

f−
α+ 1

2
:= ( f|Ωα(t))|Γα+ 1

2
(t) and f+

α+ 1
2

:= ( f|Ωα+1(t))|Γα+ 1
2
(t).

If the function is continuous across Γα+ 1
2

we simply set

fα+ 1
2

:= f|Γ
α+ 1

2
(t).

We will denote by ηα+ 1
2

the space unit normal vector to the interface Γα+ 1
2

outward to the layer
Ωα(t) for any given time t and for α = 0, 1, . . . , N. This vector is defined by

ηα+ 1
2
=

(
∇xzα+ 1

2
,−1

)′√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣2 . (A2)

Additionally, [(a; b)]Γ
α+ 1

2
shall denote the jump of the concatenated pair (a; b) across Γα+ 1

2
,

[(a; b)]Γ
α+ 1

2
=

(
(a; b)|Ωα+1(t) − (a; b)|Ωα(t)

)
|Γ

α+ 1
2

.

Finally, we define the operator ∇x = (∂x1 , . . . , ∂xd−1).

Appendix B.1. Weak Solutions with Discontinuities

Let us recall the conditions to be satisfied by a piece-wise smooth weak solution (v, θ, p) of
system (4). More precisely, let us suppose that the velocity v, the density fluctuation θ, and the pressure
p are smooth in each Ωα(t), but possibly discontinuous across the predetermined hypersurfaces Γα+ 1

2
(t)

for α = 1, . . . , N − 1. Then, the triplet (v, θ, p) is a solution of (1) if the following conditions hold:

1. (v, θ, p) is a standard weak solution of (1) in each layer Ωα(t).
2. (v, θ, p) satisfies the normal flux conditions at Γα+ 1

2
(t) for α = 0, 1, . . . , M:

• For the continuity equations,

[(θ; θ v)]|Γ
α+ 1

2
(t) ·

(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
= 0. (A3)

• For the mass conservation law,

[θ v; θ v⊗ v− Σ]|Γ
α+ 1

2
(t) ·

(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
= 0. (A4)

We shall denote

v|Ωα(t) := vα := (uα, wα)
′, θ|Ωα

:= θα, p|Ωα
:= pα,

where uα is the horizontal velocity and wα is the vertical one. Following the usual approaches in
multilayer shallow water models, we shall make the following assumptions:

• the horizontal velocity uα and the density fluctuation θα do not depend on z inside each layer,
• both wα and pα are lineal in z inside each layer.

There is no hope for such a particular set
(
vα, θ, pα

)
to be a solution of the complete equations in

the layer Ωα(t). Instead, we shall consider a reduced weak formulation with particular test functions
that we will describe in Appendix B.3.
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Appendix B.1.1. Mass Conservation Jump Conditions

Following previous hypothesis, we get that

u+
α− 1

2
(t, x) = u−

α+ 1
2
(t, x) = uα(t, x) and θ+

α− 1
2
(t, x) = θ−

α+ 1
2
(t, x) = θα(t, x). (A5)

Then, mass conservation jump conditions are satisfied provided that

Gθ,α+ 1
2
= G−

θ,α+ 1
2
= G+

θ,α+ 1
2

(A6)

where G+
θ,α+ 1

2
= θα+1

(
∂tzα+ 1

2
+ uα+1 · ∇xzα+ 1

2
− w+

α+ 1
2

)
,

G−
θ,α+ 1

2
= θα

(
∂tzα+ 1

2
+ uα · ∇xzα+ 1

2
− w−

α+ 1
2

)
.

(A7)

It is also clear that the corresponding jump conditions for the mass equation ∇ · v = 0 are

Gα+ 1
2
= G−

α+ 1
2
= G+

α+ 1
2
, (A8)

and thus G+
α+ 1

2
= ∂tzα+ 1

2
+ uα+1 · ∇xzα+ 1

2
− w+

α+ 1
2
,

G−
α+ 1

2
= ∂tzα+ 1

2
+ uα · ∇xzα+ 1

2
− w−

α+ 1
2
.

(A9)

Appendix B.1.2. Momentum Conservation Jump Conditions

The momentum conservation jump condition (A4) is[(
θ v; θ v⊗ v− Σ

)]
|Γ

α+ 1
2
(t)
·
(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
= 0.

which can be rewritten as

[
Σ
]
|Γ

α+ 1
2
(t) ·

(
∇xzα+ 1

2
,−1

)
=

[(
θ v; θ v⊗ v− Σ

)]
|Γ

α+ 1
2
(t)
·
(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
.

Using (A6), we have[(
θ v; θ v⊗ v− Σ

)]
|Γ

α+ 1
2
(t)
·
(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
= θαGθ,α+ 1

2
[v]|Γ

α+ 1
2
(t).

Then, we have that [
Σ
]
|Γ

α+ 1
2
(t) ·

(
∇xzα+ 1

2
,−1

)
= θαGθ,α+ 1

2
[v]|Γ

α+ 1
2
(t).

In addition, condition (A4) can thus be written as

[
Σ
]
|Γ

α+ 1
2
(t) · ηα+ 1

2
=

1√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣ θαGθ,α+ 1
2
[v]|Γ

α+ 1
2
(t). (A10)

The total stress tensor across Γα+ 1
2

writes

Σ±
α+ 1

2
= −pα+ 1

2
I + T±

α+ 1
2
, (A11)



Mathematics 2020, 8, 848 37 of 42

where pα+ 1
2

is the kinematic pressure, continuous across Γα+ 1
2

and T±
α+ 1

2
are the limit approximation of

T(v) at Γα+ 1
2
. Combining (A10) with (A11), we obtain

(
T+

α+ 1
2
− T−

α+ 1
2

)
· ηα+ 1

2
=

1√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣ θαGθ,α+ 1
2
[v]|Γ

α+ 1
2
(t). (A12)

Moreover, T±
α+ 1

2
should also satisfy a consistency condition,

1
2

(
T+

α+ 1
2
+ T−

α+ 1
2

)
= T̃α+ 1

2
=

 T̃H,α+ 1
2

T̃xz,α+ 1
2

T̃′
xz,α+ 1

2
T̃zz,α+ 1

2

 , (A13)

where T̃α+ 1
2

is an approximation of T(v)|Γ
α+ 1

2

that we define as follows:

T̃α+ 1
2
= µD̃α+ 1

2
=


DH

(
uα+1+uα

2

) (
∇x

(
w+

α+ 1
2
+w−

α+ 1
2

2

))′
+ QH,α+ 1

2

∇x

(
w+

α+ 1
2
+w−

α+ 1
2

2

)
+ (QH,α+ 1

2
)′ 2Qv,α+ 1

2

 . (A14)

where Qα+ 1
2
= Q(ũ) at Γα+ 1

2
and Q satisfies the equations

Q− ∂zv = 0, with Q = (QH , Qv). (A15)

To approximate Q, a solution of (A15), we approximate v by ũ that is a linear interpolation in z,
such that ũ|z= 1

2 (zα− 1
2
+z

α+ 1
2
) = uα. Finally, we can solve the system defined by (A12) and the equation

resulting from multiplying scalarly (A13) by ηα+ 1
2
. In this way, we can obtain the expressions of T±

α+ 1
2

that satisfy the jump condition and the consistency condition on the interface. We can easily solve it
and we obtain

T±
α+ 1

2
· ηα+ 1

2
= T̃α+ 1

2
· ηα+ 1

2
± 1√

1 +
∣∣∣∇xzα+ 1

2

∣∣∣ θαGθ,α+ 1
2
[v]|Γ

α+ 1
2
(t). (A16)

Appendix B.2. Vertical Velocity

Here, we show how the vertical velocity is derived from its horizontal components at each layer.
Note that uα is a classic solution of the equations in Ωα(t), for z ∈ [zα+ 1

2
, zα− 1

2
], and therefore the

vertical integration of the incompressibility equations yields

wα(t, x, z) = w+
α− 1

2
(t, x)− (z− zα− 1

2
)∇x · uα(t, x), for α = 1, . . . , N.

From conditions (A8) and (A9), we can also deduce

w+
α− 1

2
= (uα − uα−1) · ∇xzα− 1

2
+ w−

α− 1
2
,

where
w−

α− 1
2
= wα−1|Γ

α− 1
2
(t)

= w+
α− 3

2
− hα−1∇x · uH,α−1.

Therefore, using the horizontal velocities obtained from the model, we can compute the averaged
vertical velocities in the layers by fulfilling the following steps:
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• First, the quantity w+
1
2

is determined from the given mass exchange through the bottom, G 1
2

and

using (A9) by
w+

1
2
= uH,1 · ∇xzB + ∂tzB − G 1

2
,

• Then, for α = 1, . . . , N and z ∈ [zα+ 1
2
, zα− 1

2
], we set

wα(t, x, z) = w+
α− 1

2
(t, x)− (z− zα− 1

2
)∇x · uH,α(t, x),

w−
α+ 1

2
= wα|Γ

α+ 1
2
(t) = w+

α− 1
2
− hα∇x · uH,α, (A17)

w+
α+ 1

2
= (uα+1 − uα) · ∇xzα+ 1

2
+ w−

α+ 1
2
.

Appendix B.3. A Particular Weak Solution with Hydrostatic Pressure

In this section, we complete the derivation of the model under the assumption of hydrostatic
pressure. This means that

pα(t, x, z) = pα+ 1
2
+ θα g (zα+ 1

2
− z), (A18)

with

pα+ 1
2
(t, x) = pS(t, x) + g

M

∑
β=α+1

θβhβ(t, x). (A19)

Here, the component pα+ 1
2

is the kinematic pressure at Γα+ 1
2
(t) and pS denotes the pressure at

the free surface. Then, the unknowns of the system are the depths of the layers, the density fluctuation,
and the horizontal velocities in each layer.

Let us consider the weak formulation of system (1) in Ωα(t), with vα a weak solution of the system.
Assuming vα ∈ L2(0, T; H1(Ωα(t))3), ∂tvα ∈ L2(0, T; L2(Ωα(t))3) and pα ∈ L2(0, T; L2(Ωα(t))), a weak
formulation of the original equations in Ωα(t) for α = 1, . . . , M should satisfy

∫
Ωα(t)

(∇ · vα)ϕ dΩ = 0,∫
Ωα(t)

(∂tθα +∇ · (θv)) ϕ dΩ = 0,∫
Ωα(t)

∂t(θv)ϑ dΩ +

∫
Ωα(t)

∇ · (θ v⊗ v)ϑ dΩ

= −
∫

Ωα(t)
g θkϑ dΩ +

∫
Ωα(t)

(∇ · Σ)ϑ dΩ,

(A20)

for all ϕ ∈ L2(Ωα(t)) and for all ϑ ∈ H1(Ωα(t))3 with ϑ|∂IF
= 0. We consider the following vertical

structure of the test function,
∂z ϕ = 0, (A21)

ϑ(t, x, z) =
(

ϑH(t, x), (z− zB)V(t, x)
)

, (A22)

where ϑH and V(t, x) are smooth functions that do not depend on z. After some calculations (similar
to those in [30]), we get,
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∂thα +∇x(hαuα) = Gα+ 1
2
− Gα− 1

2
,

∂t(hαθα) +∇x(hαθαuα) =

(
θα+1 + θα

2

)
Gα+ 1

2
−
(

θα + θα−1

2

)
Gα− 1

2
,

∂t(hαθαuα) +∇x(hαθαu2
α) + ghαθα∇xη −∇x(hα TH)

(T̃H,α+ 1
2
(∇x zα+ 1

2
)′ − T̃xz,α+ 1

2
)− (T̃H,α− 1

2
(∇x zα− 1

2
)′ − T̃xz,α− 1

2
)

+ghα

(
M

∑
β=α+1

(θβ − θα)∇xhβ

)
+ ghα

M

∑
β=α+1

hβ∇xθβ +
1
2

gh2
α∇xθα

=

(
uα+1 + uα

2

)(
θα+1 + θα

2

)
Gα+ 1

2
−
(

uα + uα−1

2

)(
θα + θα−1

2

)
Gα− 1

2
.

Appendix B.4. Closure of the Model

The model can be further simplified if we consider layers having thickness proportional to the
total height. That is, for α = 1, . . . , M, hα = lαh with lα positive constants such that

M

∑
α=1

lα = 1 (A23)

By summing up Equation (8) up to any given α < M, we get

α

∑
β=1

(
∂thβ + ∂x(hβuβ)

)
= Gα+ 1

2
− G 1

2
. (A24)

For the particular case α = M and by applying (A23), we get the global continuity equation

∂th + ∂x

(
h

M

∑
β=1

lβuβ

)
= GM+ 1

2
− G 1

2
. (A25)

where we will assume GM+ 1
2
= G 1

2
= 0.

This allows us to give a simpler expression for the mass exchange terms between layers using
(A23) and (A24):

Gα+ 1
2
=

α

∑
β=1

lβ

(
∂th + ∂x(huβ)

)
=

α

∑
β=1

lβ

(
∂x(huβ)− ∂x

(
h

M

∑
γ=1

lγuγ

))
. (A26)

This expression can be written as

Gα+ 1
2
=

M

∑
γ=1

ξα,γ∂x(huγ), (A27)

with

ξα,γ :=
α

∑
β=1

(δβγ − lβ)lγ =

{
(1− (l1 + . . . + lα))lγ, if γ ≤ α,

(l1 + . . . + lα)lγ, otherwise,
(A28)

where δβγ is the standard Kronecker symbol. In this way, we define the mass exchange terms between
layers across each layer as a function of the horizontal velocities in the layers.

We can now write the full system. Here, we neglect the viscosity terms and, for the sake of
simplicity, we consider the one-dimensional case:
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∂th + ∂x

(
h

M

∑
β=1

lβuβ

)
= 0,

∂t(hθα) + ∂x(hθαuα) =

(
θα+1 + θα

2 lα

)
Gα+ 1

2
−
(

θα + θα−1

2 lα

)
Gα− 1

2
,

∂t(hθαuα) + ∂x(hθαu2
α) + ghθα∂xη (A29)

+gh

(
M

∑
β=α+1

lβ(θβ − θα)∂xh

)
+ gh

M

∑
β=α+1

lβh∂xθβ +
1
2

glαh2∂xθα

=

(
uα+1 + uα

2 lα

)(
θα+1 + θα

2

)
Gα+ 1

2
−
(

uα + uα−1

2 lα

)(
θα + θα−1

2

)
Gα− 1

2
.
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